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Abstract

Background: This study focuses on the analysis of miRNAs expression data in a cohort of 181 well characterised
breast cancer samples composed primarily of triple-negative (ER/PR/HER2-negative) tumours with associated
genome-wide DNA and mRNA data, extensive patient follow-up and pathological information.

Results: We identified 7 miRNAs associated with prognosis in the triple-negative tumours and an additional 7
when the analysis was extended to the set of all ER-negative cases. miRNAs linked to an unfavourable prognosis
were associated with a broad spectrum of motility mechanisms involved in the invasion of stromal tissues, such as
cell-adhesion, growth factor-mediated signalling pathways, interaction with the extracellular matrix and
cytoskeleton remodelling. When we compared different intrinsic molecular subtypes we found 46 miRNAs that
were specifically expressed in one or more intrinsic subtypes. Integrated genomic analyses indicated these miRNAs
to be influenced by DNA genomic aberrations and to have an overall influence on the expression levels of their
predicted targets. Among others, our analyses highlighted the role of miR-17-92 and miR-106b-25, two polycistronic
miRNA clusters with known oncogenic functions. We showed that their basal-like subtype specific up-regulation is
influenced by increased DNA copy number and contributes to the transcriptional phenotype as well as the
activation of oncogenic pathways in basal-like tumours.

Conclusions: This study analyses previously unreported miRNA, mRNA and DNA data and integrates these with
pathological and clinical information, from a well-annotated cohort of breast cancers enriched for triple-negative
subtypes. It provides a conceptual framework, as well as integrative methods and system-level results and
contributes to elucidate the role of miRNAs as biomarkers and modulators of oncogenic processes in these types of
tumours.
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Background
Breast cancer is a heterogeneous disease that comprises
tumour subgroups with substantial differences in biology
and clinical behaviour. Classification methods based on
the expression of intrinsic genes [1] and on the histo-
logical assessment of oestrogen- (ER) and progesterone-
(PR) receptor and human epidermal growth factor re-
ceptor 2 (HER2), have revealed the existence of different
subgroups with diverse clinical outcomes and responses
to treatment.
Among these, ER-negative and triple-negative breast

cancers (ER-/PR-/HER2-negative) are types of aggressive
tumours that account for approximately 30% and 15% of
breast cancers, respectively [2] and are known to have a
poorer prognosis than most ER-positive types. Although
various multi-gene prognostic markers have been pro-
posed for the prediction of their clinical outcome, the
reliable identification of the small group of patients with
ER-negative tumours who have a more favourable prog-
nosis still represents an open challenge (reviewed in [3]).
miRNAs are small non-coding RNA molecules regu-

lating gene expression both at the transcriptional and
miRNA expression
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translational levels. Since 2005, when miRNA deregula-
tion was first described in breast cancer [4], many stud-
ies have demonstrated a role for miRNAs in the
modulation of oncogenic pathways and their potential as
prognostic and/or subtype-specific diagnostic bio-
markers (reviewed in [5]). Further interest in miRNAs
has stemmed from their demonstrated suitability for
analysis in formalin–fixed, paraffin embedded (FFPE)
tumour tissues [6].
Until recently, only in a limited number of studies

have miRNAs been analysed in the context of transcrip-
tional and genomic profiles obtained from the same
breast tumour samples and integrated with clinical-
pathological information [7,8]. Even more limited infor-
mation exists when the focus is restricted to selected
tumour sub-cohorts, such as triple-negative breast
tumours.
Thus, we carried out comprehensive miRNA, mRNA

and DNA profiling in a well-annotated cohort of inva-
sive breast cancers (n = 181), concentrating on triple-
negative tumours (n = 114). A general overview of the
rationale of the study is illustrated in Figure 1. Integrative
-
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genomic data analysis, along with clinical and pathologi-
cal information allowed us to identify prognostic and
subtype-specific miRNAs (Figure 1, panels 1-2), to eluci-
date whether they were affected by DNA genomic aberra-
tions (Figure 1, panel 3a) and to monitor their associative
and/or functional relationships with the activity of bio-
logical pathways. For the latter point we adopted two inde-
pendent strategies. The first of these looked at the
associative correlations between miRNAs and the level of
activation of a large compendium of pathways, inferred
from gene-expression signatures (Figure 1, panel 3b). The
second strategy aimed to identify the subset of miRNAs
potentially playing an effect on the expression levels of
their predicated targets and provided a comprehensive de-
scription of the pathways and gene sets most significantly
influenced by these miRNAs (Figure 1, panel 3c).
By using Cox-regression analysis with distant me-

tastases-free survival (DMFS) and breast cancer spe-
cific survival (BCSS) as clinical end points, we found
7 miRNAs associated with prognosis in triple-
negative tumours with an additional 7 when the
analysis was extended to the larger group of all
ER-negative tumours. When we investigated the
pathways associated to these miRNA, we found un-
favourable prognostic miRNAs to correlate with a
broad spectrum of motility mechanisms involved in
cell invasion and to growth factor-mediated signal-
ling pathways. To understand the role of miRNAs in
the establishment of tumour transcriptional pheno-
types we also investigated miRNA expression pat-
terns across different intrinsic molecular subtypes, as
defined by the PAM50 classification method [1], and
identified 46 subtype-specific miRNAs.
Integrated miRNA-mRNA analyses showed that sub-

type-specific miRNAs tend to be enriched for anti-
correlated genes among their predicted targets. This
result represents an exception from the general lack of
correlation that was observed between miRNAs and pre-
dicted targets expression levels. Among subtype-specific
miRNAs, our analysis highlighted the role of miR17-92
and miR-106b-25, two polycistronic miRNA clusters
known to play a key oncogenic role in various cancers
[9]. These two clusters appeared to be specifically over-
expressed in basal-like tumours and their expression to
be largely influenced by DNA copy gains. We also ob-
served the anti-correlated predicted targets of miR17-92
and miR-106b-25 miRNAs to be enriched for luminal
specific sets of genes. This suggests these miRNAs con-
tribute to the definition of the tumour transcriptional
phenotype by influencing the expression levels of these
genes.
Interest in the miR17-92 and miR-106b-25 clusters

was further strengthened by their inferred interference
with known oncogenic processes, including epithelial-
mesenchymal transition (EMT), PI3K/AKT/mTOR, MYC
and PTEN pathways.

Results
A schematic representation of the integrated analytical
workflow used to generate the presented results is illus-
trated in Additional file 1: Figure S1.

Samples data and tumour classification
The study is based on the integrative analysis of miRNA
expression, gene expression (GE), and SNP-array based
DNA copy numbers (CN) in a set of 181 invasive breast
carcinomas extracted from 173 patients (Additional file
2: Figure S2a). Patients were treated at Guy’s and St
Thomas’ Hospitals, London, UK between 1979 and 2001
and had at least 5.5 years follow-up. Of the 181 tumours
analysed, 123 were immunohistochemically ER-negative,
114 being also triple-negative (ER-, PR- and HER2-
negative). Molecular characteristics of tumour samples
were analysed in association with clinical and patho-
logical information (Additional file 3: Table S1). In
addition to the assignment to clinical subgroups based
on ER, PR and HER2 status, 142 tumour samples were
also assigned to the five intrinsic molecular subtypes
(basal-like, luminal A, luminal B, HER2 and normal-like)
using the expression of predefined intrinsic gene lists
according to the PAM50 centroid-based classification
method [1,10]. In agreement with previous studies [11],
triple-negative breast cancers were found to correspond
mostly with the basal-like tumours (87%) while ER-
positive lesions corresponded to luminal A and B sub-
types (87%) (Additional file 2: Figure S2b).

miRNA copy number and expression
miRNAs are frequently located in regions of genomic in-
stability [12], and miRNA expression changes have been
found to be associated with chromosomal rearrangements
in many tumours, including breast cancer [12,13]. In order
to gain a general view on the impact of DNA aberrations
on miRNA expression in this cohort, Spearman correl-
ation coefficients between DNA copy number of miRNA
loci (CN) and miRNA expression values were computed.
In addition, for each miRNA DNA locus identified as
altered in any of the samples, we performed separate
non-parametric Wilcoxon rank sum tests to assess differ-
ences in expression between samples with losses and
gains, compared to samples with no copy number alter-
ations. miRNAs co-located with transposable elements (as
reported in [14]) – given their uncertain genomic location
were excluded from this analysis.
As a result we identified 64 miRNAs showing statisti-

cally significant miRNA-CN correlation, indicating an
overall influence of genetic aberrations (gains and losses)
on the expression of the miRNAs (Additional file 4:
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Table S2). 17/64 of these miRNAs were identified to fall
into breast cancer recurrent aberrant regions [8]. Of
these, respectively 11 and 6 miRNAs fall into regions of
focal recurrent amplifications and focal recurrent dele-
tions (see details in Methods and Additional file 4: Table
S2). These results suggest the expression values of these
miRNAs to be frequently perturbed in breast cancers, as
result of underlying DNA aberrations.
We have then carried out an analysis to assess the likeli-

hood that copy-number driven miRNA could be co-
amplified/co-deleted with key cancer related genes. For
each copy-number driven miRNA, a region spanning 10
Kilobases before and after its genomic location was isolated
and oncogenes and tumor suppressor genes according to
the “Cancer Genes DB” [15] were isolated. This resulted in
a list of co-amplified/co-deleted tumour suppressor and/or
oncogenes for each miRNA (Additional file 4: Table S2).
As examples, we found miR-93 and miR-106b to be

co-amplified with PI3K and MET and miR-548 to be co-
amplified with MYC, suggesting a (functional or just
correlative) relationship between the expression levels of
these miRNAs and the activities of PI3K/AKT, MYC and
MET pathways.

Expression analysis of miRNA and candidate target
transcripts
To assess the relationships between miRNAs and their
target genes, we carried out a correlation analysis be-
tween each miRNA and the expression levels of their re-
spective predicted transcripts. The rationale for this
analysis was based on three points: i) predicted targets
are largely unreliable and therefore cannot be directly
used to derive any sound biological observation ii)
among all predicted miRNA targets, the real ones -
those transcriptionally degraded upon miRNA binding -
are anti-correlated to their cognate miRNA (whilst this
is a required condition, it does not prove a predicted tar-
get to be real) iii) miRNAs showing an enrichment
among their predicted targets for anti-correlated tran-
scripts, are more likely to play a role in their control.
For each miRNA, lists of candidate targets were

extracted using six different prediction algorithms (see
Methods) and independent analyses were run on each
list. Our data indicated the general lack of correlation
between miRNAs and predicted targeted mRNAs, irre-
spective of the algorithm used for target prediction
(Additional file 5: Figure S3). We focused then on the
identification of individual miRNAs deviating from this
general behaviour, i.e. for which a general anti-correlation
with the expression levels of their predicted targeted
mRNAs could be detected. We labelled these entities as
miRNAapt (“miRNA anti-correlated to predicted targets”)
and devised a strategy for their identification based on the
evaluation of their bias towards the enrichment for
anti-correlated genes among their predicted targets
(see Methods). By using stringent cut-offs we have identi-
fied a total of 43 miRNAapt (Additional file 6: Table S3 and
Additional file 7: Figure S4).

miRNAs associated with prognosis in ER-negative and
triple-negative breast cancers
Cox-regression univariate analysis was carried out to
identify miRNAs whose expression was associated with
clinical outcome. Analyses were run separately for the
ER-negative and the sub-set of triple-negative tumours,
with respect to breast cancer specific survival (BCSS)
and distant metastases-free survival (DMFS) clinical end
points.
As result, 14 miRNAs associated with prognosis were

identified in ER-negative tumours; of these 7 were also sig-
nificant in the sub-set of triple-negative tumours (p-value
< 0.002, FDR < 0.2) (Figures 2 and 3, Additional file 8:
Figures S5 and S6).
miRNA-DNA analyses showed miR-193a-3p to have

the strongest association with DNA copy numbers,
with DNA gains being associated with miRNA over-
expression. Prognostic miRNAs tended to be sparsely
distributed in the genome, with the exception of a clus-
ter of miRNAs located in close proximity to one another
on band 14q32.31, comprising miR-376b/miR-381/miR-
409-5p/miR-410, all linked to unfavourable prognosis.
We found, as have others, that this cluster is subject to
frequent genomic deletions [16], causing decrease in ex-
pression of miR-376b and miR-381 (Figure 3).
When univariate and multivariate analyses were run

using histopathological information on its own (without
miRNA expression), node positivity, tumour size and
percentage of tumour lymphocytic infiltration emerged
as statistically significant prognostic factors (Additional
file 8 and Additional file 9: Table S4). We then assessed
how these covariates impacted miRNA association with
prognosis, by evaluating additive multivariate Cox-
regression models. P-value distributions derived from dif-
ferent models were compared, showing an impact of the
percentage of lymphocytic infiltration on the association
of miRNAs with prognosis (Additional file 8: Figure S7).
miRNAs were shown to be less informative with respect
to prognosis when evaluated in multivariate models
incorporating information on lymphocytic infiltration.
Among the 14 miRNAs collectively identified to be

associated with prognosis alone, five retained their prog-
nostic value when evaluated in models which included
node positivity and tumour size (miR-376b, miR-381,
miR-409-5p, miR-410, and miR-766) and only one (miR-
193a-3p) when lymphocytic infiltration was also consid-
ered, either in TNBC or in the wider group of ER-
negative samples (including TNBC samples) or both
(Additional file 8: Figure S8).
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Figure 2 Prognostic miRNAs in ER-negative and triple-negative tumour sub-cohorts (log-rank p-value < 0.002 and FDR q-value < 0.2).
Chromosomal positions are indicated, except from miR-548d-5p, which co-locates with a DNA transposable element (TE). Left Panel: Results from
independent Cox-regression analyses run on triple-negative and ER-negative tumours Right Panel: Association between miRNA expression and
DNA gains/losses. Filled blue bars represent Spearman correlation values. Shaded bars represent the -log10 q-value of the Wilcoxon test, resulting
from the comparisons of tumours with DNA gains (red bars) and losses (green bars) to tumours without DNA changes.
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We have then analysed two independent miRNA data
sets: one from Buffa et al., including 82 ER-negative and
37 triple-negative breast cancer samples [17]; the second
from Enerly et al, including 32 ER-negative and 21
triple-negative samples [18]. All analyses were run inde-
pendently in the ER-negative group and its subset of and
triple-negative tumours.
Analyses showed broad lack of reproducibility between

the three sample cohorts with regard to miRNA associa-
tions with prognosis (Additional file 8: Figures S9 and
S10). Furthermore, direct comparison between our re-
sults and the recently published results from the study
of Dvinge et al. colleagues, again did not show overlap
[7]. As discussed more extensively below, the different
sample size of the studies as well as differences in the
cohort demographics (we selected patients who had not
have received neo-adjuvant treatment to avoid biases
due to pre-surgery treatment while the other studies
considered mixed populations) and the potential for dif-
fering representations of histopathological characteristics
and biological subgroups within heterogeneous triple
negative breast cancer, are all factors that might account
for the general lack of reproducibility of analytical re-
sults with regard to the prognostic impact of miRNAs.
Finally, we have assessed how miRNAs compare with

mRNAs with respect to association with BCSS and
DMFS. We run Cox-regression survival analysis on
TNBC and ER samples using gene expression and
miRNA data separately, without including histopatho-
logical information in the model. When we compared
the distributions of p-values, no significant differences
between the two data sets emerged (Additional file 8:
Figure S11), indicating an overall comparable association
of miRNA and mRNA to ER-negative and TNBC pa-
tients prognosis.
Pathways associated with prognostic miRNAs in ER-
negative and triple-negative tumours
To gain insights into the biological role of the identified
prognostic miRNAs, we explored the relationships be-
tween their expression and a large compendium of path-
ways, biological processes and molecular functions
represented by gene sets extracted from public (KEGG
[19], Panther [20]) and commercial (GeneGO [21] and
Ingenuity [22]) databases. The analysis was run using
gene expression data to compute a “gene set score” for
each gene set in each sample (see Methods). Correla-
tions between miRNA expression levels and gene set
scores across all tumour samples were calculated and
used for unsupervised hierarchical clustering analysis. In
this way similarities between miRNAs associated to the
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Figure 3 Kaplan-Meier curves of the four miRNAs showing strongest association with distant-metastases free survival (DMFS) in triple-
negative tumours. Patients are stratified into three groups according to the miRNA expression level tertiles. (a) “favourable” miRNAs, whose
expression is associated with better prognosis (HR < 1) (b) “unfavourable” miRNAs, whose expression is associated with poorer prognosis (HR < 1).
The hazard ratio indicates the risk change if miRNA expression rises by one standard deviation.
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pathways represented by their respective gene sets could
be highlighted.
As a result, a clear separation between unfavourable/

favourable miRNAs was obtained (bootstrapping p-value
< 10-4), indicating that their opposite prognostic values
are reflected in the association with different classes of
pathways (Figure 4). Many of the biological themes posi-
tively correlated with unfavourable prognostic miRNAs
are linked to cell motility, a critical step in the promo-
tion of cancer invasion and metastasis, and to the broad
spectrum of motility-related mechanisms such as cell
adhesion, interaction with the extracellular matrix, cyto-
skeleton remodelling and control of membrane proteins
through clathrin-mediated endocytosis. Others relate to
intracellular signalling pathways, such as those activated
by growth factors (TGF-β and the EGFR signalling path-
ways). We also found a positive correlation with the
renin-angiotensin system, a process reported to be
involved in regulation of tumour angiogenesis in ER-
negative breast cancers [23]. Conversely, favourable
prognostic miRNAs were found to be associated with ac-
tivities linked to proliferation such as enhanced cell div-
ision, inhibition of apoptosis, DNA repair, protein and
DNA synthesis and metabolism.

Subtype-specific miRNAs
To understand the role of miRNAs in the establishment
of tumour transcriptional phenotypes we also investi-
gated miRNA expression patterns across different intrin-
sic molecular subtypes, as defined by the PAM50
classification method [1]. To this aim we carried out
univariate ANOVA analysis and identified 46 miRNAs
differentially expressed across the five intrinsic subtypes
(q-value < 0.001). Of these, 13 showed highest expression
in basal-like, 23 in luminal tumours (A or B), 6 in
normal-like and 4 in HER2 tumours (Additional file 8:



Figure 4 Pathways associated to the expression of prognostic miRNAs. 2D Hierarchical Clustering heat map using Spearman correlations
between prognostic miRNAs in TNBC and ER-negative breast tumours (heat map columns) and gene set scores representing pathways activation
(heat map rows). Gene set sources are indicated in brackets: GG (GeneGo), I (Ingenuity), K (KEGG), P (Panther). The p-value on the dendogram
indicates the statistical significance of the clusters, evaluated using bootstrapping analysis (n = 10.000).
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Figure S12 and Additional file 4: Table S2). One of them
(miR-193a-3p) was also prognostic in triple-negative tu-
mours. When we compared the list of specific subtype
miRNAs with that of the miRNAs influenced by DNA
copy number changes we found 15 miRNAs shared be-
tween the two groups, representing a statistically signifi-
cant overlap (Fisher test p-value < 0.001). This data
indicates the tendency of specific subtype miRNAs to be
regulated at the genetic level, by an altered number of
copies. Results on subtype-specific miRNAs are consist-
ent with those reported from independent studies [7,24]
(Additional file 8: Figure S16). Notably, among the
miRNAs most up-regulated in basal-like tumours we ob-
served members of the miR-17-92 cluster (miR-20a,
miR-92a, miR-17/*, miR-19a/b, miR-18a) and its paralog
miR-106b-25 (miR-106b, miR-93). These two miRNA
clusters have been reported to be amplified and/or over-
expressed in a variety of hematopoietic and solid tu-
mours, including breast [25], and are emerging as key
modulators of various cancer –associated processes, in-
cluding proliferation, apoptosis and angiogenesis
(reviewed in [26,27]).

Analysis of gene sets potentially influenced by individual
miRNAapt
We isolated for each miRNAapt the list of genes pre-
dicted to be targeted by prediction algorithms and, at
the same time, being anti-correlated to the miRNAapt,
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assuming these lists to be enriched for real targets, as il-
lustrated above.
Running a gene set enrichment analysis on these

targets-enriched lists we could then establish a link be-
tween miRNAapt and the gene sets potentially
influenced by their action (Additional file 7: Figure S4).
For the identification of the pathways and tran-

scriptional signatures influenced by miRNAapt we
used an adaptation of the approach described by
Creighton and colleagues [28], based on gene set en-
richment analysis of miRNAs predicted targets
through Fisher’s exact test. The algorithm was modi-
fied to use for each miRNA only the list of anti-
correlated predicted targets, and to run against a
comprehensive compendium of published gene sets,
representing published transcriptional signatures
(the Molecular Signatures Database) [29] as well
pathways, biological processes and molecular func-
tions extracted from public (KEGG [19], Panther
[20]) and commercial (GeneGO [21] and Ingenuity
[22] databases.
In this way a link between each miRNAapt and the

gene sets potentially influenced by its suppressive action
could be established.
As a result, for the 43 identified miRNAapt the ana-

lysis retrieved a total of more than 200 gene sets (using ~
4,000 gene sets as input) that were significantly associated
to one or more miRNAapt. The complete set of results is
reported in Additional file 6: Table S3.
The whole procedure was verified using external

data on 11 miRNAapt, from an independent study by
Linsley et al. [30]. For these miRNAs, the effects on
the predicted targets had been experimentally deter-
mined using miRNA transfection experiments in in-
vitro cancer cells, followed by gene expression ana-
lysis by microarrays. In this way, they had derived for
each miRNA the list of down-regulated targeted tran-
scripts in in-vitro cell lines.
We observed that these mRNA gene sets were cor-

rectly predicted by our algorithm as being respect-
ively influenced by the 11 miRNAapt tested. In fact,
for each of these miRNAapt, the experimentally
validated list of its target genes showed up as the
most significantly enriched gene set (p-value < 10-8,
Additional file 10: Figure S18), thus providing direct
evidence of the validity of the method. Moreover,
the procedure has been extended based on miRNA
validated targets reported in the miRTarBase [9]. For
miRNAs for which significant information on vali-
dated targets was available, such as let7-b, miR-17
and miR-29c, we could confirm many of our infer-
ences on their targeted pathways. Examples are miR-
17 association with PI3K-AKT and TGF signalling
pathways, let7-b association with PI3K and miR-29c
association with PTEN pathways (Additional file 4:
Table S2), discussed more extensively below.

Transcriptional signatures and pathways potentially
impacted by the action of subtype-specific miRNAs
Of the 46 subtype-specific miRNAs, 14 were classified as
miRNAapt suggesting a potential role of these miRNAs
in influencing the expression levels their targets (Fisher
test p-value < 10e-5). Among these are miRNAs of the
miR-17-92 (miR-17, miR-20a, mir-18a, miR-19a/19b,
and miR-92a) and miR-106b-25 (miR-93, miR-106b)
clusters, all up-regulated in the basal-like subtype of
breast cancer. These miRNAs were associated to gene
sets reported to be over-expressed in luminal and ER-
positive tumours or over-expressed in low-grade tu-
mours, in independent studies (Figure 5).
In addition, miR-19b links to a gene set that is up-

regulated in the HER2 positive subtype of the disease.
We also observed the association with cancer related

gene sets, such as the MYC down-regulated gene set
(miR-17 and miR-18b), as well as gene sets representing
mTOR and PTEN pathways (miR-19a/b). Other gene
sets associated to miR-17-92 cluster include those re-
lated to tumour proliferation, such as the PDGF (miR-
18a), TGF-β (miR-17) and FGF (miR-92a) pathways, as
well as gene sets involved in cell migration (miR-18a)
and endocytosis (miR-17, miR-18a). Furthermore, we ob-
served the association of an epithelial-mesenchymal
transition transcriptional signature by miR-17, miR-19a/b
and miR-106b. miR-19b is also linked to elements of focal
adhesion and endothelium, while miR-92a is involved with
the regulation of cytoskeleton.
When we looked at luminal A and B specific miRNAs,

we found that let-7b/c and miR-29c link to gene sets
that were down-regulated in luminal and ER-positive tu-
mours and up-regulated in basal-like and ER-negative
tumours. Cell cycle, proliferation and tumour grading
gene sets are also found to be associated with let-7b/c,
consistently with their reported role of as tumour sup-
pressors, functioning as inhibitors of the cell cycle and
regulators of apoptosis [31]. Interestingly, additional
gene sets influenced by let-7b/c relate to the regulation
of the immune system, in keeping with the proposed
tumour suppressor role of let-7 [32].
In order to assess the validity of our findings on the

functional role of identified subtype-specific miRNAapt
we have compared our results with experimental ones,
derived from published independent in-vitro and in-vivo
functional studies by others on miR-17-92 and miR-
106b-25 miRNAs (Additional file 8). Many of these ex-
periments confirmed our proposed relationships be-
tween miRNAs and the gene sets and pathways
influenced by their action. These include experiments on
miR-17-92 and miR-106b-25 clusters.



Figure 5 Pathways and signatures potentially influenced by the action of miRNAapt. For each miRNAapt (columns), the heatmap
represents gene set enrichments (expressed as the -log10 of the Fisher-test p-value), in the list of individual anti-correlated miRNAapt target
genes. miR-106b-25 and miR-17-92 cluster members are respectively highlighted in red and purple. Gene set sources are indicated in brackets:
GG (GeneGo), I (Ingenuity), K (KEGG), P (Panther), L (Literature).
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Discussion
We present the results of the integrated analysis of
miRNA, mRNA and DNA data from a large breast can-
cer cohort strongly enriched for triple-negative types
and extensively annotated with clinical and pathological
information. The work spans multiple lines of analysis,
aiming to elucidate different aspects of miRNA breast
cancer biology.

What are the links between genomics aberrations, miRNA
expression levels and transcriptional down-regulation of
target genes?
We found the expression levels of 64 miRNAs to be sta-
tistically influenced by DNA copy number changes. This
behaviour effects in particular sub-type specific miRNAs
and supports the notion that copy number alterations of
miRNAs account partly for miRNA gene deregulation
[13]. Of these 64, respectively 11 and 6 miRNAs fall into
regions of focal recurrent amplifications and focal recur-
rent deletions, pointing towards a frequent expression
perturbation of these miRNAs as result of underlying
DNA aberrations.
As tumours harbour a great amount of transcrip-

tional alterations it is difficult to distinguish “causes” -
occurred upstream in the process of tumour formation -
from downstream “effects” events. The identification of
genetically driven miRNAs helps highlighting those
miRNAs that have been altered upstream in the chain of
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deregulation events, therefore being more likely to play
a role in the establishment and maintenance of the
tumour phenotype.
With respect to the relationships between miRNA and

cognate targets, recent evidence indicates that miRNAs
influence gene expression mainly by causing degradation
of their target mRNAs, and only to a smaller extent by
inhibiting protein translation [33,34]. However, in line
with previous miRNA-mRNA analyses of breast tu-
mours, as well as other settings [35,36], our data showed
a general lack of correlation between miRNA expression
and predicted mRNA targets. This is possibly due to the
large presence of false positives in the list of predicted
targets. An additional explanation can be that the effects
exerted by miRNAs on their targets are limited to a sub-
set of miRNAs, rather than being broadly extended to all
of them.
By means of a specific analytical workflow we identi-

fied 43 of these miRNAs - that we named miRNAapt.
We then established functional links to the pathways
and gene signatures on which miRNAapt are likely to
exert a negative control.

Do miRNAs hold potential as prognostic markers in ER-
negative and triple-negative breast cancer?
We have identified 14 miRNAs associated with clinical
outcome in the set of all ER-negative cancers; 7 of these
were associated with prognosis also in the sub-group of
triple-negative tumours. We have then endeavoured to
shed light on the pathways associated to the expression
levels of each of these prognostic miRNAs. Our analysis
did not allow us to distinguish between associative and
causal relationships. However, the correlation of un-
favourable prognostic miRNAs with a number of cancer
related pathways provides indirect (and independent)
evidence of their association with the biology of the tu-
mours. In fact, among the pathways correlated with un-
favourable miRNAs, we found a recurrent emergence of
cell motility and related mechanisms - processes that are
known to facilitate the invasion of surrounding stromal
tissues [37,38].
Other emerging themes associated with unfavourable

miRNAs were those related to TGF-β and EGFR intra-
cellular signalling pathways – known to play a pivotal
role in metastasis [37,38] – and to the stromal receptor
EDNRB – which is described as being involved in the ac-
quisition of invasive potential of pre-malignant breast le-
sions [39]. Surprisingly, favourable miRNAs were instead
found to be positively associated with cell activities re-
lated to proliferation. A possible explanation for this
association is that tumour proliferation, as inferred from
transcriptional data, could mirror the enhanced engage-
ment and/or proliferation of immune cells (B- and T-
lymphoid cells), thus representing a protective factor.
A positive association between a proliferation metagene,
a B cell metagene and good outcome in breast cancers
has been observed by others in independent data sets
(TRANSBIG breast cancer cohort, [40]). Further indica-
tions of the puzzling relationship between proliferation
and patient survival in triple-negative breast cancers come
also from recent studies, reporting the lack of association
between standard markers of proliferation and prognosis
in these types of tumours [41,42].
When we compared our results with those obtained

from independent data sets [7,17,18], no overlaps were
found. These results point towards the elusive nature of
miRNAs when endeavours are made to validate their
prognostic associations across independent studies as
also previously highlighted [7]. Noticeably, lack of
consistency also emerged when the three external stud-
ies were compared between themselves. Beyond the dif-
ferent powers deriving from different sample sizes of the
studies, other factors may account for the observed
inter-study differences. Among these are the cohort
demographics (we selected patients who had not have
received neo-adjuvant treatment to avoid biases due to
pre-surgery treatment while the other studies considered
mixed populations). Another element which might
account for inter-study differences is the impact of
histopathological characteristics on the association of
miRNAs expression with the clinical follow-up - in par-
ticular the level of lymphocytic infiltration, as we have
observed in our data. Thus, reported associations of
miRNA expression levels with prognosis might mirror -
at least in part - different degrees of tumour lymphocytic
infiltration, more than miRNA specific processes occur-
ring in tumour epithelial cells. In fact, even though stro-
mal cells are only a minority of the whole tumour
sample, miRNAs from both epithelial and stromal com-
partments will have been profiled and contributed to as-
sociations observed. A related confounding factor is the
inherent heterogeneity of triple-negative breast cancer
[43], whose subclasses might be differentially repre-
sented across different patient data sets.
These aspects are particularly critical in consideration

that the great majority of miRNAs are only weakly asso-
ciated with prognosis, and point towards the need to
take them into account when molecular-prognostic stud-
ies are carried out. Further experimental efforts are
needed to shed light on the functional role of each of
these miRNAs in the triple-negative breast cancer set-
ting. By complementing top-down statistical approaches
with the acquisition of functional information it will be
possible to understand the biological mechanisms under-
pinning the link of a given miRNA to prognosis, and
possibly allowing dissection of the reasons why this link
can be lost in different patient cohorts. The pathway
correlation analysis we have carried out for the 14
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prognosis associated miRNAs represents an endeavour
in this direction. However, whilst internal cross-
validation checks of our results with the results from
pathway analysis together provide an indication of their
statistical and biological significance, further functional
validation is warranted.

How are miRNAs expressed in different intrinsic tumour
subtypes?
We found 46 miRNAs differentially expressed across
different intrinsic tumour subtypes, 13 and 23 respec-
tively showing the highest expression in basal-like and
luminal A and B tumours (Additional file 8: Figure S12
and Additional file 4: Table S2). As anticipated from the
known relationships between the different classification
schemes and pathological tumour features, miRNAs as-
sociated with the basal-like intrinsic subtype tend to be
also over-expressed in triple-negative and high-grade tu-
mours. The comparison of our results with equivalent
analyses run in independent studies [7,24] showed a very
good level of agreement, therefore confirming their valid-
ity (Additional file 8: Figure S15). Of interest, the link
between breast cancer PAM50 subtypes and miRNA ex-
pression was also recently reinforced by the extensive ana-
lysis run by The Cancer Genome Atlas Network (TCGA)
[8]. Here the authors presented an integrated genomic
analysis of 501 breast cancer samples, classified on the
basis of mRNA expression - using the same PAM50
classification criteria we have used - as well as miRNA
expression. They demonstrated a strong convergence
between the miRNA- and mRNA (PAM50)-based classi-
fication systems, pointing towards the fact that the
PAM50 subtype classification is reflected, at the miRNA
level, into the subtype-specific expression of a large
number of miRNAs.
We found the expression levels of 15 of the 46 subtype

specific miRNAs to be significantly associated with DNA
copy number changes, indicating a large fraction of
miRNA expression differences between different mo-
lecular subtypes can be ascribed to upstream genetic
tumour aberrations. These include the miR-17-92 and
the miR-106b-25 miRNA clusters, highly up-regulated in
the basal-like tumours in this series and reported to be
amplified and over-expressed in various tumours. These
clusters also function as modulators of different cancer
processes, including proliferation, apoptosis and angio-
genesis (reviewed in [26,27]).

What is the role of subtype-specific miRNAs in the
establishment of different tumour transcriptional
phenotypes?
Out of the total of 46 subtype-specific miRNAs, 14 were
also identified to function as miRNAapt, suggesting a
tendency of subtype-specific miRNAs to influence the
expression levels of their targets. These included the
basal-like breast cancer specific clusters miR-17-92
(miR-17, 18a, 19a, 19b, 92a) and miR-106b-25 (miR-
106b, miR-93), and the luminal breast cancer specific
miR-425 (luminal B), let-7b/c and miR-29c (luminal A).
Clusters miR-17-92 and miR-106b-25 were shown to
impact on transcriptional signatures reported to be up-
regulated in ER-positive, luminal tumours or down-
regulated in ER-negative basal-like tumours (Figure 6).
These findings open up a new perspective on the

interpretation of these signatures, supporting the hy-
pothesis that they can be significantly influenced by
the action of mi-17-92 and miR-106b-25 clusters. By
also taking in consideration the miRNA-DNA and
miRNA-mRNA associations previously discussed, a
picture could be delineated in which genomic aber-
rations could contribute to the establishment of the
transcriptional phenotype of basal-like tumours by
altering the expression levels of miR-17-92 and miR-
106b-25 miRNAs (along with that of their respective
host genes c13orf25 and MCM7) which, in turn, de-
crease the transcript levels of luminal-specific gene
signatures. It should be noted that the detected
DNA losses of the miR-17-92 region seem to affect
the expression of the miRNA cluster only to a lim-
ited, and not statistically significant, degree (Figure 6,
Additional file 8: Figure S15). Conversely, luminal A
specific miRNAs (let-7b/c and miR-29c) were found
to target gene sets down-regulated in luminal and
ER-positive tumours.
What is the role of subtype-specific miRNAs in the
regulation of oncogenic pathways?
We have identified and described a large number of
cancer-related pathways potentially influenced by the ac-
tion of miRNAapt. These include the MYC, mTOR,
TGF-β and PTEN and AKT pathways as well as a tran-
scriptional signature of EMT.
Our findings were supported by published experimen-

tal evidences of others (Additional file 8), altogether
pointing towards the plausibility of the inferences gener-
ated by our analytical procedure on the gene sets
influenced by subtype-specific miRNAapt. Some of our
findings could also be confirmed when only experimen-
tally validated targets were used for the analysis, as
extracted from the miRTarBase database [9]. Examples
are miR-17 association with PI3K-AKT and TGF signal-
ling pathways and let7-b association with PI3K and miR-
29c association with PTEN pathways (Additional file 4:
Table S2).
Analyses of cancer genes co-amplified/co-deleted with

miRNAs indicate that some of the identified links be-
tween these two miRNAs and oncogenic pathways could



a)

b)

c)

Figure 6 Summary of the integrated genomic analysis of miR-17-92 and miR-106b-25 clusters. (a) DNA gains and losses respectively
occurring in the miRNA clusters genomic locations. Frequencies of DNA gains (Y axis, green colour) and losses (Y axis, red colour) along the genome
sequence (X axis) are represented. Data refer to the selected sub-cohort of basal-like tumours. (b) DNA gains in genomic regions 13q31.3 and 7q22.1
drive the up-regulation of the respective miRNA clusters in basal-like tumours. The two paired panels show miRNA cluster expression across tumours
with DNA gains (orange), losses (white), no changes (yellow) of the respective loci (left) and different intrinsic subtypes (right) (c) down-stream effects
observed to be driven, at the transcriptional level, by the up-regulation miR-17-92 and miR-106b-25 clusters in basal-like tumours.
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be due to associative rather causal relationships. Exam-
ples are miR-93 and miR-106b, co-amplified with PI3K
and MET and miR-548 co-amplified with MYC.
Whilst a conclusive proof of our analytical findings

will have to await functional experiments in basal-like
breast cancer models, we believe these pieces of
evidence provide indication of the overall validity of our
analyses.

Conclusions
In this study we analysed miRNA, mRNA and DNA data
integrated with pathological and clinical information in a
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large and well-characterised cohort of triple-negative
breast cancers. The results presented advance current
knowledge of the role of miRNAs as modulators of
oncogenic processes in these types of tumours, shedding
light on their function in the control of subtype-specific
transcriptional signatures and potential as biomarkers.
Moreover, this study provides a conceptual framework,
as well as integrative methods and system-level results
to dissect the relationships between DNA genomic aber-
rations and down-stream perturbations of miRNAs, tar-
get genes and biological pathways.
Methods
Patient characteristics
This study considered a retrospective series of 173 pa-
tients with early primary breast cancer, treated at Guy’s
and St Thomas’ Hospitals, London, UK between 1979
and 2001. The end of study was fixed at January 2007,
insuring all patients had at least 5.5 years follow-up. Eth-
ical approval for the analysis of tissue samples and pa-
tient notes was obtained from the local research ethics
committee and in accordance with the ethical principles
expressed in the Declaration of Helsinki. Written in-
formed consent for participation in the study was
obtained from all participants. Access to the pseudo-
anonymised samples (and clinical data) was obtained in
accordance with the principles of the Guy’s & St Thomas
Research Tissue & Data Bank (REC No 07/H0804/131).
(Guy’s Research Ethics Committee. Ref. 07/H0804/131
Approved on 19/03/2008).
After surgery, patients received adjuvant chemother-

apy, adjuvant hormone therapy, adjuvant radiotherapy or
a combination of these (details of treatment for each pa-
tient are available in Additional file 3: Table S1).
The clinical endpoints considered were distant meta

stases-free survival (DMFS) and breast cancer specific
survival (BCSS).
Sample preparation
An H&E stained section was cut from each sample of
frozen tissue to assess the presence of invasive tumour,
to determine cellularity and as a guide for needle micro-
dissection. Subsequent frozen sections were stained with
Nuclear Fast Red (NFR) and needle micro-dissected re-
moving all normal or non-invasive tissue. The remaining
micro-dissected regions with greatest density of invasive
tumour cells were selected for nucleic acid extraction.
RNA and DNA were extracted using the miRNeasy Mini
(Cat. No. 217004) and DNeasy Blood & Tissue (Cat. No.
69504) Qiagen kits respectively, using the manufacturer’s
protocols. The quantity and purity of nucleic acids were
assessed using Thermo Scientific NanoDrop™ 1000,
which generated spectrophotometric analysis of the
RNA and DNA concentrations (ng/μl), and 260/280 and
260/230 ratios for each sample.
Based on spectrophotometric analysis, samples identi-

fied with any obvious contamination were purified using
modified Qiagen protocols. RNA integrity was assessed
by using the 2100 Bioanalyzer system, with the RNA
integrity number (RIN) obtained using Agilent RNA
6000 Nano Kit (Cat. No. 5067-1511). DNA quality was
assessed using 1% agarose gels. Minimum RNA quality
requirements for genomic profiling were: i) 60 ng/μl in
10 μl total volume ii) 260/280 ratio ~2, 260/230 ratio >
1.5 and iii) Bioanalyzer (RIN number) > 5. Minimum
DNA quality requirements were: i) 50 ng/μl in 30 μl
total volume and ii) 260/280 ratio ~2. DNA, miRNA and
mRNA profiles were obtained by using Agilent Human
8x15k miRNA arrays, (based on Sanger miRBase release
12.0, containing probes for 866 human and 89 human
viral miRNAs), Affymetrix Exon 1.0 ST arrays, and
Affymetrix SNP 6.0 arrays, respectively. Standard manu-
facturer protocols were followed for the amplification,
hybridisation, washing, and scanning of the samples.

Tumour classification
The study was conducted using for each tumour, two
mirror samples respectively frozen and formalin fixed
and paraffin embedded (FFPE). The frozen samples were
used for nucleic acids extraction and the FFPEs were
assayed by IHC and CISH using Tissue Microarrays
(TMA).
All the tumours were histologically classified using the

Guidelines for Pathology Reporting in Breast Cancer
Screening approved by the NHS Breast Screening
Programme (NHSBSP) and The Royal College of Patholo-
gists (RCPath) NHSBSP Publication No 58 January 2005.
Representative areas of the invasive FFPE tumours

were marked for TMA core extraction. TMAs were
made in triplicate from the tumour representative areas
and 3 μm sections were cut for immunohistochemistry.
The expression of ER, PR and HER2 was re-assessed on
the TMAs and compared with original receptor data
used for clinical decisions. Immunohistochemical dem-
onstration of ER (clone SP-1), PR (clone 1A6) and HER2
was carried out using the automated Leica BOND-Max
system. HER2 was also repeated on the automated
Ventana system HER2 module using the proprietary
ready to use FDA approved kit. In addition, HER2 (2+
cases) were assessed using Dual-chromagen/Dual-hapten
In-situ hybridisation (DDISH) staining on the Ventana
system. ER and PR status were considered positive if the
average Allred score for triplicate cores was more than
2 [44]. If any of the triplicate TMAs had a score of 3+ or
2+ with a HER2 CISH ratio of >2.0 the case was con-
sidered to have a HER2 positive status [45]. Additional
details of receptor demonstration and evaluation are
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described in [10]. Invasive tumours were histologically
graded using the Nottingham method [46]. Tumours
were then classified according to the status of the three
receptors: “ER-negative/HER2-minus/PR-minus” (TNBC),
“ER-/HER2 + ” and “ER+/HER2-”. Cases where the infor-
mation on any of the three receptors was uncertain, miss-
ing or not confirmed by gene expression (ER, PR) and
DNA copy number (HER2) array data were classified as
“others”.

Tumour subtype assignment based on PAM50
classification
Intrinsic molecular subtype was assigned on 142 tumour
samples, for which gene expression data were available.
Nearest centroid classification was performed by using
the PAM50 class centroids from Parker et al. [1], using
tumour gene expression data. Since the composition of
our dataset was significantly enriched for triple-negative
breast cancers, therefore deviating from the original data
set composition used to develop PAM50 centroids, we
used an iterative classification procedure based on ran-
dom sampling, as described in [10].

Genomic data processing
miRNA expression data
miRNA data were pre-processed using the AgiMicroRna
(www.aroma-project.org) R package [47]. Quality of indi-
vidual arrays was assessed by visual evaluation of RLE
(relative log expression), NUSE (normalised unscaled
standard error) and hierarchical clustering plots. Robust
Multichip Analysis (RMA) methodology [48] was used
to remove the array signal background, followed by
quantile normalisation to correct for inter-arrays global
differences and by miRNA level summarisation. miRNAs
not detected or having saturated signal in more than 10
samples were filtered out. Replicated samples for the
same patient were averaged.

mRNA expression data
ExonArray data pre-processing was performed on the R
platform using the “aroma.affymetrix” R package (www.
aroma-project.org). RMA was used to remove the array
signal background, followed by quantile normalisation to
correct for inter-arrays global differences and by gene
level summarisation. For this latter step probe sets were
mapped to ENSEMBL genes using the mapping file
(HuEx-1_0-st-v2, U-Ensembl49, G-Affy.cdf) generated
by the aroma.affymetrix team [49]. Quality of individual
arrays was assessed by visual evaluation of RLE (relative
log expression), NUSE (normalised unscaled standard
error) and hierarchical clustering plots. Samples present-
ing outlier behaviour were excluded from the analyses.
Replicated samples for the same patient were averaged.
miRNA copy-numbers
Array quality using Contrast Quality Control (CQC) and
Median of the Absolute values of all Pairwise Differences
(MAPD) methods provided by the Affymetrix Geno-
typing Console version 3.0 and low-quality arrays
were excluded from further analyses. Arrays were
then pre-processed using methods available in the R
package “aroma.affymetrix” including techniques to
remove systematic bias introduced due to PCR frag-
ment length bias, differences in GC content and
allelic cross talk. Raw DNA copy numbers were de-
termined as shown in [50]; pre-processed signals
from tumour samples were compared to the pooled
data obtained from normal lymphocyte DNA from
17 patients. Raw DNA copy numbers were seg-
mented using the circular binary segmentation
method [51]. Probe-sets within copy-number aberra-
tions that were present in more than 5% of normal
samples as well as those located in common copy
number polymorphisms were removed. Probe-set
data were aggregated at microRNA-centric level by
using the mean copy number of the probe sets
within the genomic regions of the respective microRNA
loci. Replicated samples for the same patient were aver-
aged. miRNA genomic coordinates from miRBase ver-
sion 18 were used (Genome assembly: GRCh37, ftp://
mirbase.org/pub/mirbase/18/genomes/hsa.gff3). Genomic
position and absolute and sample-by-sample DNA copy
numbers of all miRNAs analysed are reported in
Additional file 11: Table S6.
All miRNAs in the study were annotated using the

largely adopted miRBase as the reference (version 18).
miRNAs located on genomic transposable elements
(TEs) were downloaded from a recent study of
Piriyapongsa and collegues, reporting the list of miRNAs
putatively and/or validated to be co-located with TEs
[14]. Based on their results, we have assigned 30
miRNAs (e.g. miR-548d-5p) as co-located with TEs and
therefore not assigned to a specific genomic location
(Additional file 4: Table S2).
The extensive Cancer Genome Atlas Network (TCGA)

work has been used as a reference for genomic regions
frequently amplified/deleted as well as arm-level gains
and losses (773 breast tumours), using reported data
from basal-only and total breast cancers analyses [8].
miRNAs located on TEs, given their uncertain location

were excluded from any analysis related to DNA copy
numbers.
Statistical analyses
A global view of the integrated analytical workflow used
to generate the presented results is given in Additional
file 1: Figure S1.

http://www.aroma-project.org
http://www.aroma-project.org
http://www.aroma-project.org
ftp://mirbase.org/pub/mirbase/18/genomes/hsa.gff3
ftp://mirbase.org/pub/mirbase/18/genomes/hsa.gff3
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Survival analysis
Kaplan-Meier analysis was used for calculation and
visualization of survival curves, and Cox-regression
models followed by Wald test were used to determine
the statistical association between the expression of each
miRNA and distant metastases free survival (DMFS)
or breast cancer specific survival (BCSS). Analyses
were run separately of for different tumour groups: “all
tumours”, “TNBC”, “ER-negative” and different Cox-
regression models were used, with or without consider-
ation of histological grade as a covariate (grouped as
“low” for tumour grades 1 and 2 and “high” for grade 3).
When more than one sample was available for the same
patient, the average of miRNA expression values was
used. Averaging of biological replicates among single
measurements implied violation of the assumption of
I.I.D. (independent and identically distributed) errors.
However, this was done only for a very limited number
of samples and comparison with results obtained from
statistical analyses without using sample replicates
showed no relevant differences.
To adjust for multiple testing, false discovery rate

(FDR) q-values were calculated from the Wald test p-
values, using Benjamin-Hochberg method. miRNA were
considered to be associated to DMFS or BCSS using
combined thresholds 0.002 and 0.2, for log-rank p-value
and FDR q-value, respectively. To avoid any bias due to
pre-surgery treatment, the 3 patients who had received
neo-adjuvant treatment were excluded from the analysis.
Distributions of the resulting log-rank p-values were
compared with random uniform distribution (from 0 to
1), representing p-values that would be obtained by
chance. With all models the obtained p-values were
clearly deviating from uniform distribution with an overall
bias towards low p-values, and therefore deviating from
the results that would be obtained by chance (Additional
file 8: Figure S5). Similar results were obtained when log-
rank p-values were compared with the equivalent p-values
obtained upon Monte Carlo permutation of survival data
(N = 10.000). The expression data for each miRNA were
scaled to unit variance when calculating proportional haz-
ard ratios. All other covariates have been used without re-
scaling. Histopathological covariates were used as follows:
Histological Tumour Grading (1-2 = “low”, 3 = “high”);
Node positivity (yes/no); % of lymphocytic infiltration
(<15% = “low”, > = 15% = “high”); Tumour size (continu-
ous variable measured in cm). With a continuous variable
(e.g. miRNA expression, Tumour size), the hazard ratio in-
dicates the change in the risk of death if the parameter in
question rises by one unit (e.g. 1 cm for tumour size, 1 std
for rescaled miRNA expression values). All analyses were
run using R software and ‘survival’ package. The two ex-
ternal data sets used in the analyses [17,18] were
downloaded from Gene Expression Omnibus, accession
IDs GSE22216 and GSE19536. The array annotation for
the Illumina platform used in GSE22216 (Illumina Human
v1 MicroRNA expression beadchip) was obtained from
GPL8178.

Identification of miRNAs associated with tumour subtypes
ANOVA analysis was used to identify miRNA with dif-
ferential expression across intrinsic subtypes. q-values
were calculated as the ANOVA based p-values, adjusted
for multiple-testing using Benjamin-Hochberg method.
q-value threshold used to define association with cancer
subtypes was 0.001. Similarly, Student’s t-test adjusted
for multiple-testing using Benjamin-Hochberg was used
to identify miRNAs differentially expressed between
pairs of histopathological tumour groups (ER-negative vs
ER-positive, TNBC vs non-TNBC, 1-2 tumour grade vs
3 tumour grade) (q-value threshold = 0.01).

Assessment of miRNA targets
For each miRNA, candidate targets were inferred using data
from six different databases (miRanda, PicTar, TargetScan,
mirBase, miRTarget2, TarBase [52-57]) using the RmiR
package from R Bioconductor (www.bioconductor.org/).
For confirmatory evaluation of our results regarding

the influence of individual miRNAs on gene sets/path-
ways, we used the miRTarBase, a database of manually
curated miRNA-target interactions, validated experi-
mentally by reporter assay, western blot, or microarray
experiments with overexpression or knockdown of
miRNA [9].
Association between miRNA expression and DNA copy
numbers
Association between miRNA expression and perturbation
in the number of DNA copies was evaluated using Spear-
man correlation and Wilcoxon test. The latter was used as
follows: for each miRNA samples were stratified according
to the DNA copy numbers in three groups: 1) copy number
gains (>2.3 copies); 2) copy number losses (<1.7 copies); 3)
copy number neutral. Wilcoxon rank sum test was used to
assess differences in expression between samples with loss
and gains compared to samples without changes. q-values
were calculated as the Wilcoxon based p-values, adjusted
for multiple-testing using Benjamin-Hochberg method.
Thresholds used to define miRNA association with DNA
copy numbers subtypes were q-value < 0.05, Spearman cor-
relation > 0.25. The 30 miRNAs associated with TEs were
excluded from the miRNA-CN correlation analysis.

Association between miRNA expression and gene set/
pathway scores
Gene sets were extracted from public (KEGG [19],
Panther [20]), commercial (GeneGO [21] and Ingenuity

http://www.bioconductor.org/
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[22]) databases. For each gene set, a global ’signature
score' was assigned to each sample for which transcrip-
tional data were available by using the average of the
gene expression level of all the genes of the signature, as
described in [58]. Pathway associated with miRNAs and
discussed in the paper were selected according to the
following criteria: 1) absolute Spearman correlation with
miRNA expression > 0.5; 2) p-value of Spearman correl-
ation (from Spearman's rho statistic) less than 10-6; 3)
ANOVA p-value from comparison of correlation across
different groups of miRNAs (favourable vs unfavourable,
PAM50 subtypes) less than 10-4. In this analysis we pre-
ferred not to adjust for multiple testing, given the strong
degree of dependency between different gene sets. We
used instead very conservative thresholds of associations.
miRNAs and gene set scores were clustered using the
hierarchical clustering algorithm, using Euclidean dis-
tance as distance metrics. The stability and statistical
significance of the clusters were evaluated using the
bootstrapping analysis (n = 10.000) implemented in th
pvclust R package. Correlation values and related statis-
tical significance between miRNA expression and gene
set scores are reported in Additional file 12: Table S5.
A description of all gene sets analysed and gene set
scores for each sample are reported in Additional file 13:
Table S7.

Identification of miRNAapt and assessment of targeted
pathways/signatures
The workflow for the identification of miRNA exerting a
control on the transcriptional levels of their targets
(miRNAapt) is illustrated in Additional file 5: Figure S3.
miRNAapt were selected for having an enrichment in
anti-correlated candidate targets, measured as Benjamin-
Hochberg corrected Fisher-test, q-value < 0.05). Anti-
correlation was defined using -0.3 as the maximum
threshold for Spearman correlation.
For the identification of the pathways and transcrip-

tional signatures targeted by miRNAapt we used an
adaptation of the approach described in [28], based on
gene set enrichment analysis through Fisher-test. For
this we used as gene sets a comprehensive compendium
of published transcriptional signatures (the Molecular
Signatures Database) [29], in addition to pathway data-
bases used for the pathways association analysis de-
scribed above. In this way a statistical link between each
miRNAapt and its targeted gene sets (representing path-
ways or transcriptional signatures) was established. The
thresholds used to assign a gene set to a miRNAapt were
the following: 1) Gene set enrichment of anti-correlated
targets: Fisher test p-value < 0.001 2) size of the overlap
between each gene set and the list of anti-correlated
miRNA targets > 3; 3) size of each gene set < 500.
The procedure of identification of a miRNAapt and
assignment of transcriptionally targeted gene sets was
tested on 11 miRNAapt, for which the down-stream tar-
gets had been previously experimentally determined
upon transfection in cultured cancer cells, followed by
microarray gene expression experiments [30].
Availability of supporting data
Patient demographics, clinical and pathological informa-
tion, are reported in Additional file 3: Table S1 and in-
clude the patient’s age, survival data (DMFS, BCSS),
tumour size, histological grade, nodal status, surgery and
treatments and estrogen (ER), progesterone (PR) and hu-
man epidermal growth factor receptor 2 (HER2) status.
miRNA and mRNA microarray data have been

deposited ins GEO public repository with ID GSE40267
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40267).
DNA copy number data and mRNA transcriptional
gene set scores used for the analyses are accessible in
Additional file 11: Table S6 and Additional file 13:
Table S7.
Additional files

Additional file 1: Figure S1. Global description of the analytical
workflow used to generate the presented results (in red), through the
integration of genomic, clinical and pathological information.

Additional file 2: Figure S2. Sample data and tumour classification. a)
Profiling data available for different tumour classes. b) Heatmap showing
different tumour characteristics: PR, ER, HER2 receptor status according to
IHC; histological grade; molecular intrinsic subtype assigned using
transcriptional data and the PAM50 algorithm.

Additional file 3: Table S1. Patient and sample characteristics. These
include patient treatment, age, survival data (DMFS, BCSS) and
pathological features of the extracted tumour samples.

Additional file 4: Table S2. miRNA integrated analysis results summary.
miRNA ALL worksheet: for each miRNA represented on the Agilent chip
the following information are reported: genomic position, statistical
association between expression and DNA copy numbers, mean
expression in different PAM50 intrinsic subtypes miRNA assoc. with CN
changes worksheet: list of miRNA whose expression is associated with
DNA copy number changes of the respective genetic loci. The
occurrence of each miRNA in regions of recurrent DNA amplifications/
deletions in basal-like and all-breast cancer populations, as reported in
the extensive TCGA study [8], is indicated. miRNA assoc. with PAM50
subtypes: list of miRNA differentially expressed between different PAM50
subtypes. PAM50 mRNAs-comparisons: miRNA differentially expressed
between different PAM50 subtypes in our and two external studies
(Blenkiron et al. [24], Dvinge et al. [7]). Guys.miR.CoxRegAllRes: results from
DMFS and BCSS survival analysis on ER-negative and TNBC samples,
using different univariate and multivariate Cox-regression models
(described in Additional File) (Wald test p-value, HR, and FDR corrected
q-values). ExtDataSets.miR.CoxRegAllRes: results from DMFS survival
analysis on ER-negative and TNBC samples, using different Cox-regression
models in external data sets [17,18] (Wald test p-value, HR, and FDR
corrected q-values).

Additional file 5: Figure S3. Correlation between miRNAs and
candidate targeted genes. Distributions of the correlations between the
expression levels of individual miRNAs and their candidate target genes.
Independent analyses were run using six different target prediction
algorithms.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40267
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40267
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40267
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40267
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40267
http://www.biomedcentral.com/content/supplementary/1471-2164-14-643-S1.pptx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-643-S2.pptx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-643-S3.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-643-S4.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-643-S5.pdf
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Additional file 6: Table S3. miRNAapt and gene sets/pathways
transcriptionally silenced. miRNAapt_FDR worksheeet: for each miRNA
represented on the Agilent chip the FDR q-value of the enrichment of
anti-correlated targets in the list of candidate targets obtained from
different algorithms is reported. This value (MIN(q-value)<0.05) has been
used to identify miRNAs exerting a transcriptional effect on their
candidate targets. miRNAapt_pathways worksheeet: for each miRNAapt
the list of gene sets (representing different pathways and transcriptional
signatures) inferred to be influenced by the miRNAapt is reported.
Analyses were run using different miRNA target prediction algorithm.
miRNAapt pathways miRTarBase: for each miRNAapt the list of gene sets
(representing different pathways and transcriptional signatures) inferred
to be influenced by the miRNAapt is reported. Analyses were run using
for each mRNAapt the list of experimentally validated targets extracted
from miRTarBase.

Additional file 7: Figure S4. Identification of miRNAapt and
assessment of transcriptionally targeted pathways/signatures. a) Analytical
workflow for the identification of miRNAapt and assessment of the
respective transcriptionally targeted pathways and signatures b) Top:
Details of step 3. Scatter plot showing the enrichment for anti-correlated
candidate targets (Spearman correlation < -0.3) of all miRNAs represented
on the chip. 43 miRNAapt - selected for having an FDR q-value < 0.05 -
are shaded in brown. X axis: miRNAs, ordered according to increasing
levels of enrichment. Y axis: -log10 of the Benjamin-Hochberg corrected
Fisher-test q-value of the enrichment. Bottom: Details of step 4.

Additional file 8: Details of the analyses carried out for associations
with survival and characterization of PAM50 subtype-specific miRNAs.

Additional file 9: Table S4. Results of univariate Cox-Regression model
analyses in TNBC and ER-negative samples. Histological Tumour Grading
(1-2, 3); Node positivity (pos/neg); % of lymphocytic infiltration (<15% =
“low”, >=15% = ”high”). Tumour size (continuous variable measured in
cm). With a continuous variable the hazard ratio indicates the risk change
if the parameter in question rises by one unit.

Additional file 10: Figure S18. Heat map representing the gene set
enrichments (expressed as the -log10 of the Fisher-test p-value) of
experimentally validated targeted gene sets (rows), targeted by different
miRNAapt (columns) through experimental analyses (as reported in [29]).
Each gene set represents the list of genes down-regulated upon over-
expression of a miRNA in the HCT116 cell line, as inferred from
microarray experiments after 10 or 24 hours from transfection. The
analysis shows that the sets of genes determined to be targeted by each
miRNA are also inferred to be directly targeted - with high statistical
significance - upon the application of our method to the same miRNA.
Links between miRNAapt and targeted sets are highlighted using
corresponding colours.

Additional file 11: Table S6. Genomic position and absolute and
sample-by-sample DNA copy numbers of all miRNA represented on the
Agilent chip. DNA copy numbers were obtained through the processing
of SNP Array data (see Methods).

Additional file 12: Table S5. Spearman values and related statistical
significance of the correlation between miRNA expression and gene set
scores. Only correlations with absolute values > 0.4 and p-values < 10-4
are reported.

Additional file 13: Table S7. GENE_SETS DESCRIPTION worksheet:
description of all gene sets used in the analyses. GENE_SETS_SCORES
worksheet: sample-by-sample scores of all gene sets used in the analyses.
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