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Abstract

Background: Pancreatic cancer is a deadly disease with a five-year survival of less than 5%. A better understanding
of the underlying biology may suggest novel therapeutic targets. Recent surveys of the pancreatic cancer genome
have uncovered numerous new alterations; yet systematic functional characterization of candidate cancer genes
has lagged behind. To address this challenge, here we have devised a highly-parallel RNA interference-based
functional screen to evaluate many genomically-nominated candidate pancreatic cancer genes simultaneously.

Results: For 185 candidate pancreatic cancer genes, selected from recurrently altered genomic loci, we performed
a pooled shRNA library screen of cell growth/viability across 10 different cell lines. Knockdown-associated effects on
cell growth were assessed by enrichment or depletion of shRNA hairpins, by hybridization to barcode microarrays.
A novel analytical approach (COrrelated Phenotypes for On-Target Effects; COPOTE) was used to discern probable
on-target knockdown, based on identifying different shRNAs targeting the same gene and displaying concordant
phenotypes across cell lines. Knockdown data were integrated with genomic architecture and gene-expression
profiles, and selected findings validated using individual shRNAs and/or independent siRNAs. The pooled shRNA
library design delivered reproducible data. In all, COPOTE analysis identified 52 probable on-target
gene-knockdowns. Knockdown of known oncogenes (KRAS, MYC, SMURF1 and CCNE1) and a tumor suppressor
(CDKN2A) showed the expected contrasting effects on cell growth. In addition, the screen corroborated purported
roles of PLEKHG2 and MED29 as 19q13 amplicon drivers. Most notably, the analysis also revealed novel possible
oncogenic functions of nucleoporin NUP153 (ostensibly by modulating TGFβ signaling) and Kruppel-like
transcription factor KLF5 in pancreatic cancer.

Conclusions: By integrating physical and functional genomic data, we were able to simultaneously evaluate many
candidate pancreatic cancer genes. Our findings uncover new facets of pancreatic cancer biology, with possible
therapeutic implications. More broadly, our study provides a general strategy for the efficient characterization of
candidate genes emerging from cancer genome studies.
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Background
Pancreatic ductal adenocarcinoma (hereafter, pancreatic
cancer) is the fourth leading cause of cancer death in the
United States [1,2]. The five-year survival rate is a dismal
5%, as effective treatment regimens are limited [3]. A better
understanding of the underlying disease biology is needed
to develop new and successful treatment strategies to
manage this deadly disease.
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Several key molecular genetic alterations in pancreatic
cancer have been identified [4,5]. Activating mutations
of KRAS occur in 95% of cases. The CDKN2A locus, en-
coding p16INK4A and p14ARF, which respectively intersect
the Rb and p53 pathways, is homozygously deleted in 80%
of tumors. TP53 is itself inactivated, usually through point
mutation, in 55% of cases. SMAD4, a central mediator of
TGFβ signaling, is deleted in approximately 50% of cases.
Furthermore, TGFBR2, its upstream receptor, is deleted in
20% of tumors, underscoring a central importance of this
signaling pathway in pancreatic cancer. MYC is amplified
in approximately 30% of cases. Recently, deletions and mu-
tations in five different subunits of the SWI/SNF chromatin
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remodeling complex have been found to occur in about a
third of cases [6]. However, despite what is already known,
recent surveys of the pancreatic cancer genome have identi-
fied scores of additional candidate cancer genes that merit
further investigation [7,8].
With the advent of DNA microarrays and “next-

generation” DNA sequencing, the field of genomics
has transformed our ability to study diseases like cancer on
an “omic” scale. Over the past decade, these technologies
have spurred structural studies producing a compendium
of cancer alterations, including DNA mutations, deletions,
amplifications, and rearrangements. Yet, because of the
sheer volume of data, such studies have far outpaced our
ability to functionally evaluate candidate cancer genes [9].
The development of RNA interference (RNAi) techniques

has accelerated our capacity to study knockdown pheno-
types and infer the function and mechanism of disease
genes [10]. While traditionally used to characterize single
genes at a time, several groups have adapted the technology
to use small interfering RNA (siRNA) or short hairpin
RNA (shRNA) libraries for high-throughput screens [11],
including in pancreatic cancer [12-17]. These large-scale,
highly parallel efforts provide the potential to functionally
annotate genes on an “omic” scale.
Here, we describe a high-throughput functional interro-

gation of the pancreatic cancer genome using an shRNA-
based screen. We simultaneously evaluate 185 candidate
pancreatic cancer genes, nominated from genomic profiles,
across 10 genetically diverse cell lines. After integrating the
functional and genomic data, we further characterize nine
top candidates, both uncovering new pancreatic cancer
biology and validating an integrative approach for the
functional annotation of cancer genomes.

Methods
Cell lines
Cancer cell lines were obtained directly from the American
Type Culture Collection, and grown in RPMI-1640 high-
glucose media (Invitrogen) supplemented with 10% fetal
bovine serum (Hyclone). HPDE cells [18] were obtained
from Dr. Ming Tsao (University of Toronto), and grown in
keratinocyte serum-free media (supplemented as directed
with EGF and bovine pituitary extract; Invitrogen).

Pooled shRNA lentiviral library screen
The shRNA screen, schematically depicted in Figure 1
(with summary information in Table 1), was adapted
from published protocols [19,20]. Potential advantages
of a pooled (compared to well-based) screen include
economies of scale and discernment of subtle fitness effects
by competitive growth over many days. The 185 targeted
genes were selected based on the identification of recur-
rent structural abnormalities (focal DNA amplifications,
deletions, and/or mutations) in pancreatic cancer genomes
[6,7]. These abnormalities are listed for each gene in
Additional file 1. GIPZ lentiviral shRNAmir constructs
targeting these genes (average 3, range 1–7 shRNA/gene)
were obtained from Open Biosystems/Thermo Scientific;
catalog numbers are listed in Additional file 2. The 558
pGIPZ shRNAmir plasmid DNAs were combined at equi-
molar concentration into a single pool. The shRNA DNA
pool was then used to transfect 293T cells, together with a
trans lentiviral packaging mix (Open Biosystems). Pooled
shRNA lentiviral supernatant was collected 48 hrs later,
and frozen in aliquots to improve screen reproducibility.
The lentiviral library was then used to infect target cell

lines at low multiplicity of infection (average 0.3 integrants/
cell; determined by flow cytometry of GFP expression from
the GIPZ vector), so that most cells contained a single
shRNA knocking down the expression of a single gene.
Additionally, enough cells were infected to provide an
average representation of approximately 1,000 lentiviral
integrations (range 150–2000) for each of the 558 shRNAs
in the library, mitigating potential artifacts from specific
integration sites or from multiple integrations [20,21]. To
infect target cell lines, lentivirus was diluted in serum/
antibiotic-free media containing 10 μg/ml polybrene
(determined to optimally enhance infection with minimal
cell toxicity). Cells were spun at 30°C for 1 hr at 2,400 rpm,
allowed to recover for 4 hrs (37°C, 5% CO2), spun again
for an additional 1 hr, and then the media replaced with
complete RPMI-1640 growth media. All target cell line
infections were carried out minimally in triplicate
(range 3–7 replicates).
Two days post infection, a fraction of the infected cells

was harvested for an initial time point (T = 0), and puro-
mycin selection (using cell line-specific levels previously
determined by killing curves) was then initiated for the
remaining cells. Cells were cultured for an additional
4 weeks in the presence of selective media. Care was taken
not to allow the cells to become too confluent or to split
too thinly. Cells were periodically harvested, including the
last time point (T = 4 weeks), which was the standard
comparison point for the screen data presented.
Genomic DNA was isolated from harvested cells,

sheared ten times through a 25 gauge needle, and subse-
quently used as template for PCR amplification of library
shRNA hairpins. Sufficient genomic DNA template was
included in the PCR reaction to ensure an approximate
1,000-fold average representation of each library shRNA
hairpin (assuming 5 pg of DNA/cell), thereby maintaining
the initial ~1,000-fold representation of integrations. PCR
primers common to the shRNAmir backbone vector and
bounding the half hairpin target sequence were as follows:
Forward 5′-TAGTGAAGCCACAGATGTA-3′; Reverse
5′-ATGTATCAAAGAGATAGCAAGGTATTCAG-3′.
To deconvolute shRNA representation in the T = 4 weeks

vs. T = 0 cell pools, gel-purified PCR products were



Table 1 Cell lines included in shRNA screen

Cell line Description Number of replicate infections Multiplicity of infection shRNA fold-representation

Aspc1 Pancreatic cancer 3 0.3 1,000

BXPC3 Pancreatic cancer 3 0.3 1,500

Capan1 Pancreatic cancer 7 0.3 400

HPAC Pancreatic cancer 3 0.3 1,500

Panc1 Pancreatic cancer 6 0.3 150

PL5 Pancreatic cancer 3 0.3 2,000

SU86.86 Pancreatic cancer 3 0.3 1,000

HPDE Immortalized, non-tumorigenic
pancreatic ductal epithelial cells

3 0.3 1,000

MDA157 Breast cancer 3 0.3 600

SKBR3 Breast cancer 3 0.3 1,000
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Figure 1 Targeted shRNA screen. Schematic depiction of the shRNA screen, analysis, and validation. See main text for detailed description.
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differentially labeled and co-hybridized (using manufacturer
protocols) to a custom Agilent microarray designed
(using Agilent eArray software) to include probes com-
plementary to shRNA hairpin sequences. Microarrays
were imaged and fluorescence intensities extracted. For
each microarray, log10 background-subtracted fluorescence
ratios were globally normalized (which assumes overall
equal library shRNA depletion and enrichment). Unless
otherwise specified, screen data reported represent the
average ratios from replicate cell line infections.

Screen data analysis and validation
High-confidence on-target shRNAs/phenotypes were
identified using a new analytical approach (COrrelated
Phenotypes for On-Target Effects; COPOTE), based on
finding two or more different shRNAs targeting the same
gene and displaying concordant enrichment/depletion
profiles across the cell lines (Pearson correlation). Cus-
tom Perl scripts were used to calculate the Pearson
correlation coefficient between shRNAs targeting the
same genes, and also to permute cell line identities to
generate the randomized null distribution of correla-
tions. To define meaningful correlations, we determined
False Discovery Rates (FDRs) as the ratio of false posi-
tives (from the null distribution) to observed positives
at or above any given correlation cutoff.
For validation, Q-RT-PCR was performed using Assay-

on-Demand TaqMan probes and reagents (Applied
Biosystems). Catalog numbers for probes include: NUP153
(Hs01018919_m1) and KLF5 (Hs00156145_m1). Western
blots were done on whole cell lysates, using the following
primary antibodies: Myc (Santa Cruz sc-40), pan-Ras
(Millipore 05–516), NUP153 (Acris BM5527), GAPDH
(Santa Cruz sc-25778), SMURF1 (Santa Cruz H-60).
Densitometry calculations were carried out using publicly
available ImageJ software. For siRNA knockdown, ON-
TARGETplus SMARTpool siRNAs were obtained from
Thermo Scientific: KRAS (L-005069-00-0005), SMURF1
(L-007191-00-0005), NUP153 (L-005283-00-0005), KLF5
(L-013571-00-0005), non-targeting control (D-001810-
10-20). Cell growth/viability assays were done using a
modified WST-1 protocol as previously described [6].
In each assay, a full time course was performed, though
usually only day 5 is shown for brevity.

Array-based comparative genomic hybridization
(aCGH) data
Findings from the screen were interpreted in the context
of previously published aCGH data [6] (GSE26089). Briefly,
that data set comprises Agilent 244 K CGH array profiles
from 70 pancreatic cancers (48 primary tumor xenografts
and 22 cancer cell lines). Tumor/normal fluorescence ratios
were normalized and mapped onto the genome (build 18)
using Agilent software.
Results and discussion
Targeted shRNA screen
In pancreatic (as with other) cancer genomes, loci that
are recurrently amplified or deleted are likely enriched
for known or novel cancer genes [22]. Typically, each
such locus is studied individually to discover the driver
gene(s). In an effort to accelerate this process, we devel-
oped a pooled shRNA screening strategy to simultan-
eously evaluate 185 candidate pancreatic cancer genes
that together represent 104 different loci of recurrent
DNA amplification or deletion; thus the genes selected
included both candidate oncogenes and tumor suppressors
(see Additional file 1). Most of the 185 candidates were
focally amplified or deleted in a subset of cancers, and some
were also reported to carry mutations (Additional file 1)
[6,7]. A few known cancer genes (e.g. KRAS, MYC, and
CDKN2A) were also included in the screen as positive
controls.
The pooled shRNA screen was carried out as a competi-

tive growth/viability assay. The general workflow, adapted
from Schlabach et al. [19], is depicted in Figure 1 and
described in more detail in Methods. In brief, pancreatic
cancer cell lines were infected with a pooled shRNA
lentiviral library comprising 558 shRNAs targeting the
185 genes (on average 3 hairpins/gene) (Additional file 1).
Infections were done at low multiplicity of infection, ensur-
ing that most cells harbored a single shRNA knocking down
the expression of a single gene. The pooled, infected cells
were then cultured for four weeks, after which depleted
or enriched shRNAs (i.e., those targeting genes conferring
positive or negative growth advantage, respectively) were
identified by PCR amplification of shRNA hairpins and
comparative hybridization (T = 4 weeks vs. T = 0) to a
custom hairpin microarray.
The shRNA library screen was carried out on ten different

cell lines (Table 1). These included seven genetically-diverse
pancreatic cancer cell lines that together harbor the vast ma-
jority of copy number alterations from which the 185 genes
were selected. We also included a single immortalized, non-
tumorigenic human pancreatic ductal epithelial (HPDE) cell
line [18] to facilitate discovery of tumor suppressor genes
(as enriched shRNAs targeting growth suppressive genes).
Lastly, we also screened two breast cancer cell lines to
help distinguish genome-specific from generic essential
genes (i.e., an “out-group”). The raw and cell line-averaged
screening data are available in Additional files 2 and 3.

Screen analysis and validation
The pooled shRNA library screen yielded high quality
and reproducible data, as supported by multiple lines
of evidence. First, replicate screens of each cell line showed
good correlation; the average pair-wise Pearson correlation
coefficients (R-values) for cell line replicates ranged from
0.3-0.9 (mean 0.5). The two cell lines (Capan1 and Panc1)
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with the lowest R-values were those with the least shRNA
library representation; however, this was mitigated by more
screen replicates (Table 1). Notably, in an unsupervised
analysis of the shRNA depletion/enrichment data, cell line
replicates most often clustered together (Figure 2A).
Second, time course samplings, done for a subset of the
cell lines, demonstrated consistently increasing shRNA
depletion (or enrichment) over time (Figure 2B). Third,
we noted that distinct shRNAs targeting the same gene
often exhibited correlated growth phenotypes (depletion/
enrichment profiles) across the panel of cell line screened
(Figure 2C). We capitalized on this last observation to
define “high-confidence” on-target knockdown phenotypes,
an approach we termed COPOTE (COrrelated Phenotypes
for On-Target Effects).
When analyzing hundreds of shRNAs, it is possible

that two different shRNAs targeting the same gene have a
similar growth phenotype (across the panel of cell lines)
just by random chance. Therefore, to correct for mul-
tiple hypothesis testing, we compared the distribution
of observed Pearson correlations to that from randomly
permuted data (Figure 2D). Notably, we observed a signifi-
cant rightward shift in the observed distribution of corre-
lations, indicating an enrichment of shRNAs targeting the
same gene (and showing similar phenotype) above that
expected by chance; false discovery rates (FDR; q values)
are reported in Additional file 4. Of the 185 genes included
in the screen (and of the 157 genes (85%) represented
by two or more shRNAs and therefore evaluable), we
identified 52 genes with “high confidence” knockdown
phenotypes, defined by having at least two different shRNAs
exhibited significantly correlated depletion/enrichment
profiles (R > 0.7; q < 0.135) across the ten cell lines.
We note that other approaches have been used to lever-

age information from multiple shRNAs targeting the same
gene, including redundant siRNA activity (RSA) analysis
[23], RNAi gene enrichment ranking (RIGER) [24], and
the Gene Activity Ranking Profile (GARP) score [17]. All
of these methods consider either the top-most depleted
shRNA(s) or all shRNAs for a given gene. Our approach is
fundamentally different in that we consider all shRNA
pairs, therefore focusing primarily on the evidence for
correlated (implying on-target) phenotype rather than
on the strength of shRNA depletion.
Focusing primarily on the 52 high-confidence genes,

we next validated knockdown for a subset of biologically-
interesting genes. We included some known pancreatic
cancer genes, but mainly focused on novel genes with bio-
logical functions plausibly related to pancreatic cancer, and
also demonstrating logical connections to the underlying
genomic data, e.g. shRNA depletion for amplified candidate
oncogenes. Validation was done by transducing individual
(rather than the pool of) shRNAs, or by transfecting inde-
pendent siRNAs (which we found to be more time and cost
effective), and then verifying target knockdown by RT-PCR
and/or Western blot (summarized in Table 2). For known
pancreatic cancer oncogenes and tumor suppressor genes,
finding the expected growth phenotypes (as described
below) provided additional screen validation.

Observations on known cancer genes
Among the high-confidence shRNAs/phenotypes, several
shRNAs targeting known oncogenes showed the anticipated
pattern of depletion (i.e. knockdown reduces growth fitness)
(Figure 3). For example, three different knockdown-
validated [26] shRNAs targeting the KRAS oncogene
were generally depleted across the panel of cell lines,
though with some cell lines (e.g. Panc1 and HPAC) show-
ing substantially more depletion than others (e.g. PL5)
(Figure 3A). On-target knockdown of KRAS and conse-
quent reduced cell viability were verified using independent
KRAS-targeting siRNAs (Figure 3A). In pancreatic cancer,
KRAS frequently harbors activating point mutations
and may be amplified and/or overexpressed. Notably,
in the cell line panel there was a good correlation of
KRAS-shRNA screen depletion levels with both KRAS
mutation status and KRAS transcript levels (R = 0.8).
This pattern of dependency is consistent with classic
oncogene addiction [27].
The shRNAs targeting the MYC oncogene also exhibited

variable depletion across the panel of cell lines. However,
unlike with KRAS, the cell lines with lower MYC transcript
levels were associated with substantially higher depletion
levels (Figure 3B). The basis for this observation is unclear,
and we caution that the RNAi knockdown and phenotype
requires validation. Nonetheless, we speculate that there
might exist a threshold below which MYC levels are insuffi-
cient to support cell growth, and that in cell lines with high
MYC levels incomplete shRNA-mediated knockdown is
insufficient to pass that threshold.
We recently reported SMURF1, encoding an E3 ubiquitin

ligase, to be amplified in a subset of pancreatic cancers,
where it drives cell invasion but not growth in AsPC1
cells [33]. Here, in the context of the pooled shRNA screen,
we reproduced that result. The single shRNA targeting
SMURF1 was neither depleted nor enriched in SMURF1-
amplified AsPC1 cells (Figure 3C), consistent with its role
in cell invasion but not growth. Interestingly, in non-
amplified cell lines the SMURF1 shRNA was generally de-
pleted, suggesting a possible additional role in cell growth
specific to a non-amplified context, a knockdown threshold
effect as speculated above for MYC (endogenous SMURF1
expression levels are substantially elevated with amplifica-
tion [33]), or an off-target effect. The findings for SMURF1
also suggest an added benefit of screening additional
phenotypes, e.g. cell invasion.
We also observed the expected pattern of shRNA en-

richment for shRNAs targeting known tumor suppressor
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Table 2 Summary of validation for target knockdown and growth phenotype

Gene shRNA knockdown
validated by RT-PCR

shRNA knockdown
validated by
western blot

shRNA knockdown
validated by cancer
genome anatomy

Project [25]

siRNA knockdown
validated by

RT-PCR

siRNA knockdown
validated by
western blot

siRNA knockdown
growth phenotype

validated

KRAS X [26] X X X

SMURF1 X X X

CDKN2A X

CCNE1 X

NUP153 X X X

KLF5 X X X X
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genes, best exemplified by CDKN2A. A single shRNA
targeting CDKN2A was enriched in a subset of the
screened cell lines (Figure 3D). Notably, the cell lines that
did not show substantial enrichment were in fact those
with homozygous deletion of CDKN2A (where knock-
down of a non-existent gene would not be expected to
promote growth). These data suggest a utility of the shRNA
knockdown screen approach in identifying not only onco-
genes (by reduced growth fitness), but also potentially novel
tumor suppressor genes (by enhanced growth fitness).
While the focus of our screen was pancreatic cancer,

the inclusion of a breast cancer out-group also provided an
opportunity to identify breast cancer selective dependen-
cies. Among the high-confidence genes/phenotype, most
notably shRNAs targeting the cell-cycle regulator CCNE1
showed selective depletion in the two breast cancer cell
lines (Figure 3E). CCNE1 has been reported to be the driver
of 19q12 amplification in breast cancer [34,35]. Indeed,
Natajaran et al. reported MDA157 breast cancer cells to be
sensitive to CCNE1 knockdown [34], which we replicated
here (Figure 3E). Our findings underscore a likely selective
dependency and possible point of therapeutic attack in
breast cancer.

Cytoband 19q13 amplicon
While KRAS (12p12) and MYC (8q24) are among the
most commonly amplified oncogenes, the 19q13 region
also shows broad amplification in the majority of pan-
creatic cancers, and high-amplitude, focal amplifications
in approximately 20% of cases (Figure 4A). The recurrence
and focality strongly suggest the presence of an important
oncogene within this amplicon. AKT2, which functions in
the PI3 kinase pathway, resides near this chromosomal re-
gion, and would be a natural candidate for the primary
driver of this amplification. However, as we previously
noted [6], the smallest common region of amplification
occurs proximal to AKT2, as AKT2 is excluded from
the amplicon in several pancreatic cancers (Figure 4A).
These data imply that AKT2 is not the principal driver
of 19q13 amplification. To evaluate this amplicon,
our screen included shRNAs targeting each of the 12
genes residing within the smallest common region of
amplification.
From our screen, three shRNAs targeting genes residing

at 19q13 were preferentially depleted in those cell lines har-
boring 19q13 amplification (Figure 4B). Among these, two
high-confidence (correlated) shRNAs targeted PLEKHG2,
encoding a plekstrin homology domain protein, and a
single shRNA (and the only one included in the screen)
targeted MED29, a mediator of RNA polymerase II
transcription complex subunit. These data agree well with
findings described by Kuuselo et al. [36]. Those investiga-
tors performed a focused siRNA-based analysis of genes
within the 19q13 amplicon, reporting that knockdown
of PLEKHG2 and MED29 reduced cell viability in Panc1
(19q-amplified) but not Miapaca2 (not amplified) cells.
Thus, our data corroborate and extend (using independent
assays and additional cell lines) prior work and highlight
a still under-appreciated role of PLEKHG2 and MED29
(rather than AKT2) as likely oncogenes driving 19q13
amplification in pancreatic cancer.

NUP153/FAST1 TGFβ signaling axis
One novel observation derived from our screen centers on
NUP153, which encodes a nuclear pore complex protein
(or nucleoporin). NUP153 was included in the screen
because we identified it to be focally amplified in a single
pancreatic cancer cell line, PL5 (Figure 5A). The NUP153
nucleoporin regulates the distribution of specific proteins
between the nucleus and the cytoplasm, interestingly
including the transducer of TGFβ signaling, SMAD2
[37]. In particular, NUP153 stoichiometrically competes
with FAST1, a SMAD2 nuclear retention factor, to shuttle
SMAD2 out of the nucleus, thus dampening TGFβ signal-
ing. Further implicating this axis in pancreatic cancer,
we also noted recurrent focal deletions of FAST1 in other
pancreatic cancer cases (Figure 5B).
In our screen, two different high-confidence shRNAs

targeting NUP153 showed varying levels of depletion
across the cell line panel. Notably, cell lines with an
intact upstream TGFβ signaling pathway (determined
by absence of SMAD4 and TGFBR2 mutation/deletion,
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and/or TGFβ-induced growth suppression) generally
exhibited higher levels of NUP153-shRNA depletion,
compared to cell lines with a compromised TGFβ signaling
pathway (Figure 5C) (Additional file 5). Our findings
therefore suggest that altered NUP153-FAST1 shuttling of
SMADs may provide an alternate means by which pancre-
atic cancers disrupt TGFβ signaling. The role of an altered
NUP153/FAST1 TGFβ shuttling axis in pancreatic car-
cinogenesis warrants further investigation.

KLF5 dependency
Another compelling finding relates to KLF5, the intestinal
kruppel-like transcription factor. KLF5 was included in our
screen because we identified it to be focally amplified in a
pancreatic cancer cell line, HPAC (Figure 6A). Interestingly,
KLF5 has been paradoxically reported to function as both
a tumor suppressor [39,40] and an oncogene [41,42] in
different tumor types (reviewed in [43]). Our finding of
focal KLF5 amplification in pancreatic cancer suggests
a possible oncogenic role.
In our screen, three different high-confidence shRNAs

targeting KLF5 showed depletion in most cell lines
(Figure 6B). Though interestingly, a single cell line, Panc1,
with extremely low levels of KLF5 transcript showed
substantial KLF5-shRNA enrichment (Figure 6B-D). We
verified on-target KLF5 knockdown and the contrasting
knockdown growth-phenotypes (in Panc1 compared to
two other lines) by siRNA transfection (Figure 6B, C).
The basis for shRNA enrichment in the sole Panc1 line is
unclear. We speculate that KLF5 might be epigenetically-
silenced in Panc1 (based on barely-detectable expression)
because in that cell line it plays a growth suppressive role;
thus further knockdown would promote cell growth. In
contrast, in every other cell line in the panel, KLF5
transcript levels are appreciable, and knockdown reduces
cell growth (Figure 6D, E). Taken together, our findings
support a context-dependency of KLF5 function, whilst
the preponderance of data (focal amplification and growth
dependency) supports a predominantly oncogenic role in
pancreatic cancer.
Of note, a recent exome sequencing study [7] reported

a single heterozygous mutation (H389N) in the DNA-
binding domain of KLF5 in the pancreatic cell line
Panc5.04. The authors interpreted the mutation to be
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functionally inactivating, suggesting a likely tumor sup-
pressive role. Although Panc5.04 was not included in
our screening panel, we sought to further characterize
KLF5 in that line. By analysis of microarray data [6], KLF5
showed relatively high transcript levels in Panc5.04 com-
pared to other pancreatic cancer cell lines (Figure 6D). Fur-
ther, from our prior transcriptome sequencing (RNA-seq)
data [6], 64% of KLF5 reads in Panc5.04 mapped to the
wildtype allele (78 WT reads vs. 45 mutant reads), thus
excluding epigenetic silencing of the wildtype allele.
Notably, siRNA mediated knockdown of KLF5 in Panc5.04
cells resulted in marked growth inhibition (Figure 6F).
This finding suggests that the single KLF5 mutation in
Panc5.04 is most likely a passenger mutation, and provides
additional support for KLF5 being predominantly onco-
genic in pancreatic cancer. Future studies should define the
transcriptional targets and mechanisms underlying KLF5
dependency in pancreatic cancer.
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Conclusions
In summary, we have detailed a proof-of-principle approach
for the highly-parallel functional evaluation of candidate
cancer genes, here for pancreatic cancer. We have sim-
ultaneously evaluated 185 candidate pancreatic cancer
genes, selected as those recurrently and focally amplified
or deleted, by a pooled shRNA library screen on 10
genetically-diverse cell lines. We have also described a
novel approach, COPOTE, to enrich for on-target shRNAs
and knockdown phenotypes, based on identifying shRNAs
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targeting the same gene that exhibit correlated phenotype.
Our screen has uncovered novel pancreatic cancer genes
and pathways, most notably highlighting potential roles of a
putative NUP153-FAST1 SMAD shuttling axis controlling
TGFβ signaling and an oncogenic function of the KLF5
transcription factor, both meriting further study. Fu-
ture screens might include more shRNAs per gene
(plausibly decreasing the likelihood of false negatives),
more cell lines, and additional phenotypic assays. None-
theless, our study here supports the general feasibility of
a highly-parallel functional analysis of candidate cancer
genes, addressing a fundamental bottleneck in the anno-
tation of cancer genomes.
Note added in proof
During review of our manuscript, Shao et al. [44] described
an RNAi-screen analysis approach (ATARiS) that is
conceptually similar to ours (COPOTE).
Additional files

Additional file 1: Genes included in the shRNA screen.

Additional file 2: Depletion/enrichment (log10 ratio) of each shRNA
for each cell line (cell line replicates averaged).

Additional file 3: Depletion/enrichment (log10 ratio) of each shRNA
for each cell line replicate screened.

Additional file 4: Correlation coefficients (R) and false discovery
rates (q) for all hairpins targeting the same gene.

Additional file 5: TGFβ pathway status, empirically determined by
TGFβ-responsive growth inhibition, in pancreatic cancer cell lines
(A) PL5 (unresponsive/mutant pathway) and (B) HPAC (responsive/
wildtype pathway).
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