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Abstract

Background: Mapping of DNase | hypersensitive sites (DHSs) is a powerful tool to experimentally identify cis-
regulatory elements (CREs). Among CREs, enhancers are abundant and predominantly act in driving cell-specific
gene expression. Krippel-like factors (KLFs) are a family of eukaryotic transcription factors. Several KLFs have been
demonstrated to play important roles in hematopoiesis. However, transcriptional regulation of KLFs via CREs,
particularly enhancers, in erythroid cells has been poorly understood.

Results: In this study, 23 erythroid-specific or putative erythroid-specific DHSs were identified by DNase-seq in the
genomic regions of 17 human KLFs, and their enhancer activities were evaluated using dual-luciferase reporter
(DLR) assay. Of the 23 erythroid-specific DHSs, the enhancer activities of 15 DHSs were comparable to that of the
classical enhancer HS2 in driving minimal promoter (minP). Fifteen DHSs, some overlapping those that increased

data-based bioinformatic and biochemical analyses.

minP activities, acted as enhancers when driving the corresponding KLF promoters (KLF-Ps) in erythroid cells;
of these, 10 DHSs were finally characterized as erythroid-specific KLF enhancers. These 10 erythroid-specific KLF
enhancers were further confirmed using chromatin immunoprecipitation coupled to sequencing (ChIP-seq)

Conclusion: Our present findings provide a feasible strategy to extensively identify gene- and cell-specific
enhancers from DHSs obtained by high-throughput sequencing, which will help reveal the transcriptional
regulation and biological functions of genes in some specific cells.
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Background

Biological processes such as proliferation, apoptosis, dif-
ferentiation, development, and aging require elaborately
orchestrated spatial and temporal gene expression,
which are often under the control of cis-regulatory ele-
ments (CREs). CREs, including promoters, enhancers, si-
lencers, insulators and locus control regions (LCRs) etc.,
are abundant in the human genome [1]. Characterization of
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CREs in the genome contributes to understand the com-
plexities of gene transcription and expression in different
biological systems [2,3]. In the past decade, the project
ENCyclopedia of DNA Elements (ENCODE) has facilitated
the prediction of functional elements including CREs in the
human genome [4]. However, CRE characterization in
terms of gene and cell specificities as well as chromatin
context dependency remains a huge challenge.
Nucleosome-depleted DNA regions, characterized by
their sensitivity to nuclease digestion, are closely associated
with almost all known classes of active CREs. In contrast,
DNA regions tightly wrapped in nucleosomes and higher-
order structures are more resistant to nuclease digestion.
Therefore, DNase I hypersensitive sites (DHSs) mark many
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types of CREs [2,5]. Individual DHSs within small regions
of the genome (10—20 kb) have been traditionally identified
using Southern blot analysis [6]. However, this labor-
intensive and low-throughput approach cannot be scaled to
study large chromosomal regions and entire genomes.
By hybridizing DNase I-digested fragments to tiled
microarrays, the DNase-chip assay provides an undirected,
unbiased, highly sensitive and specific strategy to simultan-
eously identify thousands of DHSs within any region of
interest or even the entire genome, with a resolution of
200-500 bases [7]. Furthermore, DNase-seq (identification
of DNase I-digested fragments by next-generation sequen-
cing) allows genome-wide mapping of DHSs with base-pair
resolution [2]. Using these high-throughput technologies,
DHS mapping is emerging as a powerful tool for locating
open chromatin regions that encompassing many types of
CREs within the genome [2,3,8] and thus it facilitates
the delineation of the roles of DHSs in regulating
tissue- and developmental stage-specific expression of
nearby genes [9,10].

Enhancers are the most variable CREs that can regu-
late the expression of genes from a long distance and in
a position- and orientation-independent manner [11]. In
general, it is accepted that enhancers function by first
recruiting sequence-specific transcription factors (TFs)
that recognize short DNA motifs within the enhancers.
Upon binding to enhancers, the sequence-specific TFs
recruit mediator complexes, histone modifiers and chro-
matin remodelers to activate the transcription of target
genes [12]. Enhancers often exist in a cell- and develop-
mental stage-specific manner [13], and the distribution
of cell-specific enhancers correlates well with cell-
specific gene expression [14], suggesting that they are
the primary force driving spatial- or temporal-specific
gene expression. To date, several lines of evidences have
demonstrated the roles of erythroid-specific enhancers
in driving erythroid-specific gene expression. LCR at the
[-globin locus is the most prominent erythroid enhancer
that exerts a strong effect specifically on erythroid cells.
This LCR enhances the developmental stage-specific ex-
pression of globin genes and the expression of linked
heterogeneous non-globin genes in erythroid cells by
interacting with respective promoters [15]. HS2, a clas-
sical enhancer located in LCR, appears to be functional
in erythroid cells at both embryonic and adult develop-
mental stages, suggesting its crucial roles in the activa-
tion of globin genes in erythroid cells throughout
ontogenesis [16]. Other erythroid-specific enhancers
have also been found in the genomic regions of GATA-
1, stem cell leukemia (SCL), L-type pyruvate kinase and
5-aminolevulinate synthase 2 (ALAS2) genes [17-20],
which may contribute to the restricted expression of
these genes in the erythroid lineage. A strikingly large
number of enhancers have been systematically identified
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in erythroid K562 cells using chromatin immunoprecipi-
tation followed by genome tiling array (ChIP-chip) ana-
lysis [14]. The characterization of these and other
erythroid or erythroid-specific enhancers in the human
genome will facilitate the understanding of regulation
and functions of associated genes in erythroid cells.

Kriippel-like factors (KLFs) are a subfamily of zinc-
finger proteins that contain three tandem Cys,His, zinc
fingers at the highly conserved carboxyl terminus. KLFs
are important components of the eukaryotic cellular
transcriptional machinery. By regulating the expression
of several genes driven by GC-rich or CACCC-
containing promoters, KLFs participate in many bio-
logical processes, including hematopoiesis, adipogenesis,
stem cell maintenance, and tumorigenesis [21]. In par-
ticular, several KLFs have been demonstrated to play
crucial roles in erythroid differentiation. Globin genes,
including o-, e-, y- and f-globin genes, are prominent
biomarkers in erythroid cells, and their spatial and tem-
poral expression is closely correlated with erythroid dif-
ferentiation and development [22]. KLF1 (EKLF), an
erythroid-specific TF, activates adult p-globin gene
expression [23] and regulates gene switching from y- to
B-globin [24] as well as definitive hematopoiesis.
Other KLFs mainly play significant roles in primitive
hematopoiesis. For example, KLF4 activates the expres-
sion of a- and y-globin genes [25,26]. Expression of
embryonic e- and fetal y-globin genes is stimulated by
KLF2 [27], KLF11 [28,29], and KLF13 [30] but is
suppressed by KLF3 [31] and KLF8 [32]. In addition,
KLF6 [33] and KLF17 [34] are required for primitive
hematopoiesis. Hematopoietic defects or anemia have
been observed in several Klf-knockout mice, including
mice lacing KIf1 [35], KIf2 [27], KIf3 [36], Kif6 [33], and
KiIf13 [37]. Interestingly, cross-regulation among KLFs
has been reported during erythropoiesis, erythroid
differentiation, and globin gene regulation [36,38,39].
However, till date, few studies have been conducted to
investigate the cis-transcriptional regulation of KLFs by
erythroid-specific enhancers, with the exception of
the study on murine KLF1 enhancers [40]. Therefore,
characterization of erythroid-specific enhancers will shed
light on molecular mechanisms that regulate transcription,
expression, and functions of KLFs in erythroid cells.

Here, we characterized gene- and cell-specific en-
hancers in the genomic regions of human KLFs exten-
sively by combining high-throughput sequencing data as
well as biochemical and bioinformatic analyses. Our
mRNA-seq data in human embryonic stem cells (HESC)
and three primary erythroid cell types demonstrated that
human KLFs, including KLF1, KLF3, KLF6, KLF9,
KLF10, KLF11, KLF13, and KLF16, were up-regulated in
erythroid cells as compared to HESC. We also mapped
DHSs in the genomic regions of 17 human KLFs across
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four erythroid and seven non-erythroid cell types and
screened out 23 erythroid-specific or putative erythroid-
specific DHSs. Using the dual-luciferase reporter (DLR)
assay, we identified 10 (43%) erythroid-specific enhancers
embedded in the genomic regions of KLF1, KLF6, KLF9,
and KLF13. The nature of these identified erythroid-
specific enhancers was confirmed by a series of bioinfor-
matic and biochemical analyses, contributing to understand
the mechanism by which KLFs are regulated in erythroid
cells. Our present findings provide a feasible strategy to
characterize cell- and gene-specific enhancers from DHSs
generated from high-throughput sequencing across various
cell types, and to facilitate the illustration of transcriptional
regulation and functions of genes in specific cell types.
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Results

Expression of some KLFs is up-regulated in erythroid cells
Expression patterns of KLFs were obtained from the
mRNA-seq dataset that was originally designed to explore
the dynamic transcriptomes during human erythroid differ-
entiation and development (Yang Y, Wang H, Chang KH,
Qu H, Zhang Z, Xiong Q, Qi H, Cui P, Lin Q, Ruan X, et
al: Transcriptome dynamics during human erythroid differ-
entiation and development, submitted). The following cell
types were examined: undifferentiated HESC, embryonic
stem cells-derived erythroid cells (ESER), fetal liver-derived
erythroid cells (FLER), and adult mobilized peripheral
blood CD34+ cells-derived erythroid cells (PBER). As
shown in Figure 1A, of the 17 KLFs examined, the
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three primary erythroid cells examined using quantitative real-time PCR.

Figure 1 Differential expression patterns of KLFs in HESC and primary erythroid cells. (A) Gene expression profile of KLF1-17 in undifferentiated
HESC and three primary erythroid cells (ESER, FLER, and PBER) examined using mRNA-seq analysis. Gene expression intensity was calculated by normalizing
the read counts to reads per kilobase of the exon model per million mapped reads (RPKM) according to the gene length and total mapped reads. KLF2
and KLF14 were not detected and thus were not shown in this figure, whereas KLF10a and 10b represented two KLF10 isoforms. (B) Gene expression
profile of KLF1, 3, 6,9, 10, 11, 13, and 16 in undifferentiated HESC and three primary erythroid cells examined using quantitative real-time PCR. Transcript
levels of KLFs were calculated in relation to that of 18S ribosomal RNA, and the expression levels of KLFs in ESER, FLER, and PBER were normalized to those
in HESC. The error bars above each column indicate standard error of the mean (SEM) between triplicates. The Y-axis breaks at 3. Asterisks indicate that the
differences between the levels of individual transcripts in erythroid cells (with Y values ranging from 1 to 3) and those in HESC were statistically significant
by independent-samples t-test, ***p < 0.001, **p < 0.005. (C) Gene expression profile of KLF2, 4, 5,7, 8,12, 14, 15, and 17 in undifferentiated HESC and
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expressions of KLF2 and KLF14 were not detected, whereas
KLF17 was poorly expressed in ESER. The expressions of
KLF4, KLF5, KLF7, KLF8, KLF12, and KLF15 in HESC
were higher than those in erythroid cells, whereas those of
the remaining eight KLFs were higher in erythroid cells
than in HESC. The expressions of all the 17 KLFs were fur-
ther evaluated using quantitative real-time PCR. With the
exception of KLF2 and KLF15, the expression patterns of
the remaining 15 KLFs measured by PCR correlated well
with mRNA-seq results (Figure 1B, C). The cause of the in-
consistency in KLF2 and KLF15 measurement is currently
not clear but it could be platform related. Nevertheless, we
proposed that the higher expressions of the eight KLFs
detected by both two platforms may be attributed to the
presence of erythroid-specific enhancers.

DHSs in KLF genomic regions are distributed diversely in
various cell types

The DNase-seq dataset used in this study was generated
by the University of Washington [41]. The dataset is
composed of DNase-seq data in four erythroid cell types,
including three primary erythroid cells (ESER, FLER,
and PBER) and erythroleukemia K562 cells, to cover all
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the possible DHSs in the erythroid lineage and seven
non-erythroid cell types, including HESC, GM12878,
hTH2, HeLa, HepG2, CACO2, and BJ, to differentiate
erythroid-specific DHSs from non-erythroid ones. A
false discovery rate (FDR) threshold of 0.5% was used to
define DHSs in each cell type. DHS mapping was pro-
filed for all the KLF gene loci from 70 kb upstream of
the transcription start sites (TSSs) to 20 kb downstream
of the poly (A) sites. The current coverage of gene loci
was determined based on the following reasons: First,
the regions covering approximately 100 kb encompassed
almost all intensive DHSs around the corresponding
KLFs in the four cell types studied (Figure 2, Additional
file 1: Figures S1 and S2). Second, CTCF binding is
reported to mark boundary elements between neighbor-
ing genes [42]. These approximate 100-kb regions con-
tain such ubiquitous CTCF-binding sites in the various
cell types employed in the present study (data from
UCSC Browser). The diverse distribution patterns of
KLF DHSs among the various established cell types and
HESC were shown in Figure 2, Additional file 1: Figures
S1 and S2, coinciding with the varying expression levels
of KLF genes in these cell types. DHSs were considered
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Figure 2 Distribution of DHSs in the genomic regions of KLF1 and KLF9 genes. Chromatin profiles for KLF1 (A) and KLF9 (B) are shown to
illustrate the distribution of DHSs in the genomic regions of KLF genes in four erythroid (in color) and seven non-erythroid (in black) cell lines.
Erythroid-specific or putative erythroid-specific DHSs were named with Roman numbers. Erythroid-specific DHSs, which were present only in
human erythroid cells, were indicated by arrows and columns in green. Putative erythroid-specific DHSs, which were also present in non-
erythroid cell types but at lower intensities, were indicated by arrows and columns in blue. Therefore, KLF1-1, II, Ill, and IV (A) were considered as
erythroid-specific DHSs, of which KLF1-I was located in the intron region of the RAD23A gene within the defined genomic region, and KLF1-V was
a putative erythroid-specific DHS because of its presence in Hela cells. Similarly, upstream KLF9-I and intronic KLF9-Il were considered as putative
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to be erythroid specific if they were only present in
erythroid cells and were classified as putative erythroid
specific if they were present in erythroid cells, while
much subdued peaks were also detected in one or two
non-erythroid cell types.

Figure 2A illustrated the DHS profiling of KLF1. Five
prominent DHSs were detected in the KLF1 genomic re-
gion; of these KLF1-I was located at > 60 kb upstream of
the KLF1 gene and was only present in three primary
erythroid cells, whereas KLF1-II, III, IV, and V were lo-
cated proximal to the KLFI gene and were present in
both primary erythroid cells and erythroleukemia K562
cells. KLF1-V was a putative erythroid-specific site
because a small peak for this site was also present in
non-erythroid HeLa cells. The diverse cellular presenta-
tion of DHSs was also observed in the profile of KLF9
(Figure 2B), with two putative erythroid-specific DHSs—
KLF9-I and KLF9-II—located 70 kb upstream or in the
intron of the gene respectively.

Other erythroid-specific or putative erythroid-specific
sites in the KLF profiles are shown in Additional file 1:
Figure S1. Erythroid-specific DHSs include DHS-I
of KLF2 (Additional file 1: Figure S1A), DHS-I and II of
KLF3 (Additional file 1: Figure S1B), DHS-III and IV of
KLF6 (Additional file 1: Figure S1C), DHS-I of KLF10
(Additional file 1: Figure S1D), DHS-I and II of KLFI13
(Additional file 1: Figure S1F), DHS-II of KLF16 (Add-
itional file 1: Figure S1G), and DHS-I of KLF17 (Add-
itional file 1: Figure S1H). In addition, DHS-III of KLF3
(Additional file 1: Figure S1B), DHS-I and II of KLF6
(Additional file 1: Figure S1C), DHS-I of KLF11 (Add-
itional file 1: Figure S1E), DHS-III of KLF13 (Additional
file 1: Figure S1F), and DHS-I of KLFI16 (Additional
file 1: Figure S1G) were identified as putative erythroid-
specific DHSs. The features of all the 23 erythroid-
specific or putative erythroid-specific DHSs located in
the KLF gene loci are summarized in Additional file 2:
Table S1. DHS profiles of KLFs without erythroid-
specific or putative erythroid-specific DHSs are shown
in Additional file 1: Figure S2. It is also of interest to
note that while KLF4 has been employed as a major re-
programming factor required to reverse the highly differ-
entiated somatic cells into pluripotent cells [43], its
expression in HESC was lower than that of many other
KLFs, consistent with ENCODE/Caltech RNA-seq data
available on UCSC Browser. As shown in Additional file
1: Figure S2A, weak peaks of DHSs (in HESC, ESER,
FLER, and PBER) were found to be dispersed in the
KLF4 locus, which could account for its relatively lower
expression than that of the other family members in the
present and previous studies [44] and its dispensable
role for the self-renewal and pluripotency of ES cells
[43,45]. In particular, DHS peaks in the KLF4 promoter
region tend to decrease during erythroid differentiation,
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which may explain the down-regulation of KLF4 expres-
sion in erythroid cells compared with that in HESC
(Figure 1).

Among the 23 prominent erythroid-specific or puta-
tive erythroid-specific DHSs, 18 (78%) were located
upstream of TSSs or downstream of poly (A) sites of
the KLF genes. Only four (17%) DHSs were proximal
(< 2 kb) to TSSs, whereas 15 (65%) were distal (> 10 kb)
to TSSs (Additional file 1: Figure S3A). Our data on the
identified erythroid-specific DHSs are comparable to
those of a previous DNase-chip report on the distribu-
tion of cell type-specific DHSs within 1% of the human
genome from six diverse cell types [3]. In contrast, with
the exception of the erythroid-specific DHSs in the
KLF2 and KLFI17 regions (Additional file 1: Figure S1A,
H), most erythroid-specific or putative erythroid-specific
DHSs were present in the eight KLF genes that were
up-regulated in erythroid cells (Figure 1, Figure 2,
Additional file 1: Figure S1B-G). Moreover, erythroid-
specific or putative erythroid-specific DHSs were absent
in the genomic regions of several KLF genes (Additional
file 1: Figure S2), which did not have increased expres-
sion in erythroid cells (Figure 1), implying that these
KLFs may not function in erythroid cells or that they
were not activated by erythroid-specific enhancers.

Approximately 65% erythroid-specific or putative
erythroid-specific DHSs are enhancers

Cell type-specific DHSs have been reported to act as en-
hancers [3]. To identify which erythroid-specific DHSs
can serve as enhancers, DLR assay was performed to
evaluate the enhancer activity of 23 DHSs in driving
TATA box-containing minimal promoter (minP) [46].
K562 cells are immature erythroid cells widely used in
studies of erythroid differentiation or other functions of
the erythroid lineage; K562 is also one of the tier 1 cell
types used in the ENCODE project with massive data
available for subsequent analyses. Therefore, we selected
the K562 cells to identify erythroid-specific enhancers
in vitro. We found that enhancer HS2 in human pB-
globin LCR strongly activated minP in erythroid K562
cells (Figure 3). Therefore, HS2 was chosen as the posi-
tive control for enhancer activity evaluation in this assay
as previous reports did [15,16,47]. HS2 activated minP
by approximately 5 fold in this study. Therefore, we
defined DHSs that could activate minP by 5 fold, which
was 2.32 after log, transformation as presented in
Figure 3, or higher as enhancers. We found that 15
(65%) erythroid-specific or putative erythroid-specific
DHSs had enhancer activity, with the activity of some
being much stronger than that of HS2 (Figure 3),
suggesting that minP was sensitive enough and sufficient
for evaluating enhancer activity. Eleven (73%) of the 15
enhancers were located in the intergenic regions and
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Figure 3 Enhancer identification in K562 cells using the DLR assay with minP. (A) The constructs used in the reporter assay system are
depicted. The pGL4.23 vector containing one minP was set as a negative control. The pGL4.23 construct with enhancer HS2 was set as a positive
control. pGL4.23 constructs with DHSs of interest in the place of HS2 were used to evaluate the enhancer activities of DHSs. (B) Enhancer
activities evaluation of 23 erythroid-specific or putative erythroid-specific DHSs in K562 cells. Each construct was transfected in triplicate at a time
and transfections were repeated at least twice. For each construct, the firefly luciferase activity was normalized to that of Renilla luciferase. The
relative luciferase activity was shown in log, scale, with that of minP set to 0. Standard deviations were shown as error bars above each column.
DHSs with 5-fold or higher activities than that of minP were defined as enhancers.

four (27%) were in the introns of KLF genes (Additional
file 1: Figure S3B). The higher frequency of enhancers in
the intergenic regions is consistent with previous reports
concerning enhancer distribution [3,48] and could also
be explained by the fact that 83% DHSs were located
beyond the proximal regions (>2 kb) in this study
(Additional file 1: Figure S3A). The statistical analysis
for enhancer distribution (Additional file 1: Figure S3B)
indicated that enhancers tend to be distal [3]. Taken
together, the present findings demonstrated that ap-
proximately two thirds of erythroid-specific or putative
erythroid-specific DHSs were enhancers. Indeed, the
majority of the DHSs were found to possess enhancer
functions, supporting our original hypothesis that the
high-throughput mRNA-seq and DHS mapping together
provided a powerful mean for the identification of po-
tential enhancers in the genome.

More than half of erythroid-specific or putative erythroid-
specific DHSs activate KLF promoters in erythroid cells

In different cells, enhancers activate gene expression by
interacting with corresponding promoters. Therefore, we
evaluated the enhancer activities of all the 23 DHSs in
driving their respective KLE-Ps (Additional file 2: Table
S2) in K562 cells. In total, 10 KLF-Ps were cloned and
their activities were examined using the DLR assay
(Additional file 2: Table S3). HS2 only activated some
KLEF-Ps in K562, HeLa, and HEK293 cells, and thus was
used as a positive reference in this assay (Figures 4 and
5). DHSs that significantly (p < 0.01) increased the

activities of corresponding KLF-Ps were considered as
enhancers. Of the 23 DHSs, 15 (65%) displayed enhancer
activities with respective KLF-Ps (Figure 4 and Table 1)
in K562 cells. Importantly, some DHSs exhibited pro-
moter specificity; for example, DHSs such as KLF6-I,
KLF10-I, KLF13-1I, and KLF16-I were strong enhancers
on minP, but failed to activate their own promoters. In
contrast, KLF3-I, KLF6-1I, KLF6-III, and KLF13-III dem-
onstrated strong enhancer activities with KLF3, KLF6 or
KLF13 promoters, but not with minP, indicating that
KLF3-1, KLF6-II, KLF6-1II, and KLF13-III are gene-specific
enhancers, and that their enhancer activities are independ-
ent of the TATA box [49] (Table 1). The distribution of
erythroid KLF enhancers is shown in Additional file 1:
Figure S3C.

Approximately > 67% KLF enhancers are erythroid
specific

To further investigate the erythroid specificity of KLF
enhancers, we transiently transfected constructs with
KLF-Ps into non-erythroid HeLa and HEK293 cells.
DHSs that activated KLF-Ps in K562 cells but not in
HeLa and HEK293 cells were considered as erythroid-
specific KLF enhancers. DLR assay (Figure 5) revealed
that 10 enhancers located in the genomic regions of
KLF1-1I, III, IV, and V; KLF6-II, III, and IV; KLF9-1 and
II; and KLF13-III were erythroid specific. Coincidentally,
the mouse homologue of KLF1-II has been previously
identified as an erythroid-specific enhancer [40]. These
results provide strong evidence that the erythroid
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specificity of DHSs determines the erythroid specificity
of enhancers. The distribution of these erythroid-specific
KLF enhancers is shown in Additional file 1: Figure S3D.

The nature of erythroid-specific KLF enhancers was
validated by bioinformatic analyses

In general, enhancers are characterized by species con-
servation [10], characteristic H3K4mel and H3K27ac
enrichment [14], chromatin accessibility [DNase I hyper-
sensitivity, Formaldehyde-Assisted Isolation of Regula-
tory Elements (FAIRE) sensitivity] [2,8,50], and binding
capacity of TFs and coactivators [14]. According to the
UCSC Genome Browser, of the 10 erythroid-specific
KLF enhancers identified in this study, only five were
conserved in placental mammals [51], whereas all the

10 enhancers were enriched with H3K4mel and/or
H3K27ac modifications [52], seven of which were eryth-
roid specific, and six were occupied by erythroid-specific
TFs GATA-1 and/or NF-E2 in erythroid K562 cells [53]
(Table 1), further supporting their proposed roles as
erythroid-specific enhancers.

The Txn Factor ChIP track synthesizes all the available
ENCODE ChIP-seq data in different cell types; these
data were used to build a full view of TF-binding sites
(TFBSs) on the 23 DHSs. The signal strength of TF oc-
cupancy was quantified as a cluster score ranging from 0
to 1000. Because most (> 90%) TFBSs on the 23 DHSs
occurred in K562 cells, we drew a heat map of cluster
scores for this erythroid cell type after K-means cluster-
ing. As shown in Figure 6A, class II clustered four non
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analysis were performed as described in Figure 4.

Figure 5 Enhancer identification in non-erythroid HeLa and HEK293 cells using the DLR assay with KLF-Ps. (A-J) Enhancer identification
of 23 DHSs in Hela (blank bar) and HEK293 (black bar) cells. The constructs used were the same as those shown in Figure 4A. DLR assay and data

enhancers (3-II, 16-1I, 1-I, and 13-I), four minP-driving
enhancers (16-I, 6-I, 10-I, and 13-II), three KLF P-
driving enhancers (13-1II, 6-1I, and 3-I), and two minP-
and KLF-P-dual driving enhancers (6-IV and 3-III).
These 13 DHSs were bound by fewer TFs than the 10
DHSs in class I and III, which could account for their
impaired or deficient enhancer activity in K562 cells. Of
the remaining 10 DHSs, with the exception of 6-1II, all
were enhancers on both promoters in K562 cells because
of the binding of multiple TFs. Furthermore, 11-1, 17-1,
and 2-1 were strong enhancers in K562 cells but were
not erythroid specific because of the strong binding
of TFs in other cell types. The remaining seven DHSs
were erythroid-specific KLF enhancers. As shown in the
vertical axis, TFs clustered to different classes: class I
clustered several erythroid differentiation-related TFs

(GATA-1, TAL1, and GATA-2) [22], and class II
clustered enhancer-related factors (BATF, c-Fos, JunD,
MEF2A, p300, PU.1, NFKB, STAT1, and SP1), histone
modifiers and chromatin remodelers [HDAC2, p300,
SETDBI, SIRT6, SWI/SNF components (Brgl and Inil),
HMGNS3, and Inil] [12]. The features of TFs mentioned
above were obtained from the NCBI Reference Sequence
(RefSeq) database (http://www.ncbi.nlm.nih.gov/refseq/).
In summary, in the open chromatin state, binding of TFs
largely determines the enhancer activity of DHSs.

The ChIP-seq data of the UCSC Genome Browser did
not cover all the TFBSs on the genome. Therefore, we
performed de-novo motif analysis using the Multiple
Em for Motif Elicitation (MEME) online software and
annotated these motifs based on ENCODE-motifs by
using TOMTOM [54]. ENCODE-motifs database covers
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Table 1 Characteristics of erythroid-specific or putative erythroid-specific DHSs of ten human KLF genes

KLF DHS Cs FAIRE H3K4me1 H3K27ac GATA-1 NF-E2 minP KLF-P
K562 K562 K562 Hela HEK293
KLF1 I Y Y
Il Y Y Y Y* Y Y Y
Il Y Y Y* Y Y Y
v Y Y Y* Y Y Y
\% Y Y Y* Y Y Y
KLF2 | Y Y Y Y Y Y Y Y
KLF3 I Y Y Y Y* Y Y Y
Il Y Y Y Y* Y
Il Y Y Y Y Y Y
KLF6 I Y Y Y Y
Il Y Y
Il Y Y Y* Y
v Y Y* Y Y
KLF9 I Y Y Y* Y Y Y
Il Y Y Y
KLF10 | & Y
KLF11 I Y Y Y Y* Y Y Y
KLF13 | Y
Il Y Y
Il Y Y
KLF16 | Y Y Y* Y
Il Y Y Y Y
KLF17 I Y Y Y Y* Y Y Y

DHS conservation (Cs) was observed across 32 placental mammals, including humans, chimps, mice, and rabbits. The chromatin accessibility using FAIRE,
enhancer-associated histone modifications (H3K4me1 and H3K27ac), and TFBSs for erythroid GATA-1 and NF-E2 on DHSs in erythroid K562 cells were extracted
from UCSC Genome Browser. The enhancers characterized from the erythroid-specific or putative erythroid-specific DHSs were summarized in the last four
columns. Y: yes. *: this histone modification is K562 specific or putative K562 specific.

all known motifs for each factor curated from
TRANSFAC, Jaspar and Protein Binding Microarray
(PBM) experiments and their enrichment within corre-
sponding TF-binding experiments, as well as novel
regulatory motifs discovered by systematic application of
several motif discovery tools (including MEME, MDscan,
Weeder, AlignACE) and evaluated based on their enrich-
ment relative to control motifs within TF-bound regions
(Kheradpour P, Kellis M: ENCODE-motifs: systematic
analysis of regulatory motifs associated with transcription
factor binding in the human genome, submitted). The con-
served motifs among erythroid-specific KLF enhancers are
shown in Figure 6B (E-value: 54 x 10™*) and Figure 6C
(E-value: 2.6 x 10%); the p-values of their occurrence in
DHSs were 1.03 x 10™"'~1.78 x 107, and 4.91 x 107~
3.14 x 107, respectively. Motif 1 (Figure 6B) could be
the binding sites of histone modifier HDAC2 and
enhancer-related TF foxa [55], and motif 2 (Figure 6C)
could be the motifs of enhancer-related TFs SPI,
FoxA2, PU.1 [12], and so on. The annotated motifs of

HDAC2, SP1, STAT, and PU.1 were consistent with the
TEBSs in cluster II of the heat map (Figure 6A).

Erythroid-specificity of KLF enhancers is validated using
the biochemical electrophoresis mobility shift assay
Because the discovered motifs were mainly enhancer re-
lated, we performed the electrophoresis mobility shift
assay (EMSA) to verify the erythroid specificity of
erythroid-specific KLF enhancers. KLF9-I1 was selected
as an example. Data from the UCSC Genome Browser
indicate that sequence conservation of KLF9-I was ob-
served in neither vertebrates nor placental mammals,
but it was decorated with H3K4mel and H3K27ac en-
hancer marks (Table 1) and harbored binding sites of
erythroid-specific GATA-1 in erythroid K562 cells
(Figure 7A). Because individual TFBSs can be relatively
short and degenerate, they tend to be clustered to
achieve precise temporal and developmental stage speci-
ficities [56]. Factors bound to these sequences often
interact with common coactivators, which, in turn,
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recruit the basal transcription machinery [57,58]. We
used EMSA to further investigate whether erythroid-
specific TFs or cofactor complexes bind to KLF9-I
in vitro. Putative TFBSs in KLF9-I were annotated using
the Txn Factor ChIP track and ENCODE-motifs on
UCSC Genome Browser (Figure 7A). Sequence analysis
indicated that the motif of enhancer-related protein
p300 [3,14,59] was embedded in KLF9-I (Figure 7A),
which may account for the enhancer nature of KLF9-I,

whereas the motif of GATA-1 may account for the
erythroid specificity of KLF9-I. A pair of oligos
(shadowed in Figure 7A) against KLF9-1 were designed
using the bioinformatic analysis. The EMSA result
(Figure 7B) demonstrated that at least one protein com-
plex in erythroid K562 cell extracts (band IV) specifically
bound to the oligos, whereas no such binding was ob-
served in non-erythroid HeLa and HEK293 cell extracts,
implying that an erythroid-specific TF or cofactor
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Figure 7 Biochemical analysis of erythroid-specific KLF enhancers. (A) Potential TFBSs on KLF9-I. TF occupancies on the erythroid-specific
KLF enhancer KLF9-I were annotated using Txn Factor ChIP track and ENCODE-motifs on the UCSC Genome Browser. (B) Result of EMSA analysis.
Biotin-labeled oligos were incubated with nuclear protein extracts of K562, Hela, or HEK293 cells in the presence or absence of unlabeled
competing oligos. Shifted bands are indicated by arrowheads on the left. Band IV (red) was found to be erythroid specific and was only detected
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complex bound to KLF9-I enhancer and drives KLF9 ex-
pression in erythroid cells. The other four universal
bands suggested that KLF9-I may exert some universal
functions in other cell types through recruitment of
some basic transcriptional regulatory protein complexes.
However, KLF9 has not been shown to function in eryth-
roid cells. The detailed mechanisms by which KLF9-I
mediates transcriptional regulation of KLF9 in erythroid
cells need further investigation.

Discussion
Mapping regulatory elements to the genes they regulate
is of great importance to understand gene expression
and functions. In this study, we provide a feasible strat-
egy to extensively identify gene- and cell-specific en-
hancers from DHSs based on a rigorous and practical
high-throughput sequencing technique (Figure 8). First,
we refined the expression patterns of human KLFs from
mRNA-seq data and proposed that the higher expression
of eight KLFs in erythroid cells may be ascribed to the
presence of erythroid-specific enhancers. Second, we
screened erythroid-specific DHSs in the genomic regions
of 17 human KLFs from DNase-seq dataset from four
erythroid cell types and seven non-erythroid cell types,
which largely improved the accuracy of prediction.
Third, we extensively evaluated enhancer activities of all
the 23 erythroid-specific or putative erythroid-specific
DHSs using the DLR assay for promoter and cell-type
specificities. Lastly, we validated the enhancer nature
and erythroid specificity of erythroid-specific KLF en-
hancers through bioinformatic and biochemical analyses.
As the major contributors to cell- and developmental
stage-specific gene expression, enhancers have been exten-
sively predicted by many genome-wide approaches, includ-
ing sequences conservation-, motif-, and chromatin-based
computation methods [10,48,59]; ChIP-based analysis of
TF binding such as CBP/p300 [13] or histone modifications
(H3K4mel and H3K27ac) [14]; or DHSs and FAIRE map-
ping [3,50]. The application of these approaches indicates
that enhancers have unique properties that differentiate
them from other CREs. However, enhancers predicted by
these methods need to be validated further by using in vitro
transient reporter gene system or in vivo transgenic sys-
tems. It is unrealistic to characterize all cell- and gene-
specific enhancers within the whole human genome. In
addition, these methods can not simultaneously take into
account both cell and gene specificities of enhancers. In this
study, using the next-generation high-throughput sequen-
cing combined with multiple enhancer activity tests, we
comprehensively characterized the enhancers confined to
the genomic regions of a typical family of KLFs to explore
both cell and gene specificities. The expression data in
mRNA-seq may indicate the presence of enhancers, and
DNase-seq data suggest the location of these enhancers.
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DHS mapping has higher positive rate than in-silico predic-
tion methods and takes the advantage of unbiased property
over ChIP-based methods, which only predict a subset of
enhancers bound by one or several TFs and largely limited
by the quality of antibodies. Reporter assays have the ad-
vantages of saving labor and time over animal models. With
respect to the identification of erythroid-specific DHSs, we
used cell lines originated from inner cell mass (HESC),
ectoderm (HeLa), mesoderm (GM12878 and hTH2), and
endoderm (HepG2 and CACO?2) as control cell types for
erythroid-specific DHSs screening. However, it is possible
that certain erythroid-specific DHSs were excluded due to
the presentation of similar DHSs as a result of binding by a
different set of TFs in these non-erythroid cell lines. This
setback may be remedied by the employment of high-
resolution genome-wide in vivo footprinting [60]. More-
over, three primary erythroid cells were used for DHSs
screening, which increased the validity of erythroid-specific
DHSs. Although some subtle differences, but not specifi-
city, were observed among DHSs at different developmen-
tal stages of erythroid cells, the similarities are actually
unclear (Figure 2, Additional file 1: Figures S1 and S2).
K562 cells are actually suitable for identifying erythroid-
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specific enhancers. However, there appears to be a limita-
tion in characterizing the developmental stage specificity of
enhancers using this cell line because it is at an early stage
of erythroid differentiation. In the future, we wish to
analyze this using appropriate erythroid cell lines at differ-
ent developmental stages or animal models. In reporter as-
says, control cell lines HEK293 and HelLa are also
representatives of different germ layers, mesoderm and
ectoderm. Thus, the application of these non-erythroid
control cell lines guaranteed the reliable and unbiased iden-
tification of cell-specific enhancers using our system. Beside
cell-type specificity, we also explored gene specificity of en-
hancers, which is of great importance in gene expression
and remains a challenge in this field. Furthermore, we vali-
dated the credibility of the identified erythroid-specific KLF
enhancers through integrated bioinformatic and biochem-
ical approaches to determine sequence conservation, TF
binding, and histone modification markers. Identification of
erythroid-specific KLF enhancers will facilitate the under-
standing of transcription, expression, and associated func-
tions of KLF genes in erythroid cells and provide useful
information to estimate the frequency of DHSs as gene-
and cell-specific enhancers within the whole genome. With
proper selection of cell types used as controls for DHS
mapping and also employed for reporter assays, the ap-
proach described in this study should be applicable to a
wide range of cells and genes of interest.

For example, a family of KLF members was selected to
determine whether enhancers located in the genomic re-
gions of KLFs were associated with their expression in
erythroid cells. Here, we compared the expression of
KLF mRNA transcripts in erythroid cells (ESER, FLER,
and PBER) with those in non-erythroid cells (HESC)
using mRNA-seq analysis. The present results reveal that
eight KLFs (KLF1, KLF3, KLF6, KLF9, KLF10, KLF11,
KLF13, and KLF16) show relatively higher expressions
in erythroid cells than those in non-erythroid cells
(Figure 1), which was proposed to be mainly determined
by the presence of erythroid-specific CREs, particularly
enhancers, embedded in DHSs of their genomic regions
(Figure 2, Additional file 1: Figure S1, Additional file 2:
Table S1). Ten erythroid-specific KLF enhancers were fi-
nally identified in the genomic regions of KLF1, KLF®6,
KLF9, and KLF13, indicating that these KLFs were
erythroid-specific enhancers-driven genes and harbored
potential biology in erythroid cells. However, despite
their high expression in erythroid cells, no erythroid-
specific enhancer was identified in the genomic regions
of KLF3, KLF10, KLF11, and KLF16. The enhancers in
the genomic regions of KLF3 and KLF11 were excluded
because they demonstrated enhancer activities in non-
erythroid cells as well (Figures 4 and 5, and Table 1). For
KLF10 or KLF16, although the identified erythroid-
specific or putative erythroid-specific DHSs in their
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genomic regions activated minP in K562 cells, no enhan-
cer activating KLF-Ps was characterized, reflecting that
DHSs identified in their genomic regions may work as
promoter-specific enhancers. This is understandable be-
cause neither KLF10 nor KLF16 have been reported to
be involved in erythroid differentiation and develop-
ment. However, the lack of erythroid-specific enhancers
in some KLFs with high erythroid expression may be
caused by the limitation and bias of our arbitrary cut-
offs of genomic regions. Some erythroid-specific KLF en-
hancers could exist beyond these confined regions (ap-
proximately 100 kb) or even on different chromosomes.
These missed enhancers can be found by combining our
system with the genome-wide chromosome conform-
ation capture (3C)-base technology in the future, which
may help in comprehensively understanding KLF tran-
scription in erythroid cells. DHSs in the genomic region
of KLF2 and KLFI17 did not appear to show erythroid-
specific enhancer activity, which may account for their
abolished expressions in erythroid cells during mRNA-
seq analysis (Figure 1A). In contrast, other KLFs (KLF4,
KLF5, KLF7, KLF8, KLF12, and KLF15) were relatively
highly expressed in non-erythroid cells (Figure 1), indi-
cating that they were probably not erythroid-specific
genes and that their genes expression could be driven by
non-erythroid specific or universal CREs (Additional file
1: Figure S2A-E, G). No erythroid-specific or putative
erythroid-specific DHSs were identified in the genomic
region of KLFI4 (Additional file 1: Figure S2F), which
could explain why its mRNA transcript could not be
detected in cell types examined in this study.

In this study we identified ten novel erythroid-specific
enhancers in the genomic regions of human KLFs
(KLF1, KLF6, KLF9, and KLF13), of which KLF1-II, a
homolog of murine EHS1, acted as an erythroid-specific
enhancer [40]. Identification of erythroid-specific KLF
enhancers may reveal novel mechanisms that regulate
the transcription and functions of these KLFs in eryth-
roid cells. Till date, KLF1, KLF6, and KLF13 have been
identified to be critical regulators in erythroid cells
[30,33,35,37]. KLF9 (BTEBL1) is a broadly expressed TF
with high expression in the developing brain, thymus,
epithelia, smooth muscle of gut and bladder, vertebrae,
and cartilage primordial and is implicated to play a role
in the regulation of cell proliferation and differentiation
[61]. KIf9~~ mice have a normal lifespan, but impaired
specific behavioral activities and decreased small
intestinal villi [62,63]. KIf9~'~ female mice show uterine
hypoplasia, reduced litter size, increased incidence of
neonatal deaths in offspring and defects in parturition
[64]. At present, the biology of KLF9 in erythroid cells
has not been reported; thus, the identification of
erythroid-specific KLF9 enhancers implies that KLF9
could be a novel KLF member that may play critical
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roles in erythroid cells. Future studies are warranted to
investigate the functions of KLF9 in hematopoiesis, and
the mechanisms by which the two identified erythroid-
specific KLF9 enhancers regulate KLF9 gene transcrip-
tion and expression in erythroid cells.

Conclusions

The primary goal of this study is to develop a method-
ology to characterize enhancers from massive data gen-
erated by high-throughput sequencing technology. Using
the high-throughput sequencing technique, we have pro-
vided a feasible and practical strategy to extensively
identify gene- and cell-specific enhancers from DHSs.
Application of our strategy led to the identification of
ten erythroid-specific enhancers in the typical KLF fam-
ily; their enhancer nature and erythroid specificity were
confirmed using bioinformatic and biochemical analyses.
Identification of erythroid-specific KLF enhancers indi-
cates the relatively high expressions and some important
functions of the corresponding KLFs in erythroid tissues.

Methods

Cell culture

K562, HeLa, and HEK293 cells were used for transient
transfection to examine the enhancer activities in the
DLR assay. K562 cells were cultured in RPMI1640
Medium (Gibco) with 10% fetal bovine serum (Hyclone)
and penicillin (100 U/ml)-streptomycin (0.1 mg/ml)
(Invitrogen), and HeLa and HEK293 cells were cultured
in Dulbecco’s Modified Eagle Medium (Gibco) with 10%
fetal bovine serum (Hyclone) and penicillin (100 U/ml)-
streptomycin (0.1 mg/ml) (Invitrogen). All cells were
maintained at 37 °C with 5% CO, in a humidified
incubator.

Transcriptome sequencing and gene expression analysis
mRNA-seq was originally designed to explore the dy-
namic transcriptomes during human erythroid differen-
tiation and development (Yang Y, Wang H, Chang KH,
Qu H, Zhang Z, Xiong Q, Qi H, Cui P, Lin Q, Ruan X,
et al: Transcriptome dynamics during human erythroid
differentiation and development, submitted). In Brief, we
extracted total RNA from HESC, ESER, FLER, and
PBER, and depleted 18S and 28S ribosomal RNAs before
constructing cDNA libraries. Next, we used the ABI
SOLID System to perform massively parallel ligation se-
quencing and mapped the sequence reads to human ref-
erence sequence [release Mar. 2006 (NCBI36/hgl8)].
Gene expression intensity was calculated by normalizing
the read counts to RPKM according to the gene length
and total mapped reads, and genes with RPKM < 0.01
were removed.
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Quantitative real-time PCR

Total RNA was extracted from HESC, ESER, FLER, and
PBER cells using TRIZOL® Reagent (Invitrogen, 15596—
018) and DNA contamination was removed using the
TURBO DNA-free™ Kit (Ambion, AM1907). DNA-free
RNA was reverse transcribed using the RevertAid First
Strand ¢cDNA Synthesis Kit (Thermo Scientific, K1622)
according to manufacturer’s instruction. Primers were
designed using Primer 5 (Additional file 2: Table S4).
PCR were performed in triplicate using Maxima® SYBR
Green/ROX qPCR Master Mixes (2x) (Fermentas,
K0223) and CFX96™ Real-Time PCR Detection System
(Bio-rad), and data were analyzed using the CFX
Manager™ Software. The KLF transcript levels were first
calculated by referring to those of 18S ribosomal RNA,
and the expression levels of KLFs in ESER, FLER, and
PBER were normalized to those in HESC. The statistical
significance of differences between individual KLFs’ ex-
pressions in erythroid cell types and those in HESC were
calculated using the independent-samples ¢-test.

Digital DNase | sequencing and erythroid-specific or
putative erythroid-specific DHS selection

In this study, the DNase-seq data used were obtained
from the University of Washington [41,60], and
are available through the UCSC Genome Browser
(http://genome.ucsc.edu) and the NCBI Gene Expres-
sion Omnibus (GEO) data repository under accessions
GSE29692 and GSE32970. DHSs were identified
using an algorithm developed by the University of
Washington [65]. In this study, FDR threshold of 0.5%
was used to define DHS for each cell type. The do-
mains of KLF loci were defined as extensions from
70 kb upstream of TSSs to 20 kb downstream of the
poly (A) sites. ESER, FLER, and PBER cells represent
primary erythroid cells at different developmental
stages, and K562 cells represent erythroleukemia cells.
In DHS screening, all other cell types were employed
as non-erythroid control cell types. DHSs in these do-
mains were considered to be erythroid specific if they
were only present in erythroid cells and were identified
as putative erythroid specific if they were present in
erythroid cells and exhibited much lower peaks in one
or two non-erythroid cell types.

DNA manipulation

To generate firefly luciferase reporter constructs with
minP, the identified 23 erythroid-specific or putative
erythroid-specific DHSs were amplified from human
blood genomic DNA with Pfu DNA Polymerase
(Promega, M7741) and inserted upstream of minP in
the pGL4.23 expression vector (Promega, E8411). To
further generate firefly luciferase reporter constructs
with KLF-Ps, TSSs of individual KLFs were predicted
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from UCSC Genome Browser, and fragments of
approximately 1 kb in length upstream of TSSs
(Additional file 2: Table S2) were amplified and cloned
into pGL4.10 vector, followed by inserting DHSs up-
stream of the corresponding KLF-Ps. The activities of
KLF-Ps were examined and used as baselines. HS2, a
classical enhancer in B-globin LCR, was cloned into
the corresponding vectors upstream of minP or KLF-
Ps and used as positive controls in the DLR assay [16].
The primers used in this study are listed in Additional
file 2: Tables S5 and S6. The integrity of the reporter
constructs was confirmed using restriction digestions
and sequencing.

Transient transfection and DLR assay

Cells were seeded into 48-well plates. K562 cells (1.5 x
10°/well) were transiently transfected with 500 ng of
firefly luciferase vector and 0.75 ng of a Renilla
luciferase vector, pRL-TK (Promega, E2441), using
Lipofectamine LTX and Plus Reagent (Invitrogen,
15338-100). HeLa (7 x 10%/well) and HEK293 (7 x
10*/well) cells were similarly transfected using the
Lipofectamine 2000 Transfection Reagent (Invitrogen,
11668-019) as per the manufacturer’s instructions.
Forty-eight hours after transfection, cells were harvested
to prepare for the cell lysates, and luciferase activities
were immediately measured with the Dual-Luciferase
Reporter Assay System (Promega, E1910) as per the
manufacturer’s instructions. Transient transfections were
repeated at least twice, and every construct was
transfected in triplicates. Standard deviations were
shown as error bars above respective columns. For data
processing, firefly luciferase activity was normalized to
that of Renilla luciferase in all the groups, and the rela-
tive activity of each promoter was normalized as 1. The
statistical significance of differences between promoters
and DHSs were analyzed using one-way ANOVA func-
tion in R language.

Bioinformatic analyses

Data of conserved elements in placental mammals [51],
layered H3K4mel and layered H3K27ac [52], and Txn
Factor ChIP data [53] in the regions of 23 DHSs were
obtained from UCSC Genome Browser and summarized
in Table 1.

TFs binding to the 23 DHSs were collected from Txn
Factor ChIP track on UCSC Genome Browser. A heat
map was drawn after K-means clustering using R
language.

Conserved motifs embedded in erythroid-specific KLF
enhancers were analyzed using the MEME software
(http://meme.ebi.edu.au/meme/cgi-bin/meme.cgi), and
these de novo discovered motifs were searched against the
ENCODE-motifs database (http://www.broadinstitute.
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org/~pouyak/motif-disc/human/) using TOMTOM
algorithm (http://meme.ebi.edu.au/meme/cgi-bin/tomtom.
cgi) [54].

EMSA

Bio-11-dUTP (Ambion, AM8450) and TdT (New England
Biolabs, M0315s) were used to label the 3'-OH of single-
stranded oligos (5'-AGC ATG AAG TAG GAG AGT GAT
GAT GAC AGT GCT GCT TTG CAC AGA TAA GCC
TGG CGG A-3', 5'-TCC GCC AGG CTT ATC TGT
GCA AAG CAG CAC TGT CAT CAT CAC TCT CCT
ACT TCA TGC T-3') and complementary oligos were
annealed as per the manufacturer’s instructions. Nuclear
proteins of K562, HeLa, and HEK293 cells were extracted
using the rapid micro-preparation method (lysis buffer:
10 mM Hepes [pH7.9], 10 mM KCl, 1.5 mM MgCl,
0.5 mM PMSE 0.5 mM DTT; high-salt extraction buffer:
20 mM Hepes [pH7.9], 25% glycerol, 0.42 M NaCl, 1.5 mM
MgCl,, 0.2 mM EDTA, 0.5 mM PMSE, 0.5 mM DTT) [66].
Protein concentrations were measured using the BCA Pro-
tein Assay Kit (Pierce, 23225). EMSA was performed in
20 pl reaction mixture, containing 30 fmol biotin-labeled
oligos and 7 pg nuclear extract with or without 7.2 pmol
unlabeled oligos using the LightShift Chemiluminescent
EMSA Kit (Pierce, 20148) according to the manufacturer’s
instruction (Figure 7B).

Availability of supporting data

DNase-seq data are available through the UCSC Gen-
ome Browser (http://genome.ucsc.edu/cgi-bin/hgFileUi?
db=hg19&g=wgEncodeUwDnase), or through the NCBI
Gene Expression Omnibus (GEO) data repository (ac-
cession numbers: GSE29692, GSE32970). The other data
sets supporting the results of this article are included
within the article and the additional files.

Additional files

Additional file 1: Figure S1. Chromatin profiles of KLF genes
containing erythroid-specific (arrow and column in green) or putative
erythroid-specific (arrow and column in blue) DHSs. KLF loci were
arbitrarily defined as extension from 70 kb upstream of the TSSs to 20 kb
downstream of the poly (A) sites. Erythroid-specific or putative erythroid-
specific DHSs were respectively marked with green and blue arrowheads
and named with Roman numbers. Figure S2. Chromatin profiles of KLF
genes without erythroid-specific or putative erythroid-specific DHSs.
Figure S3. Distribution statistics of the identified erythroid-specific or
putative erythroid-specific DHSs and enhancers in the genomic regions
of KLFs. A. Statistics of the distribution of identified erythroid-specific or
putative erythroid-specific DHSs relative to KLF genes and TSSs. In total,
18 (78%) and five (22%) DHSs are localized to the intergenic and intronic
regions, respectively; 15 (65.2%) DHSs are located far distal (>10 kb) to
TSSs, four (17.4%) DHSs are located distal (2-10 kb) to TSSs, and four
(17.4%) DHSs are located in proximal (<2 kb) promoter regions. DHS
KLF1-Ill contains TSS (Additional file 1: Table S1). B. Statistics of the
distribution of the identified enhancers under the control of minP in
K562 cells relative to KLF genes and TSSs. C. Statistics of the identified
erythroid KLF enhancer distribution relative to the KLF genes and TSSs.
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D. Statistics of the identified erythroid-specific KLF enhancer distribution
relative to KLF genes and TSSs.

Additional file 2: Table S1. The relative position and length of 23
identified erythroid-specific or putative erythroid-specific DHSs.

Table S2. Position, length, GC content, chromatin accessibility (DNase |
hypersensitivity), and references of ten KLF promoters used in enhancer
assays. Table S3. Activities of KLF promoters measured by the luciferase
reporter assay. Table S4. Primers used for measuring the expression patterns
of KLFs in real-time PCR. Table S5. Primers used for amplification of erythroid-
specific DHS fragments inserted in luciferase reporter constructs. Table S6.
Primers used for amplification of KLF promoters. Supplementary References.
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