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Abstract

Background: The aneurysm clip impact-compression model of spinal cord injury (SCl) is a standard injury model in
animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting
compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand
the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during
the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord.

Results: Time-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight
statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway
analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events
specific to and common between acute, subacute and chronic time-points. Processes common to all phases of
injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling
pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive
oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of
adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist
throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active
during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes
such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated
signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the
chronic phase.

Conclusions: This analysis showed that, surprisingly, the diverse series of molecular events that occur in the acute
and subacute stages persist into the chronic stage of SCI. The strong agreement between our results and previous
findings suggest that our analytical approach will be useful in revealing other biological processes and genes
contributing to SCI pathology.
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Background

Human spinal cord injury (SCI), often the result of both
impact and varying degrees of compression, is initially a
primary mechanical tissue and cell injury, but further
develops into a cascade of complex secondary damage
[1]. Accordingly, the need for biologically relevant ani-
mal SCI models has focussed on the development of ani-
mal injury models that can reliably mimic human SCI
[2]. Various animal SCI models can be classified based
on how the primary injury is induced (either physical or
chemical), and the duration and extent of the primary
injury. Techniques such as weight drop, clip compres-
sion, calibrated forceps and chemically-mediated SCI
have been introduced and evaluated in laboratory animal
models [3-5]. The majority of primary injuries in animal
SCI models are physically-induced, by either impact,
compression, or a combination of both; the latter most
closely mimic SCI in human patients. The nature of
the primary injury will dictate the types of secondary
events that contribute to common outcomes of all in-
jury models such as acute and chronic spinal cord dys-
function [6] and loss of regenerative capacity [7,8]. It
may also contribute towards unique features and char-
acteristics of each injury model such as spasticity
[9,10], neuropathic pain [11,12] and systemic effects
[13]. Finally, various methods and devices can be cali-
brated to injure the spinal cord for various durations
of time; hence, the primary injury can be classified as
transient or persistent.

Amongst the injury models, the weight drop [14-19]
and the aneurysm clip [20-23] are the most standard
graded methods of physically-inducing experimental
SCI, which have been thoroughly characterized in la-
boratory animal models. In weight drop models [14-19],
the primary injury is a transient impact and compres-
sion, hence the name contusive injury, which can be
graded as mild, moderate or severe depending on
the weight and height of the drop. The clip compres-
sion model was introduced as one of the first non-
transection models of SCI in rodents [20]. It is an easy
and highly reproducible injury model and has the ability
to mimic different levels of injury by adjusting the force
and duration of clip application. The method of primary
injury in the clip model is slightly different from the
weight drop model as the compressive force due to the
closure of the clip is maintained on the spinal cord for a
defined period of time. Consequently, the outcome of
a clip injury is usually a more severe form of vascular
network disruption, which leads to hemorrhage and
shortage of blood supply to the tissue rather than a
contusive injury.

Various SCI injury models have been characterized by
examining the primary injury (impact, compression,
contusion, or laceration of the tissue) and the secondary
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injuries (blood-spinal cord barrier (BSCB) permeability,
ischemia, edema, apoptosis, glutamate excitotoxicity, in-
flammation, demyelination, axonal degeneration, reactive
gliosis, and scar tissue formation) to the spinal cord tis-
sue using low- and high-resolution microscopy and im-
munohistochemical methods [24,25]. Additionally, the
extent of damage and functional recovery in animals
is recorded using kinematic and behavioural studies
[26,27]. Studying the functional state of neurons after
injury or during the recovery process is another ap-
proach but is only feasible using electrophysiological
methods [28].

Our lab has successfully used the clip compression in-
jury model to injure the rat spinal cord at the thoracic
level with consistent and reliable results; both acute and
chronic SCI in rats have been characterized using this
model [21-23,29-32], as well as assessment of the effi-
ciency of various intervention strategies such as a com-
bination transplantation of mouse brain-derived neural
precursor stem cells, chondroitinase, and growth factors
[6,29,30,32-35]. However, molecular events following
clip compression injury have not been explored using
high throughput strategies. In this study, we used the
Affymetrix GeneChip Rat Genome 230 2.0 platform for
microarray gene expression analysis of SCI using the
clip compression injury model in rats. A unique fea-
ture of this study is that a more comprehensive cata-
logue of the whole genome transcript levels was compared
across a wider time frame, i.e. 1, 3, 7, 14 and 56 days post-
injury, than has been examined in previous work. In this
study, we present the overall picture of biological pro-
cesses that relate to stress response and are up-regulated
and the corresponding molecular events. We show
that, by systematically applying the controlled vocabu-
lary of gene functions presented in Gene Ontology
(GO) domains, the temporal pattern of biological pro-
cesses are extracted from microarray gene expression
data and that this approach can be applied to discover
novel molecular events.

Results

Feature analysis of affymetrix GeneChip Rat genome 230
2.0 array

Analysis and filtering on the resulting file of 31,042
ProbeSets revealed that 10,791 ProbeSet IDs had no an-
notations, i.e. no Entrez IDs or official gene symbols,
which were flagged out. This reduced the number of
workable ProbeSet IDs to 20,251. In addition, there were
duplicate or multiple ProbeSet IDs which represented a
single gene. Conversely, there were ProbeSet IDs with
multiple annotations (EntrezID/Gene Symbol) due to se-
quence identity across more than one gene segment in
the genome. This issue could not be easily resolved as
the level of uniqueness of the oligonucleotide sequence
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is not high enough to allow annotation to one gene ex-
clusively. This feature requires manual curation of the
data based on Affymetrix instructions to use the latest
annotation, which is also the most relevant. Taking the
above two features into consideration results in 14,324
gene symbols on the GeneChip RG230 2.0 array. The
resulting data file still contains the ProbeSet IDs that
have “LOC” or “RGD” identifiers instead of actual gene
symbols. These identifiers are applied to genes that are
less well characterized and usually belong to similar or
orthologous proteins in other species. They may also be-
long to non-coding regions of the genome. Software
platforms developed for GO enrichment and pathway
analysis rarely map the LOC and RGD identifiers. In the
original Affymetrix GeneChip 230 2.0 array annotation
file, the number of LOC and RGD annotated ProbeSets
sets are 1163 and 1135, respectively. The same issue of
duplicate/multiple entries also applies to these ProbeSets,
hence the numbers of “LOC” and “RGD” identifiers in
the final output file with 14,324 entries were less: 939
for the LOC and 829 for the RGD identifiers. This
means that the total number of annotated ProbeSets in
the Affymetrix GeneChip Rat Genome 230 2.0 array an-
notation file that were mapped to known gene candidates
was 12,557, which is equivalent to 62.4% and 71.2% of the
total number of genes annotated and listed in the Rat
Genome Database (RGD) and European Bioinformatics
Institute (EBI) association files, respectively.

Analysis of ProbeSet data
We used a divisive hierarchical clustering algorithm
(DIANA) to identify the strongest trends within the
dataset, in all pair-wise comparisons (see Methods). The
results were visualized using the Heatplus package of
BioConductor (Figure 1A). Interestingly, three main
clusters were observed, corresponding to the sham con-
trols (green cluster), day 1 animals (blue cluster), and
day 3 animals (yellow cluster). The later time-points are
further subdivided into a cluster composed primarily of
day 7 animals (red cluster) and another composed pri-
marily of day 14 and day 56 animals (brown cluster).
Principal component analysis of the ProbeSet data was
performed to assess variability between individual ani-
mals in each group and also at different time points
and resulted in clustering of the transcripts belonging
to each group of sham or injured animals shown in
Figure 1B. There are inter-individual differences but
eclipses show that there are no outliers in our experi-
ment. Additionally, the eclipses of day 7, day 14 and day
56 cross each other, which indicate some level of com-
monality between these time points, as was evidenced
and shown in the tree view of the heat map.

Data normalization and expression/signal value deter-
mination resulted in a list of all 31,099 ProbeSets, their
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fold change values relative to sham (in Log, scale), and
associated ANOVA ¢ test p-values across the time
points. Volcano plots of the corresponding fold change
values against transformed (-log;o) p-values for every
time point are displayed in Figure 1C. As shown, all vol-
cano plots display a normal distribution of ProbeSets
with fold change values from -8.7 to 11.2 for down- and
up-regulated genes, respectively. The shape of the vol-
cano plot changes as time post-injury goes by. Thus, day
3 ProbeSet data plots are not as populated, especially on
the down-regulated area and are less similar to other
data points. The day 1 plot, on the other hand, looks
more similar to the day 7 volcano plot. The more
chronic data points of day 14 and day 56 look more
similar to each other than to earlier data points.

Examination of the number of ProbeSets with mar-
ginal ANOVA ¢ test p-values gave an estimate as to the
reliability of data obtained. Thus, we analyzed our data
for the number of ProbeSets with ANOVA ¢ test p-
values higher than 0.05 at different fold change values
(Figure 1D). We found that the majority of changes in
gene expression with significance levels of p > 0.05 gen-
erally belong to ProbeSets with lower fold change values.
For example, the number of ProbeSets with ANOVA ¢
test p>0.05 did not exceed 6% of the total number of
ProbeSets, irrespective of the fold change values. At a
more stringent significance level of p <0.001, however, it
would be necessary to filter out the ProbeSets with ex-
pression values less than 2 fold changes in order to keep
the number of filtered ProbeSets around 10% or less
across the time points (data not shown). Thus, filtering
the data with higher fold change values automatically
targets for transcripts with smaller ¢ test p-values. Based
on the results presented in Figure 1D, we performed the
functional analysis on the ProbeSet data with fold
change values of >1.5 and p <0.05.

Analysis of gene set data

To explore our data at gene level, additional analysis and
filtering was performed on the resulting file of 31,042
ProbeSets as mentioned earlier. In order to finalize the
gene set data at different time-points for functional ana-
lysis, those transcripts with ANOVA ¢ test p-values =
0.05 were removed from the initial list and the resulting
data were analyzed using STEM so that fold change
values for genes with multiple ProbeSets are averaged
based on the median values. Table 1 shows the results of
this analysis by listing the number of deregulated tran-
scripts at each time-point and at different fold change
values (p<0.05). For example, on day 1 post-injury,
there are 2,500 transcripts with at least 1.5 fold changes
in expression level. This number diminishes significantly
on the following days to about half, but nevertheless,
stays at a significantly high value, more than 1,000
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(See figure on previous page.)

Figure 1 Time - Point ProbeSet Data Analysis. A. Unsupervised machine learning grouping of animals by expression. To visualize temporal
patterns as well as inter-animal variability, unsupervised machine learning was employed followed by a divisive hierarchical clustering algorithm
(DIANA) to cluster differentially expressed ProbeSets in any pair-wise contrast (see Methods). Finally, standard agglomerative hierarchical
clustering was used to group animals. The result is visualized using the Heatplus package of BioConductor. Heatmap (columns: samples; rows:
genes, in red and blue coloring, depicting up- and down-regulation respectively). B. Principal Component Analysis of Individual Time Point
Transcripts. Using Partek GS version 6.5, we performed principal component analysis (PCA) of the 33042 transcripts on the 230 2.0 GeneChip array
for all animals at each time point to assess variability of the data across individual animals and time points. There are inter-individual differences
but eclipses show that there are no outliers in our experiment. Additionally, the eclipses of Day 7, 14 and 56 cross each other, which indicate
some level of commonality between these time points, as was evidenced and shown in the tree view of the heat map. C. Volcano plots of fold
change values of all 33042 ProbeSets vs. transformed (- log;o) ANOVA t test p-values. Individual time point data were plotted for comparison.
ANOVA t test p-values for pair-wise contrasts between each time point data relative to sham were calculated and transformed to - log; values
and plotted against fold change values. D. Percentage of ProbeSets with ANOVA ¢ test p-values higher than 0.05. The percentage of ProbeSets
with p-values higher than 0.05 was calculated at all time-points and plotted at various fold change values.

transcripts, even at 8 weeks post-injury (Table 1). The
majority of gene expression changes are up-regulations
especially on day 1 post-injury. Although the total
number of deregulated transcripts is reduced to about
1,304 on day 3, the ratio of up- vs. down-regulations is
increased significantly (1.9 on day 3 compared to 1.5
on day 1). Between day 7 and day 56 post-injury,
changes in the spinal cord transcriptome tend to ap-
proach a steady state. The finding that variations in the
number and level of transcripts’ deregulations were
highest during day 1 and day 3 is consistent with the fact
that most signaling responses to the damage incurred by
mechanical impact and compression are communicated
within the hyperacute and acute stages of the trauma.

We next examined the nature of deregulated tran-
scripts at different time-points relative to each other.
Figure 2 (A-D) depicts the Venn diagrams with overlap-
ping regions demonstrating the number of common
genes showing changes at various time points as well as
time-point specific genes. In terms of gene contents, the
day 1 pattern of gene expression is more similar to day 7
as is evidenced by 760 common genes between day 1
and day 7, compared to 317 between day 1 and day 3,
186 between day 1 and day 14 and 113 between day 1
and day 56. On the other hand, each time-point has
unique genes, whose expressions do not appear to
change at other time points. This observation supports
the notion that, although some processes that are in-
voked early after SCI may stay active throughout the
acute or chronic phase, there are unique features to the
early response genes that are dramatically different from
the response in the following days or weeks post-injury.
Additionally, deregulated transcripts on day 14 and day
56 were found to be very similar to each other with ap-
proximately 82% of the genes showing changed expres-
sion being identical at these two time-points. This result
was also predicted from the heat map (Figure 1A). This
indicates that the biological processes in response during
the chronic phase of SCI remain constant.

Time-series expression profile clustering by STEM

As our data were collected at different time-points, we
performed time-series expression profile clustering to
search for common temporal expression patterns. To
allow clustering at a reasonable number of possible
model profiles, the parameter for “STEM clustering
method”, “model profiles” was set to 50 and 2 was se-
lected as the “maximum unit change between time
points”. To facilitate interpretation of our data in the
context of previous microarray studies, we used a cut-off
of 1.5 fold change (up and down) as has been previously
reported [36-38]. Additional file 1: Figure S1 depicts the
results of the 50 expression profiles obtained with
STEM, at 1.5 fold change benchmark value relative to
sham controls. The profiles are shown in decreasing
order of significance of clustering by STEM, from the
lowest to the highest p-values. Eight expression profiles
were statistically significantly enriched relative to the
number of genes that would occur in these profiles by
chance alone. As shown, the corrected p-values range
from the lowest for profile 44 to the highest for profile
2. Table 2 summarizes the number of significantly
deregulated transcripts across all time-points with re-
spect to the two criteria of “Maximum Number of
Missing Values” and “Minimum Absolute Expression
Change (from Zero)”. As shown, at the most stringent
condition of “zero” missing values, 1,251 genes pass
the filtering criteria of 1.5 fold change, of which 1,074
genes (86%) were clustered in the 8 expression profiles
and the remaining 177 genes (14%) were assigned to
other non-significant profiles. We performed our time-
series analysis allowing 1 missing value (Additional file 1:
Figure S1). This resulted in 2,058 genes passing the filter-
ing criteria with 85% of deregulated transcripts assigned to
eight expression profiles 44, 6, 46, 1, 0, 48, 41 and 45.

To simplify the graphical presentation of the data, fold
changes in expression values for all genes associated
with only the statistically significant profiles were aver-
aged and plotted against the post-injury observation
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Table 1 Time-point gene set data analysis at different fold change criteria (p < 0.05)

Time-points > 1.0 fold change > 1.5 fold change > 2.0 fold change
Day1

Up 2430 151 972

Down 1579 989 620

Total 4009 2500 1592
Day3

Up 1687 864 502

Down 940 440 208

Total 2627 1304 710
Day7

Up 1593 922 615

Down 1062 581 322

Total 2655 1503 937
Day14

Up 1126 696 479

Down 1056 577 327

Total 2182 1273 806
Day56

Up 1173 729 482

Down 995 537 284

Total 2168 1266 766

Transcripts with ANOVA t test p-values >0.05 were removed from the initial list and the resulting data were analyzed using STEM to average the fold change
values based on the median of fold changes for genes with multiple probe sets. ProbeSets with different fold change values combined with ANOVA t test p-

values <0.05 were considered for this analysis.

time points (Figure 3A-H). Two broad profile classes
become apparent from these data: "up-down/down-
up genes” (Figures 3A-E) and “fluctuating genes”
(Figures 3F-H). The “up-down” category comprises the
cluster of profiles that share a pattern of up-regulation
early after injury over the course of 24 hours (profiles
45, 46 and 48). In these profiles, the early response is
subsequently followed by down-regulation of the genes
clustered in these profiles. This occurs gradually, ap-
proaching a steady level at normal or higher than nor-
mal values. Although genes in profiles 45 and 48 were
allocated to two separate expression profiles by STEM,
visual examination indicates striking similarities between
the two profiles. Patterns of late phase expression in
these profiles look similar to each other as the late ex-
pression values of almost all gene transcripts in both
profiles approach values comparable to those of the
sham animals. For many genes in profile 46 the pattern
is different as the transcript levels of about 50% of genes
in this profile remain up-regulated throughout the
course of the study and also at the end of 8 weeks, hence
their functions seem essential not only in the acute and
subacute phase but also during the chronic stage of the
injury. Profiles 1 and O are quite similar to each other as
they display down-regulations of many genes on day 1,

which stay at lower than normal levels even 8 weeks
after injury.

Class II profiles represent fluctuating profiles (44, 41
and 6), with a surprising but more complex pattern of
gene expression, most notably during the 24-72 hours
post-injury (Figure 3G-H). This results in a bi-phasic ex-
pression pattern, which falls into two main clusters. The
first cluster comprises profiles 44 and 41 (Figure 3F-G)
and is characterized by an initial up-regulation of gene
transcript levels early on day 1, followed by a sharp de-
crease in gene expression on day 3. More than 53% and
83% of the genes in profiles 44 and 41, respectfully,
displayed at least a 1.0 (Log, scale) fold change reduc-
tion in transcript levels on day 3 compared to day 1. For
profiles 44 and 41, this bi-phasic pattern of gene expres-
sion is further followed by escalation of gene expression,
which peaks at day 7 and stabilizes on day 14 onward.
The second cluster only includes profile 6, which is es-
sentially the mirror of profile 44 and comprise down-
regulated genes (Figure 3H). It is characterized by an
early and substantial down-regulation on day 1. Next, a
period of recovery to normal transcript levels is observed
that peaks on day 3 post-injury and then switches direc-
tion again and remains low through today 56. Finally,
detailed information in Figure 3 indicates that the
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Day1 (2500)
805

Day7 (1503)
101

Day56 (1266)
166

Figure 2 Time-Point Gene Set Data Analysis. A-D. Relationship between the nature of deregulated transcripts at different time points.
Deregulated transcripts (fold change = 1.5) at each time point were examined for common and unique genes using a Venn diagram. Overlapping
areas represent common genes between different time points. Day 1 deregulated genes were compared with day 3 and day 7 transcripts in A,
and with day 14 and 56 in B. Day 3 and Day 7 deregulations were compared with both day 14 and day 56 in C and D, respectively. The
transcriptome on day 1 is more similar to day 7 and less similar to days 3, 14 or 56. Additionally, day 14 and 56 deregulations are the most similar
to each other with about 82% of the genes common between the two time points.

Day1(2500)
1237

Day56 (1266)
98

Day7 (1503)
311

Day56 (1266)
136

majority of transcripts belong to profile 44 and 6 with
up-regulated transcripts clustering in the former and
down-regulated transcripts in the latter.

In summary, the following conclusions can be drawn
from the cluster analysis of transcripts both at the
ProbeSet and gene level following clip-compression in-
jury of the spinal cord in rats:

— Major molecular events after introduction of clip-
compression injury occur immediately and up to
72 hours post-injury

— For many transcripts a bi-phasic pattern of gene
expression is observed, possibly due to switching
mechanisms acting between day 1 and day 3 or a
shift in the cellular origin of deregulated transcripts
or the type of response elicited resulting in chronic
deregulations of many genes. Therefore, for many
transcripts, the late up or down-regulations seem to
be distinct from the early response

— The early events seem to stabilize for most
transcripts by 1 week post-injury, i.e. no more
dramatic global changes in the average gene

expression are observed and the level of expressions
remains relatively constant.

GO enrichment analysis of deregulated genes

Choice of reference association file

Gene Ontology (GO) enrichment analysis was preferred
as the method of choice for functional analysis of the list
of deregulated genes as it is based on a controlled vo-
cabulary of terms at all three domains of “Biological
Process” (BP), “Molecular Function” (MF) and “Cellular
Compartment” (CC). Initially, gene association files from
RGD or EBI were analyzed for the number of rat genes
that are annotated at each of the three domains (BP,
MF and CC) and compared with the list of signifi-
cantly (ANOVA ¢ test p <0.05) deregulated genes (Fold
Change > 1.0 and 1.5) at each time point. We found that
about 70-75% of deregulated transcripts were annotated
for all three domains of GO, in reference to the RGD as-
sociation file whereas the association file from EBI only
annotated 55-65% (data not shown). This implies that a
minimum of 25-30% of significantly deregulated tran-
scripts are not annotated (in any BP, MF or CC domains)
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Table 2 Time-series gene set data analysis by STEM at different fold change criteria (p < 0.05)

No. missing values allowed > 1.0 fold change

> 1.5 fold change > 2.0 fold change

0 1820
1 3066
2 3916
3 4577
4 5050

1251 831

2058 1367
2507 1615
2848 1829
3087 1958

Fold change values with ANOVA t test p-values >0.05 were removed from the initial list and the resulting data were analyzed using STEM for time-series
expression analysis at different values for the “Maximum Number of Missing Values” parameter.

in any gene ontology association files and thus are not
considered for analysis regardless of the type of software
platform used to perform GO enrichment analysis. There-
fore, due to its more extensive annotation coverage, GO
enrichment analysis in this study was performed in refer-
ence to the RGD association file.

Fold change and p-value criteria affect the number of
enriched terms

GO enrichment analysis can result in numerous enriched
GO terms with overlapping or redundant terms making
the reduction and prioritization task difficult. Depending
on the fold change value criteria, which determine
the number of deregulated transcripts, the number of
enriched GO terms can vary. In order to rationalize an
approach where meaningful numbers of GO terms
are achieved, we first examined how the parameter of
fold-change in expression can affect the number of
enriched terms. We chose to perform this preliminary
analysis in a time-series fashion, meaning that deregulated
transcripts with significant fold change values (ANOVA ¢
test p <0.05) across all time-points were considered and
only one missing value was permitted. Thus, deregulated
transcripts at 1-4 fold change values in at least one time
point were separately subjected to GO Biological Process
(BP) enrichment analysis (minimum GO level of 3, mini-
mum number of genes of 5) and the number of GO terms
were plotted as a function of fold change in expression
(Figure 4A). As shown, this time-series analysis at 1.0, 1.5
and 2.0 fold change values resulted in very high numbers
of enriched terms, e.g. 698, 649 and 720 GO terms (with
the adjusted p-values < 0.001), respectively. Setting the fold
change criteria to higher values did not limit the number
of GO terms as it only gradually declined (Figure 4A). For
example, GO enrichment analysis on the list of transcripts
with 2.5, 3.0, 3.5 and 4.0 fold change values resulted in
625, 590, 487 and 276 terms (p < 0.001), respectively. It is
interesting to note that significant reduction in the num-
ber of GO terms is not achieved until much higher fold
change values are considered, e.g. 4 fold in Log, scale (64
fold in normal scale), which also significantly reduces the
number of deregulated transcripts included in the analysis
(data not shown). However, examining the number of

terms at lower p-values remarkably reduced the number
of GO terms, although similar trends across different fold
change values were observed (Figure 4A). For example,
changing the p-value parameter from 10 to 10 reduced
the number of enriched GO terms to about half or even
less, at all fold change values (Figure 4B). Therefore, it
seems that the logical approach for enrichment analysis in
regard to the fold change and p-value criteria is to include
all transcripts with even lower fold change values to in-
clude higher number of genes and especially to avoid ex-
cluding potential key regulatory genes in the analysis,
which may not have displayed dramatic changes in expres-
sion. Finally, although the actual size p-value cutoff seems
to be a much more important parameter in limiting the
number of enriched GO terms to a workable value, it may
not help with prioritization of the enriched terms and
their specificity.

GO level criteria and term specificity

Gene ontology hierarchy consists of a tree of inter-
related terms in a distinct structure called a directed
acyclic graph (DAG). In GO tree hierarchy, the terms
Biological Process, Molecular Function, and Cellular
Component are at level 1. Therefore, more general par-
ent terms are at the top of the hierarchy with lower GO
level values and higher GO level values are assigned to
more specific child terms. Unless more than one parent
is assigned, GO level can be considered as a constant
value for each term. As GO level values refer to the pos-
ition of the enriched terms in the GO hierarchy tree,
they can define the specificity or granularity of a given
GO term and thus are a valuable parameter for terms
prioritization and for inferring biological meaning from
GO enrichment analysis [39]. To determine the position
of each of the enriched GO terms in the DAG structure
of the gene ontology hierarchy, we performed GO Bio-
logical Process (BP) enrichment at GO levels between 20
and 3, using STEM. This led to multiple lists of enriched
and overlapping GO terms at each level of GO hier-
archy. Using this approach, a single GO level was
assigned to every GO term. Figure 4B depicts the distri-
bution of all 649 and 329 GO terms obtained at p <
0.001 and p <0.0001 cut offs, respectively, against their
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Figure 3 Distinct Significant Expression Profiles Clustered by STEM. A-H. Average fold change values for the genes in each cluster were
plotted against the real time scale of the time-points post-injury. Error bars denote the standard deviation of the mean. Three classes of
expression profiles are observed. Class | profiles (A-C) display an “up-down” pattern with the peak of up-regulation in 24 hours (profiles 45, 46
and 48) post-injury. The up-regulation is followed by decline of transcript levels, either sharply back to normal values (profiles 45 and 48) or
gradually to higher than control values (profiles 46). Class Il profiles (1 and 0) are quite similar to each other as they display down-regulations of
many genes on day 1, which stay at lower than normal levels even at 8 weeks post-injury. Class Il profiles (E-H) represent fluctuating profiles and
are subdivided into two clusters. Cluster | (Profiles 44 and 41) is marked by an early increase in gene expression by day 1 followed by sudden
decline in transcript level at day 3. In profile 44, this transient change in transcription level is followed by an escalating condition whereby the
same transcripts are again up-regulated by day 7 and stay at higher than control values until 8 weeks post-injury. In cluster Il (profile 6), a reverse
phenomenon is observed, where the early event is a sharp decrease in transcript level and a follow up fluctuation pattern in gene expression.
Despite fluctuations in gene expression levels, the transcript levels of genes in profiles 6 remain significantly lower than control levels throughout
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number of Biological Process GO terms with corrected p-values of <0.001, £0.0001 and < 0.00001 were calculated and plotted. B. Distribution of
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expression (ANOVA t test p < 0.05). This resulted in 329 and 649 enriched GO terms at p-value cutoffs of 0.0001 and 0.001, respectively. Enriched
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corresponding GO levels. As shown, the enriched terms
show a distribution curve that is close to normal against
different GO levels though it is slightly skewed at the
higher GO level value side. The majority of terms were
obtained when GO level parameter was set to 11 and
less. On the other hand, examining levels lower than 5
led to GO terms with lower p-values at the cost of more
general terms with much broader information about the
function of genes in that category (data not shown). It
should be mentioned that, although more general terms
offer less specific information about the actual biological
functions of deregulated transcripts in the list, their sig-
nificance level, marked by their p-value of enrichment,
along with their GO level can help delineate how the
specific terms are related to the correct parental signal-
ing pathways or biological processes.

Time-series vs. Time-point analysis

Temporal analysis of gene expression may imply analysis
of gene lists in either a time-series and/or a time-point
fashion. Although STEM has been designed for time-
series expression profiling prior to GO enrichment, it
can also be used for time-point GO enrichment analysis.
In the time-series approach, clustering by STEM pro-
duces significant expression profiles followed by enrich-
ment analysis of the list of genes in each expression
profile. The complication with time-series analysis is that
not all transcripts have accepted ANOVA ¢ test p-values
(e.g. p<0.05) and thus the insignificant expression
values must be removed from the original data prior to
STEM analysis. To resolve the issue of many transcripts
with missing values across all time-points, STEM offers

the option to set the missing value parameter. However,
depending on the selected value, this may ultimately re-
duce the total number of deregulated genes included in
the functional analysis. In the time-point approach, how-
ever, the input file is the list of genes that belong to a
specific time-point, in which case the number of missing
values is not an issue. In this study, the time-point GO
enrichment analysis was employed to discover common
up- and down-regulated biological processes across the
time-points as well as possible unique processes to each
time-point. The output GO terms were used for inter-
relationship analysis and or visualized as a scatter plot
or interactive graph using REViGO [40].

Time-series GO enrichment

Based on the results obtained from analysis of the effects
of fold change, p-value cut off and GO level criteria, the
pool of deregulated transcripts throughout all time-
points was analyzed by setting the GO level at different
values with the intention of obtaining more specific
categories. The enrichment analysis at p-value cutoff of
10™* on transcripts with a minimum of 1.5 fold changes
in expression (ANOVA ¢ test p <0.05) resulted in a sig-
nificant reduction of the number of enriched GO terms
to 329 at GO level 3 and higher. Within this collection
of enriched GO terms, there are 267 terms whose GO
levels are 5 and higher. The 329 and 267 terms along
with their p-values were further summarized independ-
ently by the REViGO reduction analysis tool that con-
denses the GO description by removing redundant
terms [40]. The results of these further reductions are vi-
sualized in Figures 5. Only categories with lower
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Figure 5 REViGO Scatterplot of the Enriched GO Cluster Representatives from Time-Series Analysis. Time-series GO enrichment analysis
for transcripts with a minimum of 1.5 fold change regardless of their expression profile at p-value cut off of 0.0001 led to 329 GO terms at GO
level 23 and 267 terms at GO level 5. The resulting lists of 329 (A) and 267 (B) GO terms along with their p-values were further summarized by
REVIGO reduction analysis tool that condenses the GO description by removing redundant terms [40]. The remaining terms after the redundancy
reduction were plotted in a two dimensional space. Bubble color indicates the p-value (legend in upper right-hand corner), the two ends of the
colors are red and blue, depicting lower- and higher p-values respectively. Size indicates the relative frequency of the GO term in the underlying
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dispensability and frequency, i.e. more uniqueness are
shown. As shown, more general terms such as adaptive
and innate immune response, immune effector process,
cell-cell signaling, cell communication, cell adhesion, cell
activation and phagocytosis are significant at level 3 and
higher (Figure 5A). Other, more specific terms are also
visualized such as regulation of apoptotic process, I-
kappaB kinase/NF-kappaB cascade, glial cell migration,
and synaptic transmission and synapse organization.
However, to achieve more specific terms, one needs to
look at the terms with higher GO levels (Figure 5B). The
majority of terms visualized in Figure 5B are specific
terms such as mitotic cell cycle G2/M transition check-
point, apoptotic cell clearance, hydrogen peroxide bio-
synthesis, signal transduction by p53 class mediator and
regulation of Toll-like receptor signaling pathway.

Most enriched GO terms visualized in Figure 5 repre-
sent deregulated transcripts with the different expression
profiles shown in Additional file 1: Figure S1. As expres-
sion clustering is performed prior to GO enrichment,
the time-series GO enrichment may produce enriched
terms that are also significantly represented by the ex-
pression profiles shown in Additional file 1: Figure S1.
Indeed, we found that the majority of enriched GO
terms for up-regulated transcripts represent the expres-
sion profiles 44 and 46 and in some cases, profile 48.

Time-point GO enrichment

We next analyzed the temporal pattern of each GO term
in a time-point fashion in order to examine the order of
events after SCI. To accomplish this, we made multiple
comparisons of the enriched GO terms obtained for
deregulated transcripts (minimum fold change value >
1.5; ANOVA t test p-value <0.05) at individual time-
points. Figure 6 depicts the Venn diagram of this ana-
lysis on the multiple lists of enriched GO terms (p-value
cut off of 0.05) obtained for each individual time-point.
A less stringent condition was selected to allow for all
possible similarities and differences to be observed. As
shown, this analysis resulted in 736 common GO terms
between all time-points, of which 284 had a p-value <
0.00001 throughout the course of the study (data not
shown). Additionally, some biological processes were
shown to be significantly up- or down-regulated at only
a certain time window as their respective GO terms were
uniquely specified to one time point only. For example,
278, 359 and 170 terms were uniquely specified to day 1,
day3 and day 7 post-injury, respectively. There are fewer
unique terms detected at the chronic stage of the injury
i.e. 69 and 67 for day 14 and day 56 post-injury, respect-
ively. The fact that there are significantly higher num-
bers of common GO terms (i.e. 736) relative to the
number of unique terms at each time-point indicates the
complexity of the many common processes involved
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Day56
Day14

Figure 6 Common and Unique GO Terms between Time-Points.
GO enrichment analysis was performed separately for deregulated
transcripts (fold change = 1.5, ANOVA t test p-value < 0.05) at each
time point. The enriched GO terms at a less stringent condition

(p < 0.05) were examined for common and unique terms using
Venn diagram. All time-points were compared to each other
simultaneously. Overlapping areas represent common terms
between different time points. As shown, 736 terms were common
to all time-points, of which 284 had a p-value < 0.00001.

following moderate to severe SCI and that the signifi-
cance of contribution of these processes is diminished
within our time window. Having determined the GO
levels for all categories in the previous steps, we then de-
termined the most specific terms and positioned them
in their GO tree hierarchy. A summary of significantly
enriched BP terms that were found to be commonly up-
regulated across all time-points is presented in Table 3.
Some general terms such as the “response to external
stimulus”, “response to mechanical stimulus” and “in-
flammatory response” possess the highest significance
but belong to lower levels of GO hierarchy. Other cat-
egories, however, present more specific functions and
are positioned at higher GO levels. As shown, significant
up-regulation of GO terms corresponding to “response
to extracellular and mechanical stimuli”, “inflammatory
response” as well as “response to lipid” and “response to
lipopolysaccharide” was observed across all time points,
day 1-day 56 post-injury. The “angiogenesis” term is also
consistently enriched in the day 1-day 56 time points.
Genes involved in “blood coagulation” were up-regulated
to high levels at day 1, and at day 7 through today 14.
The “complement activation” process is only enriched at
later time points, i.e. day 14-day 56 post-injury. Al-
though a significant “response to hypoxia” was observed
from day 1-day 3, the peak of response to “reactive oxy-
gen species” and “hydrogen peroxide” was observed ex-
clusively on day 1. The “response to glucocorticoid
stimulus” was observed on day 1 and day 14 post-injury.
“Production of IL-6” process peaked on day 1 post-
injury but continued to be enriched on day 7 and at later
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Table 3 Common GO terms across all time-points post-injury

Page 13 of 25

Term ID Parent term name Term ID Child term name GO level
GO:0009605 response to external stimulus G0:0009991 response to extracellular stimulus 4
G0:0009612 response to mechanical stimulus 4
GO:0050896 response to stimulus GO0:0009719 response to endogenous stimulus 3
GO:0006950 response to stress GO0:0009611 response to wounding 4
G0:0033993  response to lipid G0:0032496 response to lipopolysaccharide 7
GO:0007599 hemostasis GO0:0007596 blood coagulation 6
GO:0002252 immune effector process GO0:0006956 complement activation 4
GO:0070482 response to oxygen levels G0:0001666 response to hypoxia 6
GO:0048514 blood vessel morphogenesis G0:0001525 angiogenesis 11
GO:0006979 response to oxidative stress GO0:0000302 response to reactive oxygen species 5
G0:0042542 response to hydrogen peroxide 6
GO:0006954  inflammatory response G0:0002367 cytokine production involved in immune 5
response
GO:0001816 cytokine production G0:0042089 cytokine biosynthetic process 5,8
GO:0001816 cytokine production G0:0071706 tumor necrosis factor superfamily cytokine 5
production
G0:0032635 interleukin-6 production 5
G0:0032637 interleukin-8 production 5
G0:0050663 cytokine secretion 8
GO:0034097 response to cytokine stimulus G0:0070555 response to interleukin-1 6
GO0:0034612 response to tumor necrosis factor 6
G0:0034341 response to interferon-gamma 6
GO:0045087 innate immune response GO0:0034341 response to interferon-gamma 6
GO:0030595  leukocyte chemotaxis G0:0030593 neutrophil chemotaxis 8
G0O:0002275 myeloid cell activation involved in immune GO0:0002281 macrophage activation involved in immune 7
response response
GO:0002274 myeloid leukocyte activation G0:0042116 macrophage activation 6
GO:0012501  programmed cell death G0:0006915 apoptotic process 5
GO:0006897 endocytosis G0:0006909 phagocytosis 7
G0:0006911 phagocytosis, engulfment 8
G0:0043277 apoptotic cell clearance 8
GO:0050776 regulation of immune response GO0:0002218 activation of innate immune response 9
GO:0002758 innate immune response-activating signal
transduction
GO:0002429 immune response-activating cell surface G0:0002220 innate immune response activating cell surface 11
receptor signaling pathway receptor signaling pathway
GO:0002758 innate immune response-activating signal  G0:0002221 pattern recognition receptor signaling pathway 11
transduction
G0:0002224 toll-like receptor signaling pathway 12
G0O:0016337  cell-cell adhesion G0:0007159 leukocyte cell-cell adhesion 5
GO:0007165  signal transduction
GO:0007166 cell surface receptor signaling pathway G0:0007229 integrin-mediated signaling pathway 7
GO:0050900 leukocyte migration G0:0045123 cellular extravasation 7
GO:0046649 lymphocyte activation GO0:0042113 B cell activation 6
G0:0042110 T cell activation 6
GO:0046651  lymphocyte proliferation



Chamankhah et al. BMC Genomics 2013, 14:583
http://www.biomedcentral.com/1471-2164/14/583

Page 14 of 25

Table 3 Common GO terms across all time-points post-injury (Continued)

B cell proliferation 7
T cell proliferation 7
T cell differentiation 11
antigen receptor-mediated signaling pathway 11
B cell receptor signaling pathway 11

GO:0002460 adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily

GO:0042113 B cell activation G0:0042100
GO:0046651  lymphocyte proliferation
GO:0042110 T cell activation G0:0042098
GO:0030098  lymphocyte differentiation
GO:0042110 T cell activation G0:0030217
G0:0002429 immune response-activating cell surface GO0:0050851
receptor signaling pathway
GO:0050851 antigen receptor-mediated signaling G0:0050853
pathway
domains
G0:0019724 B cell mediated immunity G0:0016064
GO:0044707 single-multicellular organism process G0:0001503

immunoglobulin mediated immune response

ossification 4

time points, while the peaks for “tumor necrosis factor
production” and “IL-8 production” were on day 7. Previ-
ous studies have shown a marked increase in TNF-alpha
production immediately after injury. Since this study did
not include time-points earlier than 24 hours, this result
may imply the second wave of TNF-alpha production
following the acute phase of the injury. Interestingly, the
responses to cytokines such as tumor necrosis factor
and IL-1 were observed only on day 3. “Neutrophil
chemotaxis” process initiated on day 1 but peak activity
was observed on day 14. From Figure 7H, it is evident
that the level of “phagocytosis”-related transcripts are
up-regulated early after injury but peak at one week
post-injury and stay up-regulated. Likewise, the expres-
sion of genes that belong to the “Toll-like receptor sig-
naling pathway” term alters with the same profile
(Figure 7K).

A significant finding is the occurrence of the “apoptotic
process” on day 1-day 7 post-injury. This process is ac-
companied by events whose peak of response also corre-
sponds exclusively to day 7, such as “interleukin-6
production”, “tumor necrosis factor production”, “macro-
phage activation involved in immune response”, “phago-
cytosis” and “engulfment and “apoptotic cell clearance”
(Figure 7E and 7H).

On both days 1 and 7, a significant up-regulation in
induced-innate immunity related GO terms such as
“pattern recognition-mediated signaling’, “Toll-like re-
ceptor signaling” and “integrin-mediated signaling path-
ways” was detected. “Leukocyte cell-cell adhesion” was
observed from day 1 to day 7. While genes involved in
activation of “innate immune response”, “B and T cell
activation”, “cytokine biosynthetic process”, and “phago-
cytosis” were up-regulated at day 1 and from day 7 on-
wards to day 56; ‘T cell differentiation” and “B cell
mediated immunity” up-regulation is only observed
during the chronic phase of injury, i.e. day 14-day 56

(Figure 70 and 7P). Thus, it is not surprising that the “B
and T cell proliferation” and the “B cell receptor signal-
ling pathway” peaks of response were on day 7-day 14.
Day 14 also marks a peak response to “ossification”
(data not shown). Importantly, the peak response to
interferon-gamma and the immunoglobulin-mediated
immune response is observed on day 56. These two
mark the late response biological processes induced after
injury to spinal cord.

Our analysis also showed that “programmed cell
death” and its related child terms “apoptotic process”
and “positive and negative regulation of apoptotic
process” are commonly enriched only during day 1- day
7 post-injury. Apoptotic processes significantly increase
early after injury on day 1 post-injury and reach a peak
between day 3 and day 7 post-injury, after which the
contribution of apoptotic processes is diminished but
stays significantly enriched (p < 0.001-0.0001). Both posi-
tive and negative regulations of apoptosis are signifi-
cantly enriched, which indicates the fact that the injured
cells struggle for survival. However, activation of apop-
tosis seems to be more predominant than its suppres-
sion, as the positive regulation of apoptosis becomes
activated earlier than negative regulation and its peak of
activity is on day 1 post-injury, although it stays continu-
ously up-regulated up to 1 week post-injury. In contrast,
the only significant activity of negative regulation of
apoptosis (p <0.00001) is on day 3 (Figure 71-]).

We can summarize the biological processes listed in
Table 3 into three main categories: stress response in-
cluding processes such as blood coagulation, comple-
ment activation, response to hypoxia and reactive
oxygen species, angiogenesis and inflammation. The sec-
ond category consists of induced innate immune re-
sponse processes such as activation of macrophages and
microglia by Toll-like receptor signaling, cytokine pro-
duction and secretion, chemokine production and
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(See figure on previous page.)

biological process.

Figure 7 Temporal Pattern of Various GO Biological Processes Common to all Time-Points. A-P. Temporal pattern of change of each GO
term was analyzed in order to examine the order of events after spinal cord injury. Multiple and pairwise comparisons of the enriched GO terms
obtained for all time-points were made. 284 terms were found to be significantly deregulated across all time-time points post-injury (p-value <
0.00001). The most specific terms were further analyzed for their gene content as well as their up- or down-regulations. The p-values of each
term at various time-points were transformed to - Log10 value and plotted. Each graph depicts a single or multiple enriched GO

neutrophil chemotaxis, IL6 and tumor-necrosis factor
production and their responses. A significant set of in-
duced innate immune-related biological processes in-
volve “Phagocytosis” and “Toll-like receptor signaling
pathway”. The third category is mainly the components
of adaptive immune response processes such as T cell
activation, migration and proliferation, B cell activation
and immunoglobulin-mediated immunity. Both humoral
and cell-mediated elements of “adaptive immune re-
sponse” processes seem to actively participate in the
pathology of SCI. The pattern of change in mRNA levels
for many genes in the above GO biological processes
follow the expression profiles observed in profiles 44,
46, 48 and 45, which have been discussed -earlier
(Figure 3A-H). The continuous up-regulation of the “im-
munoglobulin mediated immune response” and its
parent term “B cell mediated immunity” is striking and
may imply that these processes should be categorized as
chronic phase responses to SCI as their peak of activity
appears after 2—-8 weeks, although initiated at early
timepoints post-injury.

Our GO analysis also resulted in enrichment of many
regulatory processes, the majority of which are positive
regulations of the enriched GO biological processes
listed in Table 3, as illustrated for apoptotic processes
shown in Figures 7I-J.

Discussion
The injury model
Since its introduction in 1978 as the first SCI model in
rats [20], the clip-compression model has become a
standard injury model in animals as it mimics the hu-
man primary mechanism of injury to the spinal cord as
well as the histo-pathological and behavioural outcomes
of human SCI. Our lab has previously characterized this
mode of SCI [42-44]. The clip compression of the spinal
cord results in central cavitation and axonal loss in the
white matter of spinal cord [45]. Rats that receive the
clip-compression injury have a very similar pathological
progression to humans with SCI including the formation
of a cystic cavity surrounded by a glial scar [44]. In
addition, animals injured by clip compression will have
the same functional recovery profile as is observed in
humans [20,23,28].

Previous studies have shown that the response of the
spinal cord tissue to injury consists of a complex series

of cellular responses and events. These cellular events
are reflected in a more complex change in temporal and
spatial pattern of molecular events at the mRNA level,
which, in turn, depends on the type and severity of the
primary injury and the following cascade of secondary
events [1]. Earlier reports on high throughput gene ex-
pression analysis after SCI in animals have been almost
exclusively performed in contusion-based models of in-
jury using weight drop method [36-38,46]. As no such
study on the clip-compression injury model has been
reported, we aimed to investigate the rat transcriptome
dynamics after a moderate to severe injury using
hemorrhagic SCI by clip model, similar to most human
SCIs. Additionally, the primary injury in the clip model
consists of both impact and persistent compression.
Therefore, we hypothesized that both similarities and
differences between the two models of injury would be
evident by examining how the changes in transcriptome
occur. Moreover, unlike the majority of earlier studies
that chiefly examined the acute and subacute events, we
extended the time-frame of our study to 8 weeks post-
injury to allow examination of the acute, subacute and
chronic phases of the injury. The chosen time-points
were based on previous behavioural and immunohisto-
chemical analyses, which showed that following SCI by
clip-compression, the first 24 hours post injury would
represent a very acute stage and possible involvement of
most immediate early stress genes. Days 3 and 7 repre-
sent a time during which the peak of delayed apoptotic
cell death for the neural cells occurs. Days 10-14 are
considered the subacute stage, as the inflammation ap-
pears to subside. Finally day 56 is considered the chronic
stage as it is the time when the BBB motor recovery test
for the spontaneous recovery/improvement in the rat
animal model reaches a plateau.

GO enrichment analysis as a tool for biological process
inference

Functional analysis of microarray data is a challenging
task as the result of initial analysis is only the fold
change values representing deregulations in the expres-
sion of thousands of transcripts. There are different ap-
proaches to analyzing the results of a microarray
experiment in order to make efficient biological infer-
ences. Various platforms share a common feature in that
they perform an overrepresentation analysis on the list
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of deregulated genes and statistically analyze if the pool
of up- and/or down-regulated transcripts is significantly
enriched compared to the list of genes previously anno-
tated to be part of a defined Biological Process, Molecu-
lar Function or Cellular Component, as is the case with
GO enrichment, or to a certain metabolic or signaling
pathway as is observed in pathway analysis platforms.
Various pathway analyses are currently in practice for
microarray data analysis and there are different ap-
proaches to accomplish this. KEGG pathway [47-49],
Wikipathways [50-52], and Ingenuity (www.ingenuity.
com) are amongst the currently available platforms for
pathway analysis. A recent analysis showed that among
the above three pathway databases, (KEGG, Ingenuity
and Wikipathways) there is a low level of consistency,
comprehensiveness and compatibility [53] and the level
of consistency varies significantly when different path-
ways are compared. Due to these limitations, and be-
cause GO is considered to represent a relatively current,
comprehensive, and, more importantly, a controlled vo-
cabulary for gene function [54], we analyzed our micro-
array data using GO enrichment analysis. However, we
are also aware of the limitations of GO enrichment ana-
lysis [55]. For example, prior to GO enrichment analysis
in this study, we determined the number of annotated
genes in the list of deregulated transcripts and found
that only 55% and 75% of the 14,327 genes on the Rat
GeneChip 230 2.0 are annotated in the EBI and RGD
association files, respectively (data not shown). The
above percentages of annotated genes in Rat genome are
similar to the number of annotated genes in all other
organisms whose genome has been sequenced and only
a subset of known genes are annotated for each of
the three domains of GO tree, i.e. BB, MF and CP com-
ponents [56].

An advantage in using a controlled vocabulary of gene
function such as GO on the SCI microarray data comes
from the challenging nature of such analysis due to the
inherent complexity of the spinal cord tissue and also
the type and level of injury itself. Spinal cord tissue is
composed of an array of highly specialized neurons, as-
trocytes, oligodendrocytes, microglia, and pericytes. An-
other specialized and complex structure within the cord
tissue whose permeability is highly compromised [57]
upon injury is the blood spinal cord barrier (BSCB),
which is composed of neurovascular unit (NVU), that
maintains the integrity of BSCB and is again comprised
of endothelial cells, neurons, astrocytes, and pericytes
[58]. Additionally, SCI is generally categorized as a se-
vere injury that leads to loss of normal physiological
functions. Thus, the development of a complex series of
secondary damage [1] to the spinal cord after the pri-
mary injury is due both to the vast array of cell types af-
fected as well as the injury severity that sets many

Page 17 of 25

processes in motion. Such an injury model demands a
nonbiased and yet comprehensive coverage of annota-
tions such as GO for clustering of deregulated genes into
relevant processes and events. The reliability of this ap-
proach is shown by its successful conjecturing of previ-
ously known biological processes as well as their
dynamic of contribution to the pathology of spinal cord
injury as explained below.

Blood coagulation and blood protein signaling

The supply of blood and nutrients is crucial for normal
functioning of neural cells. It is well-documented that an
early and progressive development of hemorrhage is a
common feature of all experimental models of SCI and
this includes the clip-compression model [59,60]. Shear-
ing of the blood vessels and disruption of the vascular
architecture within the lesion epicenter by mechanical
force leads to hemorrhage, a progressive process which
extends to the rostral but more towards the caudal re-
gions of the grey matter [24,61-63]. As post-traumatic is-
chemia develops [1,59], further vasospasm [64] and loss
of autoregulation of blood flow [65,66] exacerbate
the condition. Therefore, the earliest event following
compression injury to the spinal cord is a profound
damage to the local vasculature (capillaries and venules),
hemorrhage (especially in the grey matter) and disrup-
tion of cord microcirculation by mechanical, thrombotic
or vasospasm mechanisms. Consequently, the normal
blood flow to the spinal cord is significantly reduced,
which leads to a marked ischemia in the gray and white
matter [60].

The results of our microarray data analysis clearly con-
firm the outcome of the primary impact and persistent
compression injury to the spinal cord, which is disrup-
tion of the vasculature and hemorrhage as the major
and initial result of the primary injury. Our data indicate
that representative genes in the blood coagulation cas-
cade are up-regulated (Figure 7A). For example, the
transcript levels of the integral membrane protein tissue
factor (coagulation factor III, F3), coagulation factors
VIII (F13A1, F8), platelet factor (PF4) and V (F5) are up-
regulated, the latter being elevated only on day 1 post-
injury (data not shown). Permanent binding of tissue
factor F3 to membrane surface is thought to be crucial
for the speed of enzymatic reactions in coagulation pro-
cesses [67]. Additionally, we found that platelet factor
(PF4) mRNA levels were increased upon injury. PF4
(CXCL4) is a chemokine released from activated plate-
lets to bind heparin and inhibit its anticoagulant activity.
ANO6 is a transmembrane protein that may have a
calcium-activated chloride channel activity but it is
thought to be essential for calcium-dependent exposure
of phosphatidylserine on the surface of activated plate-
lets. Importantly, ANO6 (anoctamin 6 or TMEMI6F)
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transcript level is also elevated early after injury and is
continues to be up-regulated up to 8 weeks post-injury.
Higher than normal transcript levels of ANO6 during
both acute and chronic phases of SCI may explain why
the coagulation process is up-regulated even at 8 weeks
post-injury. Regulatory proteins such as protein C, a
serine protease that is activated in the blood coagulation
cascade, along with its receptor (PROCR) are up-
regulated as well. Activated protein C has potent anti-
coagulant activity due to its ability to inactivate factor
Va and VIlIIa (Yesilirmak et al., 2008) and seems to alle-
viate the secondary SCI by reducing the ischemia/reper-
fusion effect by inhibiting neutrophil activation (Hirose
et al, 1999) and or leukocyte activation [68], inducing
insulin growth factor-1 and its receptor leading to an in-
creased number of motor neurons [69].

The GO enrichment analysis identified another 30
coagulation-related genes whose transcripts were up-
regulated throughout the course of the study. Amongst
these were regulatory proteins with anticoagulant proper-
ties such as tissue factor pathway inhibitor 2 (TFPI), which
is released by endothelial cells and binds factor VIla com-
plexes, inhibiting them to generate factor Xa. TFPI function
regulates the extrinsic coagulation pathway. Additionally,
we found that thrombomodulin (THBD) transcripts were
elevated upon SCI up to 2 weeks post-injury. THBD binds
thrombin and promotes its interaction with protein C. The
resulting complex inactivates factors VIIla and Va. Elevated
levels of these regulatory proteins indicate the importance
of endogenous signaling mechanisms to limit excessive
spreading of clot formation.

A serious side effect of hemorrhage is the infiltration of
blood components such as hemoglobin and fibrinogen to
the spinal cord tissue which have been shown to be toxic
to CNS tissue [70-73]. Infiltration of hemoglobin creates a
hostile environment that is rich in reactive oxygen species
and other toxic materials, which induces the cellular re-
sponse to these toxic mediators of cell death and apop-
tosis. Hemoglobin, released from red cells after trauma,
can promote tissue injury through iron-dependent mecha-
nisms such as inhibiting the Na/K ATPase activity and
catalyzing substantial peroxidation of CNS lipids [71]. In
our study, the majority of Na/K ATPase enzymes such as
ATP1A2, ATP1A3, ATP1B1 and ATP1B2 were down-
regulated during the acute as well as the subacute phase of
the injury (data not shown). Fibrinogen has been shown to
trigger an inhibitory signal transduction pathway in neu-
rons by acting as a ligand for beta-3 integrin, which in-
duces the transactivation of EGF receptor (EGFR) in
neurons, thereby inhibiting neurite outgrowth [73]. It also
triggers astrocyte scar formation through TGF-beta signal-
ing [72]. The microarray data in our study confirms that
genes in the TGF-beta signaling cascade are up-regulated.
For example, TGFBI, its receptor and SMAD2 transcripts
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were up-regulated throughout the 8 weeks post-injury
study period (data not shown).

Complement activation

Along with the blood coagulation cascade, a concomi-
tant increase in the complement activation system is ob-
served, whose temporal pattern is not the same as blood
coagulation but rather develops in a more delayed fash-
ion. The blood coagulation cascade peak of activity is on
day 7 post-injury but stays up-regulated until 8 weeks.
The complement activation, however, is turned on with
a lag time in the first few days with activity increasing at
later time points in the experiment (Figure 7C). Whether
the late activation of complement system is due to the
effect of reperfusion after ischemia needs further investi-
gation. The complement system can be activated by
three different but overlapping classical, lectin and alter-
native routes [74].

Representative genes in the complement activation
system were deregulated following clip injury to spinal
cord. For example, the transcript level of the main acti-
vator of the classical pathway of complement activation
(C1S) is down-regulated one day after injury. However,
it returns to normal values by day 3 and is further up-
regulated by day 7 remaining at higher than normal
levels even at day 56 post-injury (data not shown). C1S
catalyzes the consecutive conversion of C4 to C4a and
C4a to active C4b2a (C3 convertase), whose main func-
tion is to cleave parental C3 into C3a and C3b. As
shown the mRNA levels of Clga, Clgb, Clqc, Cfd and
Crll are increased relative to sham un-injured animals.
The transcript level of Factor H (CFH), a negative
regulator of the alternative pathway for complement
activation, is decreased after injury but fluctuates back
to higher than normal levels by day 7 post-injury. The
elevated level of CFH in our study is in agreement
with previous reports that complement inhibitor pro-
teins such as factor H were expressed at elevated
levels on neurons and oligodendrocytes after SCI in
rats [75,76].

Using inhibitor approaches, both classical and lectin
pathways of complement activation have been shown
to participate in SCI pathology [77-79]. C1q Knockout
mice showed improved recovery and thus the classical
complement activation via Clq is thought to be detri-
mental to the injured spinal cord [80]. Our data
show that the mRNA level of C1 inhibitor (C1-INH,
SERPINGL1), an inhibitor of the lectin pathway, is also
increased in a similar profile as observed in CFH
mRNA deregulation. C1-INH inhibits complement ac-
tivation through binding and inactivating MASP1 and
MASP2 [74]. Up-regulation of CI-INH has been
shown to be protective and independent of Clq and
the classical pathway [81].
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Ischemia, response to hypoxia and reactive oxygen
species

The decrease in the local blood-flow leads to ischemic-
hypoxic damage to the spinal cord tissue. Ischemia
generally leads to a decrease in cytoplasmic levels of
ATP, cellular swelling through malfunctioning of Na/K
ATPases and also the mitochondrial membrane perme-
ability transition [82]. Additionally, hypoxia induces cer-
tain transcription factors such as hypoxia inducible
factor 1 (Hif-1) heterodimer which is composed of
the inducible Hif-1a and the constitutive Hif-1b sub-
units [83,84]. The induction of Hif-1la is under the
control of NF-kB transcription factor which serves to
link hypoxia to innate immune response [85]. This is
reflected in an increase in the mRNA level for the genes
that function in response to hypoxia. We found that, fol-
lowing clip-compression injury to the spinal cord, the
transcript levels of Hif-1a were up-regulated. Negative
control of Hif-1 transcriptional activity is under the
control of EGLN3, a propyl hydroxylase that, in the
presence of oxygen molecule, permits ubiquitination
and proteosomal degradation of Hif-la monomer and
Hiflan, which blocks Hif-1 transcriptional activity by
preventing Hif-1 association with p300 [83-88]. In this
study we found that the transcript level of EGLN3 is de-
creased upon injury to the spinal cord. EGLN3 acts as
the cellular oxygen sensor and is the most important
enzyme in promoting Hif-1a degradation. This may
explain why its down-regulation causes a positive
regulation of the response to hypoxia. EGLN3 has
other functions such as NGF-induced proapoptotic
effect in neurons, probably through regulating CASP3
activity [89].

Hif-1a induction and activation under hypoxic condi-
tion induces NF-kB and its inhibitor at the same time
[83,86]. In this study, we found that NF-kB related
transcripts were all up-regulated. For example, the tran-
script levels of NFKB2 and of the inhibitors NFKBIA,
NFKBIE, NFKBIZ are all up-regulated during the first
week after injury (data not shown). Another complica-
tion of disruption of blood supply is the phenomenon
of ischemia/reperfusion injury causing necrotic injury
to oligodendrocytes, neurons, astrocytes, and endothe-
lial cells in the epicenter [90,91]. This involves many
events such as hypoxia, reactive oxygen species (ROS)
and lipid peroxidation, cytokines, complement activa-
tion, and pro- and anti-apoptotic signaling cascades
[91-93]. The ischemia/reperfusion injury is mainly
under the regulation of the NF-kB signaling cascade
and NF-kB transcription and its signaling cascade
are, in turn, responsible for positive regulation of
many immune-related responses, anti-apoptotic and
equally important but opposing and controversial pro-
apoptotic pathways [94].
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Induced innate-immune response and Toll-like receptor
signaling: a biphasic process

The inflammatory response to injury is initiated within
minutes after SCI [95]. Our enrichment analysis scored
inflammation as the most significant process starting
immediately after injury and transcription activation
of many immune-related genes. Many cytokines and
chemokines are produced and secreted by various cells
in the spinal cord tissue. It has been shown that IL-1B is
produced immediately by astrocytes and neurons
[95,96]. Similar to other studies, our data indicates an
up-regulation of IL-1B and TNF-alpha after injury. Most
notably, we observed that the inflammatory response,
in general, and specifically the cytokines’” expression pat-
tern follow profile 44 (Figure 3F). Profile 44 represents
the change in transcript levels of many genes with the
first wave of up-regulation on day 1. The early up-
regulation then disappears on day 3 and comes back to
high levels for many transcripts from day 7 onwards.
Such a phenomenon has been reported previously in
mice with a contusion injury [95], although the cessation
of primary up-regulation occurred after 24 hours and
returned to an increased state on day 14 post-injury. In
line with this observation, a biphasic model of cellular
inflammatory response has been shown when various
immune cells were analyzed using flow cytometry after
SCI [97]. Various categories of processes are depicted in
Figure 7A-P, which confirm such studies. Accordingly,
we can extrapolate our findings and assume the same
mechanism of expression or secretion for transcripts
with the same profile of expression. This biphasic mode
of expression was observed in other enriched GO bio-
logical processes such as activation of innate immune
response, response to lipopolysaccharide, response to
interferon-gamma, tumor necrosis factor superfamily, cyto-
kine production, interleukin-6 production, interleukin-8
production, cytokine secretion, neutrophil chemotaxis,
endocytosis and phagocytosis Toll-like receptor signaling
pathways, integrin-mediated signaling pathway, T and B cell
activation, and immunoglobulin-mediated immune re-
sponse. The simplest explanation for this observed biphasic
response is that the first wave of transcription activation
of these genes originates primarily from neurons, as-
trocytes and microglia cells within the injured area of
spinal cord, which subside by day 3. By day 7, post-
injury immune cells such as neutrophils, macrophages,
T and B lymphocytes have infiltrated the injured cord
and amplify the production and secretion of related
cytokines and chemokines as the secondary response
tends to be at a higher magnitude.

The synthesis of IL-1B in neurons was shown to be
dependent on NALP1 inflammasome [96]. In astrocytes,
however, overexpression of inflammatory cytokines such
as CCL2, CCL3, CXCL1 and CXCL2 is triggered by the
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IL-1 receptor and not the Toll-like receptor signaling
proteins TLR2 and TLR4. Our data indicate that the
mRNA levels of IL-1B, IL-1R2 and its accessory protein
IL-1RAP, were up-regulated especially on day 3. Central
proteins in the Toll-like receptor signaling such as
TLR2, TLR4 and MYD88 were all up-regulated, the ex-
pression pattern of which follow profile 44. It has been
shown that for neutrophils to enter the damaged zone
in the spinal cord, the expression of IL-1R and MYD88
are essential [98]. Additionally, the cellular extravasa-
tion of neutrophils and other leukocytes into the in-
jured area of spinal cord also requires up-regulation of
matrix metalloproteinases (MMPs) [99,100]. MMPs up-
regulations are, in turn, dependent on the interaction
of Fas and its ligand and on the peripheral myeloid cells
and activation of Syk kinase to trigger recruitment to
the injury sites [101,102]. In our injury model, we ob-
served an increase in the mRNA levels of MMP2,
MMP9 and MMP12. We did not observe an increase in
transcript levels of Fas or its ligand, but the Sky mRNA
was up-regulated on day 1 and afterwards up to 8 weeks
post-injury.

Toll-like receptor signaling is initiated after pattern
recognition receptors (PRRs) detect pathogen-associated
molecular patterns (PAMPs) or danger-associated mo-
lecular patterns (DAMPs), which are endogenously gen-
erated from tissue and cellular damage. It is now
thought that for induction of innate immune response,
two signals are required, the first from Toll-like recep-
tors (TLRs) and the second from Nod-like receptors
(NLRs). NLRs are responsible for processing of pro-
interleukin-1B to IL-1B and pro-IL-18 to IL-18 [103].
Following injury to the spinal cord, processing of pro-
IL-1B and pro-IL-18 into the mature form requires
NALP1, ASC (PYCARD), CASP11, and finally CASP1
action to cleave the pro- forms [96,98,104]. Activation
by endogenous signals in response to SCI seems to be
the mechanism of activation of inflammation after SCI.
We observed the up-regulation of the NOD1 component
early after SCI. We also found that, after clip-injury to
the spinal cord, PYCARD and CASP1 transcripts are
highly up-regulated until 8 weeks post-injury as well as
IL-1B and IL-18 transcripts. In addition, the expression
of purinergic receptor P2X, ligand-gated ion channel 4
(P2RX4), which has been shown to regulate the
inflammasome activation after spinal cord injury [105]
was persistently increased in our injury model.

Adaptive immune response and antibody production

Both IL-1 and IL-18, produced during the first phase of
inflammation mediated through the two-signal model of
TLRs and NLRs, can induce the cellular and humoral
modes of the adaptive immune response. IL-18 affects
natural killer (NK) cells, monocytes, dendritic cells, T
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cells, and B cells, thereby regulating not only the innate,
but also the adaptive immune responses [106]. Adminis-
tration of IL-18 promotes production of interferon-
gamma by natural killer (NK) as well as T cells. In our
study we observe a late interferon-gamma response,
which could be part of the second wave of cytokine pro-
duction by T cells. T cell migration and activation pre-
cede the response to interferon-gamma, but other
developing adaptive immune responses such as immu-
noglobulin-mediated immune response run in parallel to
the response to interferon-gamma, which may explain
the timing of the two processes (Figure 7).

It has been shown that autoantibodies are generated
and detected in patients with chronic SCI [107,108].
These detected antibodies can recognize a variety of re-
lated and unrelated antigens to CNS tissue. Mice defect-
ive in production of B cells, and thus antibody
production, exhibit reduced pathological symptoms and
improved locomotor recovery [109]. The activation of B
cells has been shown to be level dependent as T3 injury
completely abolished B cell response and T9 injury level
induces significant B cell activation and antibody pro-
duction [110]. It has been postulated that delayed anti-
body production and accumulation of autoantibodies
leads to complement activation through Clq, which trig-
gers the enzymatic cascade of the classic complement
activation pathway and recruitment of microglia and
macrophages to the site of injury [111]. Our data clearly
show that a delayed adaptive immune response is initi-
ated through immunoglobulin-mediated signaling and
that this response is consistently and increasingly up-
regulated towards the chronic phase in parallel to activa-
tion of the complement cascade (Figure 7C and 7N-P).
However, the initial events such as T cell migration, T
cell and B cell activation and proliferation starts very
early after the injury (Figure 7N-P). As shown, the B
cell-receptor signaling pathway seems to be a much
more significant process than T cell receptor signaling
(Figure 7N) which implies that, compared to the cellular
T-cell mediated immune response, B cell-mediated im-
munity and neutralizing antibody production is the
dominant immune response during the chronic phase of
the injury to the spinal cord (Figure 7).

Conclusions

Microarray expression profiling was used to investigate
the temporal changes in the transcriptome of the injured
spinal cord in rats. Using GO enrichment analysis we
show that it is possible to analyze the fold change in the
expression of thousands of genes and obtain the overall
picture of the processes involved. Thorough analysis of
the expression profiles detected, significant biological
processes and events such as response to hypoxia and
reactive oxygen species were identified as early events
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after the injury. We found that both induced innate and
adaptive immune responses are strongly and significantly
up-regulated, each with relevant sub-categories and
deregulated genes. The induced innate immune response
may be classified as an acute to subacute type of re-
sponse, whereas the adaptive immune response and anti-
body production can be categorized as a late response.
The biphasic expression pattern identified in many genes
related to immune-response implies that both resident
spinal cord cell types as well as infiltrating blood cells
may participate in cytokine and chemokine production
and general inflammatory response. Our approach in
analyzing the fold change in the mRNA levels of many
deregulated genes using microarray technology indicates
that with careful and systematic analysis of the data, it is
possible to reliably delineate the processes involved in
injury and recovery and to establish hypotheses for fur-
ther analysis and intervention strategies.

Methods

Animal care and thoracic spinal cord injury

All experimental protocols were approved by the animal
care committee of the University Health Network in ac-
cordance with the policies established in the guide to the
care and use of experimental animals prepared by the
Canadian Council of Animal Care. Female Wistar rats
(250 g; Charles River Laboratories, 4 sham and 4 injured
animals for each time point) were used for this study. In-
juries by the aneurysm clip method were performed as
previously described [20,29,45,112]. Briefly, under halo-
thane anesthesia (1-2%) and a 1:1 mixture of O2/N20,
the surgical area was shaved and disinfected with 70%
ethanol and betadine. A midline incision was made at
the thoracic area (T4-T9), and skin and superficial mus-
cles were retracted. Rats underwent a T6-T8 laminec-
tomy and then received a 35 g clip (Walsh) moderate to
severe compression injury at T7 for 1 min. The surgical
wounds were sutured, and the animals were given
Clavamox (Amoxicillin plus Clavulanic acid) for 7d and
standard postoperative analgesia treatments and saline
(0.9%; 5 ml) to prevent dehydration. Animals were
allowed to recover and remained housed under standard
condition for the duration of the experiment.

RNA isolation, processing and microarray hybridization

Rats were sacrificed at 1, 3, 7, 14 and 56 days after in-
jury, and a 5 mm sample of the spinal cord containing
the epicenter of the injured tissue was extracted for
RNA analysis. Total RNA from each individual sample
was extracted using TRIzol reagent (Invitrogen, Burling-
ton, ON, Canada). RNeasy mini spin columns (QIAGEN,
Mississauga, ON, Canada) were used for purification
of total RNA molecules larger than 200 bp, which ex-
cludes smaller RNAs such as miRNAs. RNA quality was
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assessed with a 2100 Bioanalyzer (Agilent). cRNA for
microarray hybridization was prepared from 5 ug of
starting RNA using the protocol supplied by Affymetrix
(Santa Clara, CA). cRNA was hybridized to GeneChip
Rat Genome 230 2.0 arrays (24 chips total) at the Centre
for Applied Genomics, The Hospital for Sick Children,
Toronto, Canada). Primary data sets were saved in a
MIAME-compliant format and uploaded to GEO (series
GSE45006).

Microarray data analysis

Data analysis was performed in R with the Affy package
(v1.12.2) [113] in BioConductor [114]. Data were investi-
gated for spatial and distributional homogeneity.
Normalization was performed with the sequence-specific
GCRMA algorithm (package v2.6.0) in BioConductor
[115]. Significance testing of this dataset was performed
using linear models and pair-wise comparisons [116].
Each set of animals from a given time point was ana-
lyzed and pre-processed separately. The pre-processed
data were then significance-tested using a linear model-
ling implemented in the limma package (v2.9.10) of
BioConductor. Each sub-group was fitted to a separate
factor in the design matrix, and the pair-wise contrast
corresponding to differential expression of injured ani-
mals relative to control (sham) animals was extracted
using a contrast matrix. Empirical Bayes moderation of
the standard error [117] and false-discovery rate correc-
tion for multiple testing [118] were employed, again as
implemented in the limma package. ProbeSets were
deemed differentially expressed at p < 0.001 in any given
comparison. Significantly different ProbeSets were visual-
ized using the Heatplus package (v1.4.0) of Bioconductor.
Euclidean distance was used as the distance metric for un-
supervised hierarchical clustering using the DIANA algo-
rithm with the cluster package (v1.11.4) in R (v2.4.1), and
scaling was performed across rows. Clustering was used as
a tool for replicate visualization and contrast comparison,
not for gene selection [119].

The resulting gene set data with fold change and associ-
ated ANOVA ¢ test p-values were analyzed by Short
Time-Series Expression Miner (STEM) (discussed below),
which allows the temporal expression patterns to be ex-
amined and extracted from the pool of up- and down-
regulated transcripts across all time-points. Alternatively,
individual time-point data were analyzed separately for
up- and down-regulated genes, protein classes and sig-
naling pathways. Both approaches were combined with
functional analysis of transcripts using gene ontology
(GO) enrichment.

Time-series expression profile clustering
We used the non-parametric clustering algorithm of
STEM (Short Time-series Expression Miner, version
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1.3.7) that is specifically designed to analyze short time-
series expression data [120]. STEM implements a novel
clustering method that can differentiate between real
and random patterns and clusters genes by assigning
them to a series of pre-defined patterns, named expres-
sion profiles. A profile is considered significant if the
number of genes assigned to it exceeds the number of
genes that are expected to occur by chance. The statis-
tical significance of the number of genes assigned to
each profile versus the expected number was computed
and corrected for false discovery rate at p <0.05.

GO enrichment analysis

STEM is a statistical technique based on unsupervised
clustering to find cluster-centroids followed by assign-
ment of genes using distance-classifications, with statis-
tical analysis using enrichment-based techniques. The
biological significance of a set of genes can be assessed
by GO enrichment analysis. Deregulated transcripts
with ANOVA ¢ test p-values <0.05 and fold change
values > 1.5 were analyzed by the GO enrichment ana-
lysis module of STEM. Temporal analysis of the list of
deregulated genes was performed using both time-series
and time-point approaches. Due to more comprehensive
gene coverage of RGD annotation data source file, the
enrichment analysis was performed with reference to the
RGD association file. For GO analysis of various expres-
sion profiles, we applied the annotations of “Biological
Process” (BP) domain and the minimum expression fold
change (in log, scale) was set to different values from
zero. Other parameters were set to different values as
follows: “minimum GO level” to different values from 3
to 20, “minimum number of genes” to 5, and “multiple
hypothesis correction method for actual size based en-
richment” to Bonferroni. STEM also offers to run the
GO enrichment analysis at different GO tree levels,
which allows limiting the results to more specific terms
in the directed acyclic graph (DAG) structure of the
gene ontology hierarchy. In this study, the time-point
GO enrichment analysis was also employed to discover
common up- and down-regulated biological processes
across the time-points as well as possible unique pro-
cesses to each time-point. The output GO terms were
used for inter-relationship analysis and visualization by
Venn diagram tool and or visualized as a scatter plot or
interactive graph using REViGO [40].

Additional file

Additional file 1: FigureS1. Time-Series Clustering of Microarray Gene
Set Data Using STEM. The expression data (fold change values = 1.5;

p <0.05; 1 missing value allowed) 1 were loaded onto STEM platform
and distinct temporal expression profiles were generated, which
differentiate between real and random patterns. Profiles are numbered
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from 0 to 49. Each box corresponds to a model expression profile.
Significant expression profiles are highlighted in color to represent a
statistically significant number of genes assigned as their p-values are
ordered from 0 to greater values up to 5.0E-3. The model profile is
colored black while the gene expression patterns for each gene within
the cluster are colored in red. Clusters with similar colors show similar
patterns. To all expression profiles a zero time point was added to serve
the control value (sham laminectomized animals). Genes are assigned to
the most closely matching profile by statistical analysis. Significant
expression profiles are highlighted in color. The X-axis represents days
after injury when sampling was performed and the Y-axis denotes fold-
increase or decrease in expression in log, scale. Every tick mark on the Y-
axis corresponds to one-log, change in expression relative to sham. The
filtering criterion was set to 1.5 fold (in log, scale).
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