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Abstract

Background: Chimeric transcripts, including partial and internal tandem duplications (PTDs, ITDs) and gene fusions,
are important in the detection, prognosis, and treatment of human cancers.

Results: We describe Barnacle, a production-grade analysis tool that detects such chimeras in de novo assemblies
of RNA-seq data, and supports prioritizing them for review and validation by reporting the relative coverage of
co-occurring chimeric and wild-type transcripts. We demonstrate applications in large-scale disease studies, by
identifying PTDs in MLL, ITDs in FLT3, and reciprocal fusions between PML and RARA, in two deeply sequenced
acute myeloid leukemia (AML) RNA-seq datasets.

Conclusions: Our analyses of real and simulated data sets show that, with appropriate filter settings, Barnacle
makes highly specific predictions for three types of chimeric transcripts that are important in a range of cancers:
PTDs, ITDs, and fusions. High specificity makes manual review and validation efficient, which is necessary in
large-scale disease studies. Characterizing an extended range of chimera types will help generate insights into
progression, treatment, and outcomes for complex diseases.
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Background
A chimeric transcript is an RNA molecule that does not
have a collinear mapping to a single reference gene
model. Such a transcript can result from genome re-
arrangement events that occur at the DNA level, or
transcriptome events that occur at the RNA level [1].
Two types of chimeric transcripts that are important in
human cancers are fusions (e.g. [2]), in which parts of
two genes located on the same or on different chromo-
somes are joined (Figure 1A); and tandem duplications,
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in which part of a gene is repeated. A tandem duplica-
tion can be further classified as either a partial tandem
duplication (PTD, e.g. [3]), if both edges of the dupli-
cated segment correspond to annotated exon boundaries
that are involved in splicing (Figure 1B); or an internal
tandem duplication (ITD, e.g. [4]) otherwise (Figure 1C).
The defining characteristic of a PTD is a non-canonical
exon junction (NCEJ): a junction from the end of an
exon A, to the beginning of the same exon or of another
exon that is 5 prime of exon A in the reference isoform(s)
(Figure 1B). Salzman et al. [5] present evidence for circular
transcripts (Figure 1D), which can produce NCEJs that are
identical to those seen in PTDs; as discussed in that work,
RNA-seq data cannot support differentiating between
linear PTD transcripts and circular transcripts when the
al Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 Chimeric transcript event types. A) A fusion in which the first two exons of gene A are joined to the last two exons of gene B. B) A
partial tandem duplication in which the second exon of gene A is duplicated. NCEJ marks the non-canonical exon junction between the two
copies of exon A2. C) An internal tandem duplication in which a portion of the second exon of gene A is duplicated, internal to the exon. D) A
circular transcript involving only the second exon of gene A. Note that it contains the same A2-A2 NCEJ as the PTD in (B).
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total length of the exons involved is greater than the
fragment-length range of the sequencing experiment.
However, a poly(A)-selected RNA-seq library preparation
protocol should enrich for linear transcript products.
Al-Balool et al. [6] performed a large-scale experimental
analysis of post-transcriptional exon shuffling (PTES)
events detected as NCEJs in human datasets, along with
extensive wet-lab validations; some of the NCEJs that they
reported could represent PTDs.
Chimeric transcripts have been detected in a range of

eukaryotes [7-10], including mice [11], rats [12,13], and
both healthy and diseased human tissues [14-16]. Al-
though Al-Balool et al. [6] reported four genes in which
expression levels of NCEJs were greater than 50% of
those of their corresponding wild-type transcripts, the
majority of the 72 expressed NCEJ sequences that they
validated were expressed at low relative levels. The func-
tional importance of chimeric transcripts in healthy tissues
remains controversial; such transcripts generally have low
relative expression levels, and no high-throughput tools
have been available for estimating the expression levels of
such transcripts [1,6].
Specific tandem duplications and fusions are import-

ant in detecting, prognostically scoring, and treating
cancers (e.g. in AML, MLL PTDs [3]; FLT3 ITDs [4];
PML/RARA fusions [2]). In cancerous tissues, chimeras
are often the result of genomic events; however, Kannan
et al. [14] found strong evidence for transcriptome-level
production of chimeric transcripts in prostate cancer
samples. They detected many more events in cancer
samples than in matched benign samples, and a large
fraction of their detected events were either specific to,
or had a much higher expression level in, the cancer
samples. Similarly, Li et al. [17] found evidence in nor-
mal endometrial tissue of a fusion transcript due to reg-
ulated trans-splicing that is identical to a constitutively
expressed fusion transcript resulting from a chromo-
somal translocation in endometrial tumours. Schnittger
et al. [18] found that, beyond the simple presence or ab-
sence of an ITD in the FLT3 gene, the relative expres-
sion of chimeric FLT3 transcripts relative to wild-type
FLT3 can be used as a prognostic indicator.
Transcriptome sequencing (RNA-seq) can support
high-throughput detection of chimeric transcripts. De
novo transcriptome assembly of RNA-seq data (e.g.
[19-21]) generates contigs representing transcripts with-
out relying on annotated transcript models or assuming
collinearity between transcripts and the genome, and so
is well suited to discovering novel transcript structures.
Further, the longer sequences assembled from reads
yield alignments that have specific signatures, facilitating
detection and characterization of contigs that cannot be
explained by reference gene models, and that may reflect
complex genomic or transcription-related events.
Tools like AGE [22] and DELLY [23] predict a range

of structural variations, including tandem duplications,
in genomic data. A number of tools are available for
detecting fusions in RNA-seq data (e.g. [24-27]), but do
not predict tandem duplications. Yorukoglu et al. [28]
developed Dissect, a novel tool for non-collinear align-
ments of long transcriptome sequences to a reference
genome; however, this tool performs alignment only,
and does not further characterize the alignments. To
our knowledge, no production-grade, high-throughput
tool is available that uses RNA-seq data to detect and
characterize PTDs or ITDs, and compares the coverage
of chimeric transcripts to their corresponding wild-
type transcripts.
Here, we describe a discovery and analysis pipeline for

Browsing Assembled RNA for Chimeras with Localized
Evidence (Barnacle). It integrates evidence from a range
of data types: (i) assembled transcriptome contigs and
their alignments to a reference genome, (ii) read align-
ments to assembled transcriptome contigs, and (iii) gene
and repeat annotations in the reference genome. By
comparing assembled contigs to a reference genome se-
quence, Barnacle identifies a wide range of non-collinear
alignment topologies, and currently characterizes three
types of chimeric transcripts: NCEJs (which can represent
PTDs, circular transcripts, or exon-shuffling events), ITDs,
and fusions. Barnacle provides a range of filtering options,
allowing users to adjust sensitivity and specificity to suit
their applications. When provided with alignments of
RNA-seq reads to a reference genome, Barnacle supports
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prioritizing predictions by comparing the coverages of
candidate chimeric transcripts and the corresponding
wild-type transcripts.
We applied this tool to two deeply sequenced acute

myeloid leukemia (AML) samples. Among the events
that we predicted are several known to be important in
AML: a PTD in the myeloid/lymphoid or mixed-lineage
leukemia (MLL) gene [3]; two distinct ITDs in the fms-
related tyrosine kinase 3 (FLT3) gene [4]; and a pair of
reciprocal fusions between the promyelocytic leukemia
(PML) and alpha retinoic acid receptor (RARA) genes
[2]. These results for a well-studied cancer with known
and clinically significant chimeric transcripts suggest
that Barnacle will be a useful tool for detecting and char-
acterizing such events in RNA-seq data, particularly in
large-scale studies of complex diseases.

Results and discussion
Barnacle overview
The Barnacle pipeline is composed of five stages
(Figure 2). The first stage examines contig alignments
to genomic sequences (contig-to-genome alignments)
and identifies anomalous or non-reference (candidate)
contigs that have a variety of alignment topologies. The
second stage examines transcriptome read alignments to
the assembled contig sequences (read-to-contig align-
ments), and calculates read support for these candidate
contigs. The third stage applies user-specified filters to the
process
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Figure 2 Stages of the Barnacle pipeline.
candidate contigs and retains sufficiently confident candi-
dates. The fourth stage identifies chimeric transcripts of
particular types from the filtered candidates. These four
stages require the following as input: contig sequences in
FASTA format; contig-to-genome alignments in PSL for-
mat; read-to-contig alignments in BAM format; and gene
and repeat annotations in UCSC genePredExt and BED
file formats, respectively. The optional final stage uses read
alignments to genomic sequences (read-to-genome align-
ments) in BAM format to compare the coverage of the
predicted chimeric transcripts to their corresponding
wild-type transcripts. Although we used the Trans-ABySS
pipeline for the assemblies and alignments in our expe-
riments below, Barnacle can be applied to the outputs of a
variety of combinations of assembly and alignment tools,
provided that the outputs can be converted to the ac-
cepted formats.

Stage 1 Detecting candidate contigs
Stage 1.1. Candidate identification
Barnacle begins by examining alignments of contigs to the
reference genome, determining which alignment(s) best
represent each contig, and comparing these alignments to
the alignment signatures that we have identified as indica-
ting non-collinear alignment topologies, such as inter-
chromosomal, where parts of the contig align to different
chromosomes; inversion, where parts of the contig align to
different strands of the same chromosome; eversion, where
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parts of the contig align out of order to the same strand of
the same chromosome; and duplication, where parts of the
contig align to the same region of the same strand of the
same chromosome (Figure 3A). While examining align-
ments, Barnacle uses their genomic coordinates to assign
genes to each. Because long-sequence aligners (e.g. BLAT
[29]) are designed to generate collinear alignments, deter-
mining which alignment result(s) most likely represent the
true genomic source(s) of the transcript that produced a
given contig is non-trivial. Barnacle cannot simply pick the
alignment(s) with the highest alignment score or percent
identity.
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� a match(j), showing that the base at contig position i
is aligned with and the same as the base at genomic
position j;

� a mismatch(j), showing that the base at contig
position i is aligned with and different from the base
at genomic position j.

Note that since we are considering RNA-to-DNA align-
ments from an RNA contig-centric perspective (i.e. we de-
fine an alignment as a single mapping for each position in
a contig sequence), we are not concerned with deletions,
i.e. unaligned genomic positions flanked by aligned gen-
omic positions, which would typically represent introns in
RNA-to-DNA alignments. As no contig position would be
mapped to such deletions, we do not consider them.
We define a query gap as a set of adjacent contig posi-

tions mapped to an insertion (Figure 3D). That is, if for
positions i and j, i < j, positions i-1 and j + 1 are marked
as a match or a mismatch, and all positions between i
and j, inclusive, are marked as an insertion, then C[i,j] is
a query gap. Query gaps can also occur at either edge of
a contig, when either i = 0 or j = |C|-1.
Now, for each contig C, we have a set of contig-to-gen-

ome alignments: A(C) (Figure 3B-i). We define the follow-
ing functions for analysing sets of contig-to-genome
alignments: quality(A(C)) is the sum of the qualities of the
alignments in A(C), based on the alignment score and per-
cent identity reported by the contig aligner; inclusion(A
(C)) is the fraction of the positions in C marked as a
match or mismatch in any of the alignments in A(C);
overlap(A(C)) is the fraction of positions in C marked as
match or mismatch in more than one of the alignments in
A(C); and size(A(C)) is the number of alignments in A(C)
(Figure 3B-ii). We then define score(A(C)) = quality(A(C)) +
inclusion(A(C)) - overlap(A(C)) - size(A(C)). Our goal is
to find all subsets A*(C) of A(C) that approximate a
maximization of score(A*(C)).
There are four possible cases to consider for each

alignment set A*(C) found for contig C (Figure 3C):

Case I: A*(C) is a single alignment that contains no
query gaps; the contig is considered non-chimeric, and
not processed further.
Case II: A*(C) is a single alignment that contains one
or more query gaps; the contig is considered a potential
gap-candidate (see below).
Case III: A*(C) is a pair of alignments; the contig is
considered a potential split-candidate (see below).
Case IV: A*(C) contains more than two alignments; the
contig is considered outside the current scope of
Barnacle characterization, and not processed further.

Barnacle approaches the alignment selection prob-
lem heuristically. First, for a contig C, if any single
alignment result a(C) in the set of alignments A(C), has
inclusion(a(C)) greater than a user-specified threshold,
then contig C is considered to fall into Case I and is
not processed further. Otherwise, the alignments in A
(C) are grouped by their pairwise overlap values,
resulting in a partitioning of the positions in C based
on the edges of the alignments in each group. That is, if
A(C) = {a(C), b(C), c(C), …} and overlap({a(C),b(C)}) is
greater than a user-specified threshold, then a(C) and b
(C) are grouped together. Furthermore, if either over-
lap({a(C),c(C)}) or overlap({b(C),c(C)}) is greater than
the threshold, c(C) is also grouped together with a(C)
and b(C).
Barnacle then chooses the highest quality alignment

result(s) in each alignment group. If there are multiple
alignments in a single group that have qualities within
a user-specified range of the highest quality alignment,
then they are all marked as multi-mapping and consid-
ered in following steps. Candidates involving align-
ments marked as multi-mapping can be removed at the
filtering stage, if desired (see below). By default, Bar-
nacle discards any alignments to mitochondrial DNA,
but the user can disable this option.
To determine whether a potential gap-candidate (in-

volving a contig falling into Case II, see above) repre-
sents a chimeric transcript, Barnacle processes it as
follows. First, the contig-to-genome alignment a(C)
must pass user-specified thresholds for quality({a(C)}),
inclusion({a(C)}), and the length of the query gap. If
the alignment passes these thresholds, then for each
query gap in that alignment, Barnacle attempts one or
two local realignments, using the query gap sequence
as the new query. The first realignment looks for dupli-
cations by attempting to align the query gap sequence
to the sequence produced by masking the gap position
in the original contig sequence (Figure 3D-i). If C[i,j] is
the query gap, then Barnacle attempts an alignment be-
tween C[i,j] and C[0,i-1] + C[j + 1,|C|-1] (i.e. the con-
catenation of the sequence before and after the query
gap). If the query gap is internal to the contig, i.e. i > 0
and j < |C|-1, then a second realignment is attempted.
This alignment looks for inversions by attempting to
align the query gap sequence to the genomic region
bounded by the genomic alignment coordinates of the
bases flanking the gap in the original contig-to-genome
alignment (Figure 3D-ii). If the contig position C[i-1] is
aligned to genomic position G[i’] and C[j + 1] is aligned
to genomic position G[j’], then C[i,j] is aligned to G
[min(i’,j’), max(i’,j’)]. If either of these realignments is
successful, Barnacle creates a gap-candidate from the
contig C, the original contig-to-genome alignment a
(C), and the successful query-gap realignment a’(C[i,j]).
Potential split-candidates (involving Case III contigs,

see above) need only have inclusion(A*(C)) greater than
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a user-specified minimum value for Barnacle to create a
split-candidate from the contig C, and the pair of
contig-to-genome alignments A*(C).
At this point, Barnacle has identified gap- and split-

candidates with a variety of alignment topologies. Each
candidate is made up of a contig and a pair of align-
ments associated with that contig. For gap-candidates
these are a single contig-to-genome alignment and a
gap-realignment; for split-candidates they are two
contig-to-genome alignments. If Barnacle has marked
either of these alignments as multi-mapping, the can-
didate contig is also marked as multi-mapping. A sin-
gle contig can be present in multiple candidates if, for
example, that contig multi-maps. Barnacle labels each
candidate with the appropriate alignment topology
and uses these labels while calculating support and
annotations, and while identifying specific types of
chimeric transcripts.

Stage 1.2. Candidate grouping
Because some transcriptome assemblers produce a
meta-assembly, i.e. a set of contigs that has been pro-
duced by merging several independent assemblies gen-
erated with a range of assembly parameters [20,21], a
single event can be represented by multiple contigs.
Alternative splicing can also result in multiple contigs
representing the same event. To address this, gap- and
split-candidates are grouped by their genomic locations
and alignment orientations.

Stage 1.3. Candidate annotation
For use in filtering, predictions, and characterization,
several types of annotations are associated with each
candidate, based on files provided by the user. If the
genomic coordinates of a predicted event overlap any re-
peat regions, segmental duplications, or small structural
RNA regions (such as tRNAs or snRNAs), the event is
annotated with this information. Also, for each candidate
Barnacle determines whether both, one, or neither of its
genomic breakpoint coordinates match annotated exon
boundaries. For a fusion from gene A to gene B, the first
breakpoint is the last genomic position from gene A that
is present in the transcript, while the second breakpoint
is the first genomic position from gene B that is present
in the transcript. Note that Barnacle is able to detect fu-
sions that involve non-canonical exon junctions; it does
not require that fusion breakpoints match annotated
exon boundaries. For a tandem duplication event, the
breakpoints are the first and last genomic positions of
the duplicated segment.

Stage 2 Calculating read support
When the two genomic regions connected by a chimeric
breakpoint have high sequence homology, it can be
'impossible to unambiguously determine the exact pos-
ition of that breakpoint within the homologous region
(Figure 3E). Given this, a search region, P, surrounding
the breakpoint is determined on the contig, based on the
alignments associated with the candidate (Figure 3F-i).
For gap candidates involving a duplication event, P is
defined as the region between the two copies of the
duplicated sequence (Figure 3F-ii). At each position
p within P, Barnacle calculates the read depth R(p),
counting only reads mapping to the contig without mis-
matches and overlapping p by at least a user-specified
minimum on each side (e.g. 5 nucleotides (nt)). Barnacle
reports the minimum value of R(p) over all positions p in
the search region P as the read-to-contig support for the
current candidate contig. This guarantees that wherever
the breakpoint is within P, at least the reported number of
read alignments overlap the breakpoint.
Since multiple contigs may represent the same event,

Barnacle uses the following method for handling reads
that map to multiple contigs. For a given read r, let C
(r) represent the set of contigs that r maps to. For a
contig C, let E(C) represent the set of contigs re-
presenting the same event as C, i.e. C plus any other
contigs grouped together with C (see Stage 1.2 above).
Now define score(r,C) = |intersection(C(r), E(C))| / |C(r)|.
For all C in C(r), r strongly supports C if score(r,C) ≥ 0.5,
otherwise r weakly supports C. Barnacle reports both total
read-to-contig support (i.e. including strongly supporting
as well as any weakly supporting read alignments) and
strong read-to-contig support (i.e. including only
strongly supporting read alignments).

Stage 3 Filtering candidates
Barnacle provides several filters that a user can apply to
the candidates at this point. The filters and their default
values were iteratively developed in close interaction
with manual review. The following filtering criteria can
be applied to each candidate, with default values shown
in parentheses:

1. the number of candidate groups containing the
contig associated with the candidate (fail contigs
involved in more than 3 groups);

2. whether the candidate has been marked as multi-
mapping (fail multi-mapping candidates);

3. whether the inferred event is a homopolymer
sequence (fail homopolymer events);

4. whether the breakpoints occur within any repetitive
regions (allow breakpoints in repeats);

5. whether the breakpoints occur within any structural
RNA regions (fail breakpoints in structural RNAs);

6. the percent identities of the pair of alignments
associated with the candidate (fail contigs with less
than 99.0% identity for either alignment);
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7. the total fraction of the bases in the contig marked
as “match” or “mismatch” in the pair of alignments
associated with the candidate (fail contigs with less
than 0.9 of their positions marked as “match” or
“mismatch”);

8. the amount of support from read-to-contig
alignments (fail contigs with fewer than 5 strongly
supporting reads);

9. the maximum amount of overlap in the contig
coordinates of the pair of alignments associated with
the candidate (fail contigs with more than 75 nt of
overlap);

10. whether the event might be a misalignment of the
poly(A) tail of a transcript (fail poly(A) events).

The filters for the number of distinct candidate groups
(1), contig multi-mapping (2), homopolymer sequences
(3), annotated repeats (4), and small structural RNAs (5)
all address the challenges that repetitive sequences pose
to assembling and aligning contigs, which reduce predic-
tion confidence. There are two situations that can cause
a contig to create candidates in multiple candidate
groups. First, the contig could represent a combination
of multiple simultaneous events, such as a pair of fu-
sions joining three genes into a single transcript. Second,
alignment ambiguity can result in several mutually ex-
clusive events that are explainable by the same contig.
For example, if two genes A and A’ have similar se-
quences and there is a fusion between one of them and
a third gene, B, then the assembled contig will have one
piece that aligns to gene B, while the remainder of the
contig aligns with similar qualities to both gene A and
gene A’. So, while only one fusion actually occurred
(either A/B or A’/B), the resulting contig will be explain-
able by either of them. Because the frequency of the
events being detected is typically low compared to the
transcriptome size, and contigs that involve multiple
simultaneous events are more difficult to characterize,
we allow the user to limit the number of events that a
reported contig can contain. This filter (1) can also be
used to roughly control the amount of contig multi-
mapping allowed in the final predictions, since filter (2)
removes contigs with any amount of multi-mapping. For
a candidate to fail the homopolymer filter, it must be a
gap-candidate, and every position within the realigned
portion of the query gap must be the same base. Because
expansions of homopolymer and repetitive regions can
have signatures similar to general duplication events, we
allow the user to filter out such expansions with filters
(3) and (4) if desired. Small structural RNAs (such as
tRNAs and snRNAs) can resemble repeats [30] and can
be eliminated using filter (5).
Filters for percent identity (6) and contig inclusion (7,

also see Stage 1.1) are used to filter candidates based
on the confidence with which Barnacle chose align-
ments to represent the genomic source(s) of the contig
associated with the candidate, when creating the candi-
date in Stage 1.
The read-support filter (8) specifies minimum values

for total and strong read support calculated for each
candidate in Stage 2. It can help avoid false positives
due to misassembly, by requiring that reads directly
support the novel sequence at the event breakpoint,
and allows the user to adjust the sensitivity to weakly
expressed chimeras by filtering predictions based on
chimera read coverage. See Stage 2 above for a descrip-
tion of how read support is calculated. The discussion
of the AML datasets below suggests how to select ap-
propriate threshold values for this filter. This filter has
a default value of 5 strongly supporting reads, which
we established in extensive work with human datasets
from large-scale disease studies, in which manual
review needs to be efficient. Users will likely need to
determine the optimum value for this threshold for
their specific analyses. See our discussion of the AML
datasets below, for suggestions on how to choose an
appropriate value for this threshold.
The final two filters attempt to handle some common

sources of false positives. The maximum contig overlap
filter (9) helps avoid false positives due to large regions
of homology between distinct genomic regions causing
such regions to be incorrectly assembled together. From
our experience, setting this filter to the read length, such
that contigs overlapping by more than the read length
are rejected, is usually appropriate. The poly(A) filter
(10) helps avoid false positives when one of the align-
ments associated with the candidate is either a run of
T’s at the very beginning of the contig or a run of A’s at
the very end of the contig. The presence of poly(A) tails
in assembled contigs can cause misalignments to the
reference genome.

Stage 4 Predicting chimeric transcripts
Barnacle uses the alignment topology (Stage 1.1), gene
and exon-boundary annotations (Stage 1.3), and se-
quence properties of the candidates that have passed the
user-specified filters (Stage 3) to predict chimeric tran-
scripts of specific types. For the work described here, we
focus on fusions, PTDs, and ITDs.
We predict fusion events from split-candidates with

any topology. The two alignments associated with the
candidate must overlap only distinct genes, and must
not overlap each other in the genome (Figure 1A). Along
with each fusion prediction, Barnacle reports whether or
not the direction of transcription of the two genes is
maintained in the contig structure. As noted above,
there is no requirement that the fusion involves only
canonical exon junctions.
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As a PTD event, by definition, must involve at least a
single full exon, we expect that such an event will usu-
ally be too long to be assembled as a full-length chimeric
transcript. Instead, assembly programs like ABySS will
produce a short junction contig representing the NCEJ
between the copies of the duplicated exon(s). The mini-
mum duplication length to create a junction contig ra-
ther that a full-length contig, as well as the length of the
junction contigs produced, will depend on both the read
and fragment lengths sequenced, and the assembly algo-
rithm and parameters used. Such junction contigs will
align as split-candidates with an eversion or duplication
topology (Figure 3A). We predict PTDs from such split-
candidates when both alignments associated with the
candidate overlap the same gene, and both genomic
breakpoint coordinates match annotated exon bounda-
ries (Figure 1B). As noted above, these candidates may
actually represent circular isoforms rather than PTDs
([5], Figure 1D); however, as the focus of our analysis is
data from poly(A)-selected cDNA libraries, we mark
them as PTD events.
We predict long ITD events with criteria similar to

those used for predicting PTD events, except that we re-
quire that at least one of the genomic breakpoint coordi-
nates does not match any annotated exon boundary.
However, ITDs can also be quite short, in which case as-
sembly of the full-length chimeric transcript is possible.
Short ITDs are predicted from gap-candidates that have
a duplication topology (Figures 3A-v, 3C-ii, 3D-i) and at
least one genomic breakpoint that matches no annotated
exon boundary. The exact length threshold separating
“long” ITDs, detectable as split-candidates, from “short”
ITDs, detectable as gap-candidates, will depend on the
assembly algorithm and parameters used.
Due to the difficulties inherent in aligning transcriptomic

sequences to a genomic target sequence (the cDNA-
genomic alignment problem [31]), misalignments that lead
to false positive event predictions can occur. Therefore, as a
final, post-processing filter, contigs representing potential
fusions, PTDs, and ITDs can be aligned to wild-type tran-
script sequences provided by the user. Predictions involving
any contig that exhibits a full-length, collinear alignment
(Figure 3A-i) to any single wild-type transcript are removed
from the final output.

Stage 5 Measuring relative coverage
To support prioritizing detected events, Barnacle can
estimate the coverage of a predicted chimeric transcript
relative to its co-expressed wild-type transcript(s),
when provided with alignments of transcriptome reads
to the genome (Additional file 1: Figure S1). Because
this is a fractional metric, there is no need to normalize
its value when making comparisons between different
genes and/or datasets.
When multiple isoforms are expressed, determining
the full-length structure of a transcript with RNA-seq
can be constrained by the length of the cDNA fragments
produced in the sequencing experiment; that is, an
RNA-seq dataset contains insufficient information to
disambiguate structural options that are separated in the
RNA by a distance longer than the fragment length. For
example, consider a gene with five exons, in which the
middle exon is longer than the fragment length. If there
are reads representing transcripts both with and without
the second exon, as well as reads representing tran-
scripts both with and without the fourth exon, sequence
analysis cannot determine which of the following four
transcripts are actually present in the dataset: e1-e2-e3-
e4-e5, e1-e3-e4-e5, e1-e2-e3-e5, and e1-e3-e5.
Given this constraint, Barnacle calculates a local

metric that relies only on those portions of the tran-
scripts for which we have direct evidence in the contig
representing the chimera. For example, for a contig
representing a duplication of exon 2, our method esti-
mates the coverage of expressed chimeric transcripts
that include a duplication of exon 2 and the coverage of
expressed wild-type transcripts involving exon 2, then
returns the value obtained by dividing the former by the
latter. For a contig representing a fusion joining the first
two exons of gene A (A1 and A2) to three of the last
four exons of gene B (B5, B6, and B8), our method esti-
mates the coverage of expressed chimeric transcripts
that include the fusion junction between exons A2 and
B5, the coverage of expressed wild-type transcripts of
gene A involving exons A1 or A2, and the coverage of
expressed wild-type transcripts of gene B involving
exons B5, B6, or B8, then returns the two values ob-
tained by dividing the first value by each of the latter.
Cases may occur in which a gene expresses, at relatively
high levels, isoforms that do not include the exon(s) that
are involved in the chimera; these will reduce the accur-
acy of the reported relative chimeric coverage.
When a chimera involves duplication of a sequence

that is longer than the read length, accurately measuring
the relative coverage of that chimera requires knowing
how many times the sequence is duplicated. However,
given the relationship between the duplicated region
length and structure, the read and fragment length, and
assembly software and parameters, assembly may not
provide sufficient information to determine the copy
number of a duplicated region. As noted above, long du-
plication events will sometimes be detected through a
short junction contig representing the NCEJ between
the copies of the duplicated region, rather than a contig
representing the full transcript (see PTD prediction in
Stage 4). From such a short contig it is not possible to
determine the multiplicity of the duplication. However,
because we expect that lower copy number duplications
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are far more common than higher copy number duplica-
tions, we calculate relative coverage assuming that every
duplication event involves only a single extra copy of the
duplicated region.
For the read depth of the chimeric transcript, C, we

use the read-to-contig support calculated by Barnacle
(Stage 2 above, Figure 3E). We then define two search
regions in the genome, A and B, by considering the
alignment blocks of the contig-to-genome alignments.
These two groups of blocks are either cut or extended
so that the sum of the lengths of all blocks in each re-
gion is twice the read length (Additional file 1: Figure
S1A). Each of these genomic regions is part of our at-
tempt to determine a collection of regions that, when
joined together, might represent a portion of a chimeric
or wild-type transcript extending two read lengths away
from the chimeric breakpoint. Using the read-to-gen-
ome alignments, we calculate the read depth, T(r,s), at
each position s in each block of each search region r in
{A,B}, counting only reads that overlap s by at least q nt
(where q is specified by the user, and has a default value
of 5). T(r,s) is made up of three values: DW(r,s) counts
reads that represent sequences present only in wild-
type transcripts, T1(r,s) counts reads that represent se-
quences present once in both the wild-type and
chimeric transcripts, and T2(r,s) counts reads that rep-
resent sequences present once in wild-type transcripts,
but multiple times in chimeric transcripts (Additional
file 1: Figure S1B).

T r; sð Þ ¼ DW r; sð ÞþT1 r; sð ÞþT2 r; sð Þ
From these values, and the copy-number assumption

explained above, we have the following formula for
estimating the wild-type read depth at each position in
regions A and B:

W r; sð Þ ¼ DW r; sð ÞþI1 r; sð Þ � T1 r; sð Þ‐Cð Þ
þI2 r; sð Þ � T2 r; sð Þ‐2� Cð Þ

where Ij(r,s) = 1 if Tj(r,s) > 0 and I1(r,s) = 0 otherwise, for j
in {1,2}. Defining W(r) as maxs{W(r,s)} and T(r) as
maxs’{T(r,s’) : W(r,s’) =W(r)}, we now have five values
for three regions: C, the chimeric read depth at the
chimeric breakpoint; W(A), the wild-type read depth in
region A; T(A), the total read depth in region A; W(B),
the wild-type read depth in region B; and T(B), the total
read depth in region B. Two more values are calculated:
W(*), the average of W(A) and W(B); and T(*), the aver-
age of T(A) and T(B). For each predicted event, Barnacle
reports these seven values as well as the six ratios C/W(r)
and C/T(r), for r in {A,B,*}.
For duplications, W(A) and W(B) (T(A) and T(B), re-

spectively) represent two measures for the same gene,
and we consider their average value, W(*) (T(*)) in our
further analysis. For fusions, W(A) and W(B) (T(A) and
T(B), respectively) represent measures of two different
genes, so we consider them independently.
Simulations
To test Barnacle’s sensitivity and specificity, we first cre-
ated two simulated paired-end datasets that had distri-
butions of read coverage comparable to the AML
datasets discussed below. The first, a negative control
(SIM04), contains only simulated reads generated from
annotated transcript sequences. For the second, a posi-
tive control (SIM06), we simulated reads from simulated
chimeric event transcripts, and combined these reads
with the wild-type reads from the first dataset (see Simu-
lation set up in Methods, below). We processed these
two datasets with Trans-ABySS v1.3.5, followed by Bar-
nacle v1.0.0. Since this is the first production-grade tool
for PTD and ITD detection in RNA-seq data, we have
no comparators for its performance for these event
types. We compared its fusion prediction performance
on these two datasets with that of TopHat-Fusion v2.0.3
(Kim and Salzberg 2011). These two datasets have 75 nt
reads and mean fragment lengths of 114 nt. SIM04 com-
prises 38 M reads. SIM06 includes those 38 M wild-type
reads as well as 3.5 M reads generated from simulated
chimeric sequences, for a total of 41.5 M reads.
In the negative control dataset, SIM04, Barnacle pre-

dicts a single false positive fusion between PIGM on
chromosome 1 and NCOA6 on chromosome 20, and no
false positive PTDs or ITDs (Additional file 1: Table S2)
shows sensitivity and false discovery rates in the positive
control dataset, SIM06, for five different setups or con-
figurations. Row 1 in this table contains values with a
configuration that uses BLAT for contig-to-genome
alignments and BWA for read-to-contig alignments, and
has Barnacle remove predictions involving multi-
mapping contigs (see Stage 3, filter 2). With this config-
uration, Barnacle predicts 38 PTDs, 49 ITDs and 54 fu-
sions; 38, 46, and 52 of these predictions represent
simulated PTDs, ITDs, and fusions, respectively. Below,
we discuss the false positives and negatives in the posi-
tive control dataset.
Three of the 49 ITD predictions are actually misclas-

sified PTD events, but the remaining 46 are true posi-
tives. These PTD events are misclassified because of
errors made by Barnacle in determining whether the
event breakpoints match annotated exon boundaries.
Two of the simulated ITDs occur within exon 4 of the
SGK2 gene, and because of their proximity, Barnacle
groups the two contigs, each with one ITD sequence,
into a single prediction (see Stage 1.2 Candidate grou-
ping), resulting in 46 ITD predictions representing 47
simulated ITDs.



Swanson et al. BMC Genomics 2013, 14:550 Page 10 of 19
http://www.biomedcentral.com/1471-2164/14/550
As expected, given that every read present in the nega-
tive control is also present in the positive control, one of
Barnacle’s fusion predictions in SIM06 is the same false
positive fusion between PIGM and NCOA6 as seen in
the negative control dataset (see above, and Simulation
set up in Methods, below). Another prediction is repor-
ted as a fusion between GNRH2 and SIRPA, which is
not present in the simulated events; however, a fusion
between GNRH2 and SIRPB1 is present in the simulated
events, and there is 128 nt of exact sequence homology
between SIRPA and SIRPB1 adjacent to the breakpoint
of the fusion.
Of the 62 (53, 47) PTD (ITD, fusion) events that Bar-

nacle did not predict, only 37 (30, 24) have a simulated
mean coverage equal to or greater than the read-to-
contig support threshold used to filter the Barnacle pre-
dictions (5 reads). Stage 1 of Barnacle identifies twelve
of the 24 fusions with simulated mean coverage above
our threshold, but Stage 3 filters these candidates out of
the final predictions due to undercounting of read sup-
port in Stage 2. Barnacle undercounts read support in
these cases because the assembled contigs are extremely
short, i.e. close to or even shorter than the read length.
This makes it difficult to align the reads to the contigs
using BWA [32]. BWA also has trouble aligning reads to
the start or end (edges) of target sequences, and some of
these fusion contigs have breakpoints less than a read
length from the edge. Barnacle’s fusion sensitivity im-
proves when read support is recalculated using read-to
-contig alignments generated by ABySS-map, which is
capable of aligning parts of reads to short sequences and
the edges of sequences (Additional file 1: Table S2, rows
2 and 4). ABySS-map is a mapping tool distributed with
ABySS [33]. Note that ABySS-map only reports a single
location for reads that multi-map, which can result in
under-counting of read-support when multiple assem-
bled contigs represent the same chimeric event.
Bailey et al. [34] define a segmental duplication as a

region at least 1000 nt long that is duplicated within
the reference genome with sequence identity greater
than 90%. Five of the simulated fusion events that had
coverage higher than the read-to-contig support thres-
hold, and for which Barnacle did not undercount read
support, involve genes located within segmental dupli-
cations that have 100% sequence identity. These fusions
are identified as candidates in Stage 1, but are not
present in the final predictions due to our use
of Barnacle’s contig-to-genome multi-mapping filter
(Stage 3). If we disable this filter and accept multi-
mapping contigs, the fusions appear in Barnacle’s re-
sults (see Additional file 1: Table S2, rows 3, 4, and 5).
However, the genes for these simulated fusions are in
genomic regions whose sequences are identical over
distances much longer than the 114 nt fragment length
and the lengths of the genes involved in the fusions.
Given this, although the assembled fusion sequence is
correct, Barnacle cannot decide which of the two pos-
sible breakpoint locations is correct, and if both
alignment options overlap genes, both are reported. So,
for the simulated fusion between AP000351.3 and
LZTR1, Barnacle reports fusions of LZTR1 with both
AP000351 and KB-1125A3.10, which have nearly the
same sequence. AP000351.3 and KB-1125A3.10 have
two exons each; KB-1125A3.10 exon 1 is an exact subse-
quence of AP000351.3 exon 1 and KB-1125A3.10 exon 2
is an exact subsequence of AP000351.3 exon 2. Fortu-
nately, for the four other simulated fusions lying in seg-
mental duplications, only one of each of the duplicated
regions contains a gene annotation, so Barnacle reports
only the correct prediction. We suggest that users have
Barnacle remove predictions involving multi-mapping
contigs, unless specifically looking for events involving
genes within known segmental duplications.
While PTD specificity is high (all 38 of the PTD pre-

dictions are true positives), PTD sensitivity is low, due in
part to a BLAT limitation. As noted above in Stage 4,
PTD events are often represented by short junction
contigs. Accurate alignment of these contigs often in-
volves splitting the contig into two pieces and aligning
each piece of the contig to the same, or overlapping, lo-
cations in the genome. We noted that in many of these
cases BLAT reports an alignment for only one of the
two pieces. While GMAP [31] is better able to align
such contigs, it is less effective with ITD contigs; using it
improves PTD sensitivity but reduces ITD sensitivity
(see Additional file 1: Table S2, row 5). Using GMAP
also leads to a slight increase in fusion sensitivity, but at
the cost of additional fusion false positives.
With default settings, TopHat-Fusion [24] made no

fusion predictions in either simulated dataset. We
suspected that this was due to the long read length and
short mean fragment length used for read simulation,
which correspond to the read and mean fragment
lengths in the AML datasets discussed below. Since the
114 nt mean fragment length is less than twice the 75 nt
read length, in most cases the pair of reads simulated
from a fragment will contain overlapping sequence.
Therefore, for any fragment representing the sequence
across a fusion breakpoint, that breakpoint will lie within
at least one of the reads generated from that fragment.
This means that there will be almost no fragments with
one read entirely on one side of the fusion and the other
read entirely on the other (what TopHat-Fusion calls
a “fusion-supporting pair”). To address this, we ran
TopHat-Fusion with the supporting-pairs threshold set
to 0 (the default value is 2). With this change, TopHat-
Fusion predicted no fusions in SIM04, the negative con-
trol, and predicted 62 fusions in SIM06, the positive
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control, 60 of which are true positives (see Additional
file 1: Table S2, row 6). The remaining two predictions
in SIM06 (BCRP3/RTN4R and GNRH2/SIRPA) are false
positives; however, they both involve genes whose se-
quences are extremely similar to genes involved in simu-
lated fusions. Specifically, the part of BCRP3 involved in
the predicted fusion has 97.8% sequence identity with
the part of BCR that is fused to RTN4R, and the part of
SIRPA involved in the predicted fusion has 99.1% se-
quence identity with the part of SIRPB1 that is fused to
GNRH2. TopHat-Fusion predicts fusions of RTN4R with
both BCR and BCRP3, but does not predict the
GNRH2/SIRPB1 simulated fusion.
Although when configured with BLAT for contig-to-

genome alignments and BWA for read-to-contig align-
ments, and removing multi-mapping contigs (Additional
file 1: Table S2, row 1), Barnacle had lower fusion sensi-
tivity than TopHat-Fusion (Additional file 1: Table S2,
row 6) in our simulated dataset SIM06, using different
alignment tools and allowing predictions involving
multi-mapping contigs may improve Barnacle’s perform-
ance (Additional file 1: Table S2, rows 2-5). However, in
our experience, removing predictions that involve multi-
mapping contigs is useful in reducing false positives in
real data. See also our comments below on read-support
thresholds in simulated and real data.
Because the optimal aligners could differ depending on

the nature of the experiment, Barnacle allows users to
choose preferred read and contig alignment tools. For
example, these simulations suggest that using GMAP
for contig-to-genome alignments would be better for
detecting PTDs, while using BLAT would be better for
detecting ITDs.
Additional file 1: Table S3 gives the runtimes for the

various stages of the initial configuration of pre-
processing, Barnacle, and TopHat-Fusion, for the simu-
lated dataset SIM06. Several stages of Barnacle and
the Trans-ABySS pipeline take advantage of paral-
lelization to reduce runtimes. For example, contig-to-
genome alignment is split into 106 jobs, each taking
only 3.02 minutes. Assuming a computer cluster cap-
able of running 100 jobs simultaneously, Trans-ABySS
pre-processing and Barnacle analysis of SIM06 can be
completed in 2.42 hours. Pre-processing is dominated
by the 21.6 minutes taken to sort the read-to-contig
alignments. Barnacle analysis is dominated by the
55.3 minutes taken to predict events; most of this time
(53.9 minutes) is spent aligning the candidate contigs
to the set of wild-type transcript sequences (Stage 4).
TopHat-Fusion took a total of 16.7 hours to analyse the
same dataset.
We assessed the behaviour of Barnacle (with BLAT

and BWA, and removing multi-mapping contigs) at
read-support thresholds ranging from 1 to 200, using
simulated dataset SIM06. Additional file 1: Table S4,
reports the sensitivities and false discovery rates (FDRs),
and Additional file 1: Figure S5 shows these as an ROC-
like curve. We use FDR rather than sensitivity because
the number of true negatives is not well defined for this
type of experiment. With the ABySS parameters used,
assembling a sequence requires a minimum local cover-
age of 2 reads; given this, we plot values of TPR’, which
is the fraction of simulated events with simulated mean
coverage at least 2 that are correctly predicted. While a
read-support threshold of 1 read produces the best TPR’
and FDR for all event types for this simulated data, in
our experience, such a threshold tends to produce an
impractically large number of predictions in real
datasets. See the discussion below of the previously pub-
lished breast cancer dataset BT-474, and our suggestions
for choosing an appropriate read-support threshold for
the AML datasets that we analysed.
The ROC-like curves are quite different for the three

event types. For PTDs, Barnacle makes no false positive
predictions, even with a threshold of 1 read, so increas-
ing the threshold merely removes weakly expressed true
positives. For ITDs, the FDR increases as the read-
support threshold increases, but the number of false
positives does not increase. Barnacle’s three false positive
ITD predictions correspond to simulated PTD events
that it has misclassified as ITDs. Because these PTDs
have relatively high mean simulated coverage levels, in-
creasing the read-support threshold does not remove
these false positives, until after it has removed many
weakly expressed true positives. The ITD FDR decreases
when going from a threshold of 50 reads to a threshold
of 100 reads, because of the removal of a false positive
ITD that is supported by 87 reads, causing a ‘zig-zag’
shape in the curve. For fusion predictions, with read-
support thresholds of 10 or lower, the curve for fusion
predictions is similar to that for ITD predictions; with
read-support threshold higher than 10, it is similar to
that for PTD predictions. 13 and 17 reads support the
two false positive fusion predictions made by Barnacle,
so when the read-support threshold is 20 or above, these
two predictions are removed, resulting in an FDR of 0.
We note that while the TPR’ and FDR of Barnacle

with a read-support threshold of 1 are identical to those
of TopHat-Fusion, the predictions are not (Additional
file 1: Table S6, Additional file 2). Each tool predicts 60
fusions; 13 of the fusions predicted by Barnacle are not
predicted by TopHat-Fusion, and 13 others are pre-
dicted by TopHat-Fusion but not by Barnacle. Six of
the TopHat-Fusion-specific fusions are represented by
Trans-ABySS contigs that are very short, causing prob-
lems with the read-to-contig and contig-to-genome
alignments; four more are represented by Trans-ABySS
contigs that multi-map when aligned to the genome.
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One of the TopHat-Fusion-specific fusions is represented
by a Trans-ABySS contig that has issues being aligned to
the genome due to sequence homology between the re-
gions flanking the fusion breakpoints. Another one of the
TopHat-Fusion-specific fusions is represented by a Trans-
ABySS contig that represents two distinct fusion tran-
scripts assembled together, leading to a complex contig-
to-genome alignment. The final TopHat-Fusion-specific
fusion has a simulated mean coverage of only 2.86.
We assessed the effect on Barnacle’s performance of

varying read and mean fragment lengths with two add-
itional simulated datasets. SIM07 and SIM08 were cre-
ated analogously to SIM06, and used the same simulated
chimeric transcript sequences. SIM07 had 50 nt reads, a
150 nt mean fragment length, and 43.6 M reads; SIM08
had 75 nt reads, a 200 nt mean fragment length, and
41.4 M reads. Additional file 1: Table S7 shows that
Barnacle’s performance is relatively insensitive to
changes in read and mean fragment lengths; in particu-
lar, it does not depend on the mean fragment length
being less than twice the read length, as it is in SIM06.

Acute myeloid leukemia
We used Barnacle to process two poly(A)-selected
acute myeloid leukemia (AML) RNA-seq datasets,
A08823 and A08878, for which we sequenced 155 and
227 M read pairs, respectively. These datasets have
mean fragment lengths (114 nt and 140 nt, respecti-
vely) that are shorter than twice the read length (75 nt),
meaning that most pairs of reads in these datasets will
overlap at their 3-prime ends. As noted above, having a
mean fragment length shorter than twice the read length
can challenge fusion detection tools that rely on fragments
spanning fusion breakpoints with one read mapping en-
tirely to each gene involved in the fusion. Since Barnacle
does not rely on mapping reads to the reference genome
for event detection, short fragment lengths are not a
concern.
Prior to processing these datasets, we obtained cyto-

genetic evidence that the sample associated with dataset
A08823 has a t(15;17) reciprocal translocation causing
fusions between the promyelocytic leukemia (PML) gene
on chromosome 15 and the alpha retinoic acid receptor
(RARA) gene on chromosome 17. The presence of these
fusions indicates the acute promyelocytic leukemia
(APL) subtype of AML, which is particularly sensitive to
treatment with all-trans retinoic acid [2]. Fluorescence
in situ hybridization (FISH) showed a normal karyotype
in dataset A08878. We also found evidence in both
datasets of ITDs in the fms-related tyrosine kinase 3
(FLT3) gene by PCR amplification of the region sur-
rounding FLT3 exon 14 (see Additional file 1: Table S8
for primer sequences), followed by size-estimation of the
observed PCR bands. The presence of this ITD is
associated with poor prognosis in AML [4]. Since the
two AML samples we used were poly(A)-selected, and
circular transcripts are not polyadenylated [5], we as-
sume that all NCEJs predicted by Barnacle represent lin-
ear transcripts (either PTDs or shuffled exons).
As with the simulated datasets, we used Trans-ABySS to

assemble our reads and perform the required alignments
prior to Barnacle analysis. Initially, we filtered our predic-
tions with the repeat filter enabled and the default read-
to-contig threshold of 5 reads (see Stage 3, filters 4 and 8).
See Additional file 1: Section S9 for the Barnacle com-
mands used and Additional file 1: Table S10 for runtimes
and computational resources. For these deeply-sequenced
datasets the overall runtimes, including Trans-ABySS pre-
processing, were ~65 hr with 100 CPUs and ~39 hr with
500 CPUs. As in the simulations, runtimes are dominated
by sorting the read-to-contig alignments during pre-
processing, which took 19 and 13 hr respectively. The
Barnacle runtimes were 10-14 hr with 100 CPUs, and
5-7 hr on 500 CPUs.
After generating read-to-genome alignments using

JAGuaR [35] and the hg19 human genome reference
sequence, we used Barnacle to estimate the chimera-to-
wild-type relative coverage of each prediction (see Stage 5,
and Additional file 1: Section S11 for commands used).
Figure 4 shows the relationship between the fraction of
coverage attributable to the chimeric transcript, and the
local total coverage, i.e. the sum of the chimeric and wild-
type coverage. Using log-log axes, the majority of the
predictions are close to a straight line representing our
read-support threshold of 5 reads; however, there are a
few outliers above and to the right of this line. Since these
two datasets are so deeply sequenced, we filtered the pre-
dictions again, increasing the read-to-contig threshold to 35
reads to focus on the most confident predictions (Figure 4,
other filter settings were unchanged). In our experience,
plotting Barnacle relative-expression results and identifying
outliers in this way is useful in selecting an appropriate
read-support threshold (see Stage 2).
After this second filtering, we have 1 (2) PTD, 6 (8)

ITD, and 3 (0) fusion predictions in A08823 (A08878,
respectively) (see Table 1). Of the three fusion predic-
tions in A08823, two are between PML and RARA: one
joining the 5′-end of PML, ending at exon 3, to the 3′-
end of RARA, starting at exon 3; the other joining the
5′-end of RARA, ending at exon 2, to the 3′-end of
PML, starting at exon 4. These are the expected results
of the reciprocal translocation detected by cytogenetic
analysis. Manual inspection reveals that the third predic-
tion is a false positive caused by high sequence identity
between the TMEM14B and TMEM14C genes.
A 585 nt PTD involving exons 3 through 7 of SEC62

is predicted with identical sequence in both datasets,
and retains the wild-type open reading frame. The other
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Figure 4 Relative coverage of predicted chimeric transcripts in AML datasets. Graphs show the ratio of (C)himeric read depth to (T)otal
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PTD prediction, a 3134 nt duplication of exons 3 through
6 of MLL, is specific to A08878, and disrupts the wild-type
open reading frame. The MLL PTD is known to occur in
AML patients, particularly those with a normal karyotype
(such as the sample associated with A08878), and like the
FLT3 ITD, is associated with poor prognosis [3].
The 14 predicted ITDs range in size from 4 nt in

MRPS34 in A08823 to 48 nt in FLT3 in A08823 (see
Table 2). Other than in MRPS34 and SSPO, all of
the ITDs retain the wild-type open reading frame. The
prediction in MRPS34 spans an exon/intron boundary
and involves a retained intron adjacent to the du-
plication; if this intron sequence is considered, as well
as the duplicated sequence, then the wild-type open read-
ing frame is retained. Seven of the predicted ITDs (ACIN1
and KIAA1211 in A08823 and ACIN1, AKAP2, HSPBP1,
PIEZO1, and SSPO in A08878) involve microrepeat
expansion events (copy number increases of small three-,
five-, or six-nucleotide tandem repeats present in the wild
type). All of the predicted ITDs but four (in SND1 and
FLT3 in A08823, and in FLT3 and SSPO in A08878)
correspond to insertion records in dbSNP build 135.
The FLT3 duplication predicted in A08823 has a dis-
tinct sequence from the FLT3 duplication predicted in
A08878.
FLT3 ITD events are known to include extra sequence

between the two copies of the duplicated sequence in
some cases [4]. Three of the ITDs that we predicted
(KIAA1211 in A08823, and DNHD1 and FLT3 in A08878)
include such insertions. The length of extra sequence that
we observe (ranging from one, for DNHD1, to three, for
FLT3 and KIAA1211, extra bases) always results in the
retention of the open reading frame when considered
along with the duplication.



Table 1 Barnacle predictions in AML datasets A08823 and A08878

Type Gene(s) Exon(s)1 Read support2 Pred. in Val.3 Relative Coverage4

1 fusion PML/RARA e3/e3 192 A08823 WGS 27.8%/40.0%

2 fusion RARA/PML e2/e4 276 A08823 WGS 33.1%/33.2%

3 fusion TMEM14B/TMEM14C 3′-utr/3′-utr 110 A08823 Failed MI 18.8%/9.8%

4 PTD MLL e3-e6 80 A08878 WGS 28.2%

5 PTD SEC62 e3-e7 40 / 69 both No WGS, RT-PCR 5.0%/8.2%5

6 ITD ACADVL e1 236 A08823 WGS 27.7%

7 ITD ACIN1 e6 259 / 655 both WGS 61.9%/80.4%5

8 ITD AKAP2 e2 61 A08878 WGS 33.6%

9 ITD DNHD1 e21 76 A08878 WGS 99.1%

10 ITD FLT36 e14 268 A08823 WGS 21.8%

11 ITD FLT36 e14 950 A08878 WGS 19.6%

12 ITD FOXP1 3′-utr 64 A08878 WGS 19.6%

13 ITD HSPBP1 e3 56 A08878 WGS 17.8%

14 ITD KIAA1211 e8 44 A08823 WGS 51.3%

15 ITD MRPS34 e1,i1 52 A08823 WGS 40.5%

16 ITD PIEZO1 e32 620 A08878 WGS 57.0%

17 ITD SND1 e1 370 A08823 WGS 9.3%

18 ITD SSPO e74 35 A08878 WGS 40.3%
1 Exon numbers are from hg19 UCSC gene annotations.
2 For the two chimeras predicted in both datasets, read support is presented as A08823 support / A08878 support.
3 Validation. WGS: validated via whole-genome shotgun sequencing. RT-PCR: validated via RT-PCR. Failed MI: failed manual inspection.
4 Relative coverage is presented as the local coverage attributable to the chimera, as a percent of the total local coverage (see Stage 5). For fusions, relative
coverage with each parental gene is ordered as in Gene(s) column.
5 Relative coverage is presented as A08823 relative coverage / A08878 relative coverage.
6 The FLT3 duplications predicted in A08823 and A08878 have different sequences.

Table 2 Characterization of Barnacle ITD predictions in A08823 and A08878

Gene(s) Exon(s)1 Dataset Length (nt)2,3 Repeat Expansion? Concordant dbSNP v135 ID(s)

6 ACADVL e1 A08823 15 (IF) No rs66549614, rs3835013, rs6145976

7 ACIN1 e6 both 6 (IF) Yes rs34293824, rs5807202, rs34870944, rs78930189,rs3077646

8 AKAP2 e2 A08878 6 (IF) Yes rs77728978

9 DNHD1 e21 A08878 11 + 1 (IF) No rs11270441, rs35685553, rs11268490, rs35369957

10 FLT3 e14 A08823 48 (IF) No none

11 FLT3 e14 A08878 42 + 3 (IF) No none

12 FOXP1 3′-utr A08878 6 (IF) No rs67554413

13 HSPBP1 e3 A08878 9 (IF) Yes rs3040014, rs71743637, rs10701478, rs71927276

14 KIAA1211 e8 A08823 15 + 3 (IF) Yes rs71921617, rs11276076, rs67121617

15 MRPS34 e1,i1 A08823 4 (FS4) No rs4027362, rs33993627,rs34595082

16 PIEZO1 e32 A08878 6 (IF) Yes rs11281795, rs71707279

17 SND1 e1 A08823 21 (IF) No none

18 SSPO e74 A08878 5 (FS) Yes none
1 Exon numbers are from hg19 UCSC gene annotations.
2 Length is given as either “duplication length” or “duplication length + insertion length”, when extra sequence occurs between the two copies of the
duplicated sequence.
3 IF: in-frame, FS: frame-shift.
4 Event involves retention of a 152-nt intron adjacent to the duplication and is in-frame when this intron is considered as well.
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We assessed whether there was any evidence for our
predicted fusions, PTDs, or ITDs in whole-genome shot-
gun (WGS) sequence data for these two samples. For fu-
sions and PTDs, we aligned the WGS reads to the hg19
human genome reference sequence using BWA v0.5.9
[32]. WGS read pairs supported both PML/RARA fusion
predictions, and the MLL PTD in A08878, but not the
SEC62 PTD predictions, suggesting that the latter may
be the result of transcriptome-level events. To validate
ITDs, we constructed wild-type and chimeric target se-
quences by joining together one or more copies of the
duplicated sequence with 200 nt of upstream and down-
stream genomic sequence, then aligned the WGS reads
to these target sequences using BWA v0.5.9. We found
the WGS reads to support all 14 ITD predictions.
Since we found no genomic support for the SEC62

PTD predictions in either dataset, we used reverse tran-
scription polymerase chain reaction (RT-PCR) to at-
tempt transcriptome-level validations of this PTD (see
Methods, and Additional file 1: Table S12 for primers
used). Bands clearly confirmed the PTD predictions in
both datasets (Additional file 1: Figure S13).

Breast cancer
We assessed Barnacle’s fusion performance on an inde-
pendent BT-474 breast cancer dataset in which two
studies discovered and validated 21 gene fusions (SRA:
SRP003186) [36,37]. With the default read-support
threshold of 5 reads, Barnacle predicts 14 fusions (“Pre-
dictions” column in Additional file 1: Table S14). Each of
the fourteen predictions corresponds to a validated fu-
sion (“Matching” column in Additional file 1: Table S14),
with 14 Barnacle predictions representing 11 validated
fusion gene pairs (“Recovered” column in Additional file
1: Table S14, Additional file 1: Table S15). The differ-
ences between the “Matching” and “Recovered” columns
of Additional file 1: Table S14 are due to the alternative
splicing displayed by some of the validated fusions
[36,37]; Barnacle treats fusion isoforms as distinct pre-
dictions, so makes multiple predictions for some of the
validated fusion gene pairs.
As the number of junction reads supporting each vali-

dated fusion is reported [36,37], and eight of the vali-
dated fusions were supported by three or fewer reads,
we assessed reducing Barnacle’s read support threshold
(Additional file 1: Table S14). While decreasing this
threshold increased the number of recovered fusions
slightly, it also greatly increased the total number of pre-
dictions. For example, with a read-support threshold of
1 read, Barnacle predicted 250 fusions. Such a result set
would require lengthy manual review, and so would
likely be impractical in studies involving large numbers
of samples. In contrast, only 4 of the predictions made
with a read-support threshold of 3 do not match
validated fusions. One of these predictions, which passes
manual review, involves STX16 fused to GUCY1A3,
while Barnacle does not predicted the validated fusion
between STX16 and RAE1, which is supported by 8
junction reads. Another of the Barnacle-specific predic-
tions is between NUMB and TPT1 (Homo sapiens
tumor protein, translationally-controlled 1), which also
passes manual review. The other two Barnacle-specific
predictions are C3orf75/MPZL1, which from manual re-
view looks more likely to be a potential novel ALU in-
sertion in C3orf75 than a fusion, and APOA1BP/
ZNF710, which on review is questionable due to both
breakpoints being in GC-rich repetitive regions.
With a read-support threshold of 3, Barnacle recovers

all but one of the validated fusions that are supported by
more than 3 junction reads; the exception, discussed
above, is STX16/RAE1. With a read-support threshold
of 2 or 1, Barnacle recovers the validated CMTM7/
GLB1 fusion that is supported by only 2 junction reads.
However, as noted above, a low threshold can produce a
large number of predictions for which manual review
may be costly.
While the original publications validated only fusions

[36,37], Additional file 1: Table S14 also reports the
number of PTDs and ITDs that Barnacle predicts in BT-
474 at each read-support threshold that we used.

Conclusions
We have described Barnacle, a production-grade pipeline
for detecting and characterizing chimeric transcripts in
long RNA sequences, and have demonstrated its capabil-
ities using de novo RNA-seq assembled contigs. Many
methods are available for detecting fusions. In addition
to fusions, Barnacle detects PTDs and ITDs in RNA-seq
data; to our knowledge, it is the only method that is be-
ing used in large-scale disease studies for detecting tan-
dem duplications [38]. It characterizes these predictions
in the context of existing gene and repeat annotations;
determines the level of read support; and provides met-
rics for prioritizing detected events with measures of
coverage levels of the chimeras detected, relative to their
corresponding wild-type transcripts.
Because its first stage considers a wide range of contig

alignment topologies, Barnacle can be extended to iden-
tify other chimera types that are important in disease.
For example, repeat expansions play a role in several dis-
eases [39]. While Barnacle currently classifies repeat ex-
pansions as ITDs, it could be adapted to specifically
characterize such events.
Although de novo assembly-based fusion detection

methods are more computationally intensive than those
based on read alignments to a reference genome, run-
times are practical, and de novo assembly supports char-
acterizing detected events by generating long contig
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sequences that contain the exact breakpoint and its se-
quence context. From such contigs, validation primers
can be designed, even when the contig represents a
complex set of rearrangements (e.g. combining duplica-
tions, deletions, and inversions).
In two AML datasets, all ITDs and fusions, and all but

one of the PTDs that passed manual inspection were vali-
dated in genomic data. The SEC62 PTD predicted in both
datasets passed RT-PCR validation, but has no evidence in
the genomic data, suggesting that transcriptome-level pro-
cesses may have caused this chimera, consistent with
fusions reported by Kannan et al. [14].
Houseley and Tollervey [40] showed that template

switching in in vitro reverse transcription reproducibly
mimics trans-splicing. This must be kept in mind when
validating in silico chimeric transcript predictions.
They also found that producing a given reverse tran-
scriptase artifact depends on using a specific reverse
transcriptase. As they recommended, we chose a dif-
ferent reverse transcriptase (Roche Transcriptor) for
the SEC62 validations than was used in the initial
sequencing (SuperScript II). Since the particular re-
verse transcriptase artifacts that may be produced by
the SuperScript II enzyme will likely be different from
those produced by the Roche Transcriptor enzyme,
this reduces the chances of false validation due to such
artifacts.
Given that reverse transcriptase artifacts often involve

non-canonical splice sites and regions of sequence hom-
ology [40], each Barnacle prediction reports these two
features, allowing the user to further evaluate whether a
prediction may represent a reverse transcriptase artifact.
The SEC62 PTD that we validated with RT-PCR in-
volved only canonical splice sites, and did not involve re-
gions of significant sequence homology.
Our simulations show that, with appropriate filter set-

tings, Barnacle makes highly specific predictions for
three types of chimeric transcripts that are important in
a range of cancers: PTDs, ITDs, and fusions. High speci-
ficity makes manual review and validation efficient,
which is necessary in large-scale disease studies. In
AML, MLL PTDs, FLT3 ITDs, and PML/RARA fusions
are important for determining prognosis, and we dem-
onstrated Barnacle’s potential for large-scale studies by
successfully predicting these events in two RNA-seq
datasets. Characterizing an extended range of chimera
types will help generate insights into progression, treat-
ment, and outcomes for complex diseases.

Methods
Barnacle analysis pipeline
Detection and characterization of chimeric transcripts
with Barnacle is a four-stage process, followed by an op-
tional fifth stage for calculating the relative expression of
chimeric transcripts relative to their corresponding wild-
type transcripts. For details see Results, above.

Simulation set up
The Barnacle package includes two tools for simulating
RNA-seq experiments: event_simulator and read_si-
mulator. The event_simulator tool simulates fusion,
PTD, and ITD transcripts, and uses annotation and se-
quence files to create the simulated event sequences
(see Additional file 1: Section S16 for details). The
read_simulator tool acts as a wrapper around dwgsim,
which is a whole genome next-generation sequencing
simulator [41].
We used event_simulator to simulate 100 fusions, 100

PTDs, and 100 ITDs using Ensembl v59 gene annota-
tions and the GRCh37-lite (hg19) human genome refer-
ence sequence, restricting our simulations to genes on
chromosomes 20 and 22 (see Additional file 1: Section
S17 for the parameters used, see Additional file 2 for the
simulated events). We removed any simulated transcript
sequence less than 200 nt long, leaving us with a total of
99 simulated fusions, 100 simulated PTDs, and 100
simulated ITDs. We used an in-house paired-end RNA-
seq read-to-genome alignment analysis pipeline (de-
scribed in [20]) on one of our real datasets, A08823, to
estimate the coverage to simulate for our wild-type and
event sequences. This pipeline uses BWA [32] for align-
ment generation. For each wild-type sequence from
chromosome 20 or chromosome 22, we used read_simu-
lator to simulate per-gene mean coverage values equal
to those measured in A08823, generating 38 million read
pairs from Ensembl v59 transcript sequences. We also
used read_simulator to simulate a total of 3.5 million
read pairs from our simulated event sequences (see
Additional file 1: Section S18 for the read_simulator
parameters used), using coverage values sampled from a
model consisting of two overlapped log-normal distribu-
tions, whose parameters were selected to closely match
the coverage distribution of A08823 (see Additional file
1: Section S19, Additional file 1: Figure S20). The mean
read coverage of our event sequences ranges from
0.1285 to 2135, with a median of 33.15, a mean of 123.3
and a standard deviation of 245.7. After generating
reads, 74 simulated PTDs, 77 ITDs, and 76 fusions have
mean read coverage values greater than 5 reads, Barna-
cle’s default read-support threshold (see Stage 3, filter 8).
The reads from the wild-type sequences were used for
our negative control dataset, SIM04. The reads from the
wild-type sequences were combined with the reads from
our simulated event sequences to create our positive
control dataset, SIM06.
We used Trans-ABySS to assemble the simulated

datasets and create the contig-to-genome and read-to-
contig alignment files that Barnacle requires (see Results
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and Discussion above for Barnacle input files). To gen-
erate contigs representing (simulated) transcripts hav-
ing a wide range of expression levels, Trans-ABySS
performed multiple assemblies with appropriate par-
ameter settings, and then merged the resulting contig
sets into a meta-assembly of non-redundant contigs.
Trans-ABySS then aligned these contigs to the hg19
human genome reference sequence using BLAT [29].
The Trans-ABySS pipeline also served as a wrapper
around BWA [32] to align the input reads to the assem-
bled contigs. We ran Barnacle on the Trans-ABySS-as-
sembled contigs and contig-to-genome and read-
to-contig alignments for each dataset (see Additional
file 1: Section S21 for the commands used).
We also processed these two datasets using TopHat-

Fusion v2.0.3 [24] (see Additional file 1: Section S22 for
the commands used).

Library construction and sequencing
Total RNA samples (2-3 μg) were arrayed into a 96-well
plate and polyadenylated (polyA+) mRNA was purified
using a 96-well MultiMACS mRNA isolation kit on a
MultiMACS 96 separator (Miltenyi Biotec, Germany)
with on column DNaseI-treatment as per the manufac-
turer’s instructions. Eluted polyA + RNA was ethanol
precipitated and resuspended in 10 μL of DEPC treated
water with 1:20 SuperaseIN (Life Technologies, USA).
Double-stranded cDNA was synthesized from the pu-
rified polyA + RNA using the Superscript Double-
Stranded cDNA Synthesis kit (Life Technologies, USA)
and random hexamer primers at a concentration of 5 μM.
The cDNA was quantified in a 96-well format using
PicoGreen (Life Technologies, USA) and VICTOR3V
Spectrophotometer (PerkinElmer, Inc. USA). The quality
was checked on a random sampling on the Agilent using
the High Sensitivity DNA chip Assay. We fragmented
cDNA by Covaris E210 (Covaris, USA) for 55 seconds, a
“Duty cycle” of 20% and “Intensity” of 5. Plate-based li-
braries were prepared following the BC Cancer Agency,
Genome Sciences Centre paired-end (PE) protocol on a
Biomek FX robot (Beckman-Coulter, USA). Briefly, the
cDNA was purified in 96-well format using Ampure XP
SPRI beads, and was subject to end-repair and phosphor-
ylation by T4 DNA polymerase, Klenow DNA polymerase,
and T4 polynucleotide kinase respectively in a single reac-
tion, followed by cleanup using Ampure XP SPRI beads
and 3′ A-tailing by Klenow fragment (3′ to 5′ exo minus).
After cleanup using Ampure XP SPRI beads, PicoGreen
quantification was performed to determine the amount of
Illumina PE adapters used in the next step of adapter
ligation reaction. The adapter-ligated products were puri-
fied using Ampure XP SPRI beads, then PCR-amplified
with Phusion DNA polymerase (Thermo Fisher Scientific
Inc. USA) using Illumina’s PE primer set, with cycle
conditions: 98˚C for 30 sec followed by 10 cycles of 98˚C
for 10 sec, 65˚C for 30 sec and 72˚C for 30 sec, and then
72˚C for 5 min. The PCR products were purified using
Ampure XP SPRI beads, and checked with Caliper
LabChip GX for DNA samples using the High Sensitivity
Assay (PerkinElmer, Inc. USA). PCR product of desired
size range was purified using an in-house 96-channel size-
selection robot, and the DNA quality was assessed and
quantified using an Agilent DNA 1000 series II assay and
Quant-iT dsDNA HS Assay Kit using Qubit fluorometer
(Invitrogen), then diluted to 8 nM. The final concentration
was verified by Quant-iT dsDNA HS Assay prior to
Illumina HiSeq2000 PE 75 base sequencing.

De novo assembly and processing
For each dataset, transcriptome assemblies were perfor-
med using Trans-ABySS v1.3.5 as previously described
in Robertson et al. [20], with the following modifications.
After the assembly-merging stage, all the original read
pairs were aligned to the merged contig set using
BWA v0.5.9 [32] and converted to BAM format using
SAMtools v0.1.18 [42]. The resulting contigs were
aligned to the GRCh37-lite (hg19) human genome
reference sequence using BLAT v34 [29].

Annotation files
In our simulation experiments we used Ensembl v59 an-
notations and sequences for simulating events and
Ensembl v65 annotations and sequences for the Barnacle
gene and exon coordinate annotations and the TopHat-
Fusion analysis. To process the AML datasets we used
the hg19 UCSC gene annotations and transcript sequen-
ces, downloaded from UCSC in February 2012 [43], for
the Barnacle gene and exon coordinate annotations. In
both analyses, we used the hg19 RepeatMasker [44] and
SimpleRepeats/Tandem Repeats Finder [45] annotations,
downloaded from UCSC in February 2012, for the
Barnacle repeat and small structural RNA annotations.
We used Ensembl v59 annotations for JAGuaR process-
ing of AML RNA-seq data.

RT-PCR validation
Primers were designed with Primer3 and supplied by In-
tegrated DNA Technologies (Coralville, Iowa). First-
strand cDNA was synthesized using 1 μg of total RNA,
following the Roche Transcriptor First Strand cDNA
Synthesis protocol (Catalog #04896866001). 2 μL of the
2.5-fold diluted template is used for setting up the PCR
reaction in 48 μl: 2 μl template, 39.4 μl Nuclease-free
water, 2 μl 50-mM Magnesium sulphate, 0.4 μl 25-mM
dNTPs, 5 μl 10x High Fidelity Buffer, 0.5 μl 20-μM For-
ward Primer, 0.5 μl 20-μM Reverse Primer, and 0.2 μl
Platinum High-Fidelity DNA polymerase. PCR was run
with 94˚C for 2 min, followed by 36 cycles of 94˚C for
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15 sec, 60˚C for 15 sec, 68˚C for 15 sec, and then 68˚C
for 10 min. Three-quarters of the PCR product was run
on 3% agarose gel with 0.08% ethidium bromide for
45 min at 150 V.

Data access
Data
Reads, assembled contigs, contig-to-genome alignments,
read-to-genome alignments, and analysis files from the
simulations are bundled with the Barnacle software
distribution.
RNA-seq and read-to-genome alignments for A08823

and A08878 are available at the Short Read Archive as
study accession SRP015761.
Assembled contigs, contig-to-genome alignments, and

Barnacle analysis files for A08823 and A08878 are avail-
able at [46].

Software
Current and previous versions of Barnacle are available
at: [46].

Additional files

Additional file 1: Supplement for Barnacle: detecting and
characterizing tandem duplications and fusions in transcriptome
assemblies. This file contains supplementary figures, tables, and text.

Additional file 2: Simulated events and analysis results with
Barnacle and TopHat-Fusion.
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