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Abstract

Background: Low temperature leads to major crop losses every year. Although several studies have been
conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana
(A. thaliana) ecotypes, genome-scale molecular understanding is still lacking.

Results: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating
from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response
diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6
microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498
transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype
specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project,
we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of
non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering
the limited knowledge about regulatory interactions between transcription factors and their target genes in the
model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis
(NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting
regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target
genes.

Conclusions: A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing
cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to
delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana.
The predicted regulatory network model was able to identify new ecotype specific transcription factors and their
regulatory interactions, which might be crucial for their local geographic adaptation to cold temperature.
Additionally, since the approach presented here is general, it could be adapted to study networks regulating
biological process in any biological systems.

Keywords: Arabidopsis thaliana, Ecotypes, Cold stress, Natural variation, Adaptation, Gene expression, Regulatory networks,
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Background
Being sessile organisms, plants have evolved strategies to
survive in unfavourable environmental conditions. Intra-
specific variation in response to environmental stresses is
clearly visible among plant species [1-4]. Understanding
the molecular basis of such local adaption to complex
environmental conditions has proven to be very useful in
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selecting better traits or target genes for modern plant
sciences [5]. Cold stress is a naturally occurring hazard to
world crop production. Cold stress contributes to poor
germination, stunted seedlings, chlorosis, reduced leaf
expansion and wilting, and may also lead to death of tissue
(necrosis) [6]. Exposure to cold stress also slows down the
reproductive development of plants. Plants perceive cold
by the receptor at the cell membrane and a signal is initi-
ated to activate the cold-responsive genes and transcrip-
tion factors for mediating stress tolerance [7,8]. The CBF
cold response pathway has a major role in cold response,
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tolerance and acclimation; however, considerable diffe-
rences in the sets of cold regulated genes were observed
[9]. CBF genes are induced after just few minutes of cold
exposure. They encode a small family of transcription
factors known as CBF1, CBF2, and CBF3 (also known as
DREB1B, DREB1C and DREB1A). Cold induction of CBF
genes regulates a set of about 100 downstream genes.
Among them, the immediate target genes of CBF1-3 in-
clude CRT (C-repeat)/DRE (dehydration responsive element)
elements in their promoter regions. CBF1-3 proteins
bind to this DNA regulatory sequence. The dehydration-
responsive element (DRE) is also known as low tem-
perature response element (LTRE), which contributes to
cold responsiveness [10]. Interestingly, induction of the
CBF regulon enhances both cold and drought tolerance
[11]. Earlier transcriptome profiling studies have shown
that multiple regulatory pathways are activated in
A. thaliana during cold exposure in addition to the CBF
cold-response pathway [12].
Natural variation for cold response and tolerance is an

important element of adaptation and geographic distri-
bution of plant species. There is clear association be-
tween plasticity of gene expression and adaptability of
an organism [13]. There have been several studies focu-
sing on diversity of cold tolerance level in multiple
phenotypically divergent A. thaliana ecotypes [14-16].
McKhann et al. reported that CBF and COR (Cold Regu-
lated) genes respond differently to cold stress in eight
accessions, though they could not find clear correlation
between gene expression, sequence polymorphism and
cold tolerance [17]. However, the molecular basis of the
natural variation during cold stress response in plants
at genome scale is not fully understood yet.
Transcriptional profiling has become a major tool to

identify genes exhibiting transcriptional regulation in
plants as an effect of changing environmental conditions
taking Arabidopsis as a model system [18]. Variation in
experimental conditions and protocols makes it difficult
to extract and compare information from data sets pro-
duced by individual laboratories [19]. To overcome such
problems, we subjected 10 ecotypes of A. thaliana to 5
individual stress treatments and 6 combinations of these
stress treatments under the same experimental set up
and profiling protocols [20]. We have considered all the
cold experiments conducted on 10 ecotypes from this
already published dataset (GEO accession GSE41935), to
explore genome-scale transcriptomic response signatures
of A. thaliana during cold stress treatment. By utilising
data available from recently published A. thaliana 1001
genome project, we further analysed sequence polymor-
phisms in the CBF regulon genes [21].
It is likely that differential expressions or variation in

mRNA stability caused by coding sequence polymor-
phisms significantly contribute to natural variation in
A. thaliana [22]. Information about differentially regu-
lated genes during different stress conditions is often
available as an outcome of microarray experiments.
However, in many cases, little is known about the regu-
lation and interaction of these genes [23]. Being highly
dynamic in nature, any biological system continuously
changes responding to environmental and genetic pertur-
bations. Differential dynamic network mapping of facili-
tates the exploration of previously unknown interactions
[24]. While the A. thaliana genome has ~1922 TFs [25],
experimentally confirmed regulatory relations are available
for less than 100 TFs only (as per information extracted
from the AGRIS database, version updated on September
10th, 2012) [26]. Tirosh et al. explained how regulatory re-
lationships can also be deduced from patterns of evolutio-
nary divergence in molecular properties such as gene
expression [27]. To compensate for the lack of information
on transcription factor activity at the genome scale, several
computational algorithms have been developed to identify
regulatory modules and their condition-specific regulators
from gene expression data [28-30]. Network Component
Analysis (NCA) is such an approach, which has been
successfully implemented in several species including A.
thaliana, to determine both activities and regulatory in-
fluences for a set of transcription factors on target genes
in various perspectives [31-33]. By taking the advantage
of the NCA method, we predict ecotype specific regula-
tory relationships, which provide new information towards
understanding the natural variation in cold response
pattern among different ecotypes of the model plant
A. thaliana.

Methods
Microarray data
We have considered all the cold stress microarray experi-
ments conducted on 10 ecotypes during the ERA-PG
Multi-stress project [20], to explore genome-scale trans-
criptomic response signatures of A. thaliana during cold
stress treatment (microarray data available at GEO with
the accession GSE41935). All the experiments of ERA-PG
Multistress project were set up in environmentally con-
trolled rooms at the plant growth facilities at RISØ DTU
National Laboratory for Sustainable Energy (Roskilde,
Denmark). A pilot study using wild type plants Col and
Ler was set up to find the appropriate conditions at sub-
lethal doses [20]. These initial observations indicated that
an optimal time before the onset of a phenotypic response
(e.g.: wilting, dehydration) while avoiding tissue damage
was 3 hours. Ten A. thaliana wild ecotypes (Table 1) were
grown in soil under long day photoperiod and 24°C in a
greenhouse setting for one generation to amplify homoge-
neous seed for all different genotypes. The obtained seeds
were sown into trays and grown in a Conviron growth
chamber (Winnipeg, Manitoba, Canada) under a 12 hr/



Table 1 Summary of the ecotypes and their gene expression pattern during cold treatment

Ecotypes Differentially regulated transcripts

Ecotype
name

*Geographic origin Latitude
(°North)

Total Total
up

Total
down

Unique
total

Unique
up

Unique
down

Cvi Cape Verdia Islands 16 2004 603 1401 1230 276 954

Kas-1 Kashmir, India 34 1097 487 610 442 153 289

Kyo-2 Kyoto city, western part of Hoshu Island,
Japan

35.5 877 458 419 305 104 201

Sha Shakdara, Tadjikistan 39 620 215 405 268 70 198

Col-0 Columbia, United States 38.5 185 120 65 89 48 41

Kond Kondara, Tadjikistan 38.8 814 428 386 384 167 217

C24 Coimbra, Portugal 40 1427 931 496 758 460 208

Ler Landsberg, Poland 48 619 195 424 348 91 257

An-1 Antwerpern, Belgium 51.5 632 308 324 188 69 119

Eri Erigsboda, Sweden 56 967 804 163 541 427 114

*Geographic origins of the ecotypes were collected from the donor , Arabidopsis 1001 Genome project database [75] and Swindell et al. [13].
This table represents geographic distribution of the 10 A. thaliana ecotypes and number of cold regulated genes in each of the ecotypes (p ≤ 0.01). Up and down
regulation was calculated based on fold change ratios compared to respective untreated controls in individual ecotypes. Ecotype Col-0, which is a cold tolerant
ecotype have very less number of cold regulated transcripts compare to others. On the other hand Cvi, the southernmost accession from a warm climate, exhibits
more number of cold responsive transcripts. (Unique = Unique to the respective ecotype).
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12 hr photoperiod, 24°C and standard A. thaliana growth
conditions. Three week-old plants were then placed for
three hours into the environmentally controlled growth
rooms that were preset to cold stress conditions (10°C).
Triplicated (biological) trays with the wild type controls
were subject to the cold treatment. After the stress treat-
ments, leaves tissue were collected and promptly frozen in
liquid nitrogen for subsequent microarray experiments.

Statistical analysis of the data
Resulting data from the microarray experiments was
pre-processed using the RMA [34] implementation in
the oligo package [35] in R programming platform [36].
Gene annotation was acquired from TAIR10 [37] using
biomaRt data mining tool [38]. Differentially expressed
genes between control and treated plants were identified
using t-test (p < 0.01). Genotype specific responses to
stress were identified by the interaction effect from a
two-way ANOVA [39,40] of the genotype and treatment
effect (p < 0.01). The union of stress responsive genes
was further used for network-based analysis. Heat maps
were plotted using TM4 microarray software suite [41].

Gene set enrichment analysis (GSEA)
The Biological Networks Gene Ontology (BiNGO) tool
[42], an open-source Java tool was used to determine
which Gene Ontology (GO) terms [43] that were signifi-
cantly overrepresented in our differentially regulated
gene lists (p-values were Bonferroni corrected).

Sequence analysis
Sequences for CBFs, and COR genes were downloaded
from A. thaliana 1001 Genome project (http://signal.
salk.edu/). Initially sequences from all available ecotypes
in the 1001 genome database (706) were downloaded,
but incomplete sequences were discarded before the
analysis. Apart from the coding regions, we have consi-
dered 1,000 bp upstream sequences for alignment. All
positions containing gaps and missing data were
eliminated. Multiple sequence analysis performed using
Clustal w [44]. Tajima’s D [45] statistical test to identify
sequences which do not fit the neutral theory model at
equilibrium between mutation and genetic drift were
performed using MEGA5 suit [46].

Network component analysis and network reconstruction
Network component analysis is a computational method
for reconstructing the hidden regulatory signals (TFAs)
from gene expression data with known connectivity
information in terms of matrix decomposition [31,47].
NCA model assumes the log-linear relationship between
target genes expression profiles and TFAs:

Ei tð Þ
Ei 0ð Þ ¼ ∏L

j¼1

TFAj tð Þ
TFAj 0ð Þ

� �CSij

ð1Þ

Where Ei(t) and Ei(0) are the expression values of gene i
at different measurement conditions and reference point 0,
and similarly TFAj(t) and TFAj(0) are the activities of TFj,
and CSij represents the control strength of TF j on gene i.
Taking logarithms, the equation (1) becomes:

log Er½ � ¼ CS½ � log TFAr½ � ð2Þ
Where the matrix Er represents the expression values

of genes at different measurement conditions, matrix CS
is the control strength of each TF on each TG and TFAr

http://signal.salk.edu/
http://signal.salk.edu/
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represents the TFAs of all the TFs. The dimensions of [Er]
is N ×M (N is the number of genes and M is the number
of measurement conditions), [CS] is N × L (L is the num-
ber of TFs), and for [TFAr] is L ×M. We can further
simplify the above equation (2) as:

E½ � ¼ C½ � T½ � ð3Þ
Here expression matrix [E] corresponds to [Er] in equa-

tion (2), connectivity strength matrix [C] is equivalent to
[CS] and transcription factor activity matrix [T] corresponds
to log[TFAr] in equation (2). Based on above formulation,
the decomposition of [E] into [C] and [T] can be achieved
by minimizing the following objective function:

minjj E½ �− C½ � T½ �ð Þjj ð4Þ
s.t. C ϵ Z0

Here Z0 is the initial connectivity pattern. The estima-
tion of [C] and [T] is performed by using a two-step least-
squares algorithm and normalized through a nonsingular
matrix [S] according to,

E½ � ¼ C½ � T½ � ¼ C½ � S½ � S−1� �
T½ � ð5Þ

In order to guarantee uniqueness of the solution for
the equation (4) up to a scaling factor, there are certain
criteria to be satisfied termed as NCA criteria: (a) The
connectivity matrix [C] must have full-column rank. (b)
When a node in the regulatory layer is removed along
with all of the output nodes connected to it, the
resulting network must be characterized by a connecti-
vity matrix that still has full-column rank. (c) T matrix
must have full row rank.
The algorithm for NCA analysis is implemented in

MATLAB by Liao and his colleagues and it is available
online for download (http://www.seas.ucla.edu/~liaoj/
downloads.html). With NCA as reconstruction method,
we predicted significant TFs and connectivity strength
on target genes and TFAs of TFs.

Results and discussion
Different transcriptome signatures of 10 Arabidopsis
ecotypes responding to cold stress
To cover a wide array of phenotypic variation, 10 na-
tural accessions of A. thaliana representing habitats
from 16° to 56.5° northern latitude were selected during
the ERA-PG Multi-stress project. These accessions or eco-
types were- Cvi (Cape Verde Islands), Kas-1 (Kashmir,
India), Kyo-2 (Kyoto, Japan), Sha (Shakdara, Tadjikistan),
Col-0 (Columbia, USA), Kond (Kondara, Tadjikistan), C24
(Coimbra, Portugal), Ler (Landsberg, Poland), An-1
(Antwerpe, Belgium), Eri (Erigsboda, Sweden) (details in
Table 1). We have chosen cut-off p ≤ 0.01 to define a gene
as differentially regulated. Using the results from these ten
ecotypes, we were able to examine the transcriptional dif-
ferences that occurred during early hours of cold treat-
ment. The results (Table 1) indicated that A. thaliana
ecotypes have visibly different transcriptome signatures in
response to cold stress. Variable numbers of transcripts
were up or down regulated by cold stress. Considering the
two extreme ecotypes, Col-0 being known as cold tolerant
ecotype had significantly less number of differentially
regulated transcripts, while Cvi being the southernmost
ecotype (among the 10 used in our experiments) had the
highest number of differentially regulated transcripts.
Ecotype Cvi (Cape Verde Islands) was associated with a
climate temperature comparatively higher than that of the
ecotype Col-0, and fact was well reflected in their tran-
scriptional responses to cold treatment. Similar results
were also reported by earlier [13].
A unified list of 6061 cold regulated transcripts (p <

0.01) was generated from all the 10 ecotypes (Additional
file 1). The total number of differentially regulated TFs
in this list was 498. Interestingly, 4553 (75%) transcripts
were differentially regulated only in one of the ten eco-
types. The significant list of differentially regulated tran-
scripts includes most of the known cold regulated genes.
Figure 1 displays fold change values (treatment vs. con-
trol) calculated from normalized expression index for
top 1000 significant genes from all the 10 ecotypes. Glo-
bal observation of the heat map indicates differentially
regulated transcriptome signatures in response to non-
freezing cold treatment in ten different A. thaliana eco-
types. Hierarchical clustering (HCL) was performed with
Pearson correlation using average linkage method and
10,000 bootstrapping for the top 1000 cold regulated
transcripts based on fold change ratios with respects to
their respective controls. Ecotype Col-0 is distinctly se-
parated out from others. Southern ecotypes Cvi, Sha and
Kyo2 were grouped closely. Zhen et al. [16] has reported
earlier a positive correlation between freezing tolerance
and latitude of origin, based on physiological data col-
lected from 71 A. thaliana ecotypes. Hannah et al. [48]
used 9 accessions of A. thaliana to show that cold tole-
rance of natural accessions correlates with habitat winter
temperatures. Clustering of the gene expression pattern
in response to non-freezing cold stress exposure in ten
ecotypes during our analysis doesn’t reflect a clear latitu-
dinal trend.

Ecotype specific cold regulated transcript lists contain
many transcription factors (TFs) and transposable
elements (TEs)
In contrast to the relatively small number of transcripts
with altered expression shared by all the ten ecotypes,
majority of the transcripts (75%) showed ecotype specific
expression pattern (Additional file 2). Each of the ecotypes
had unique sets of differentially regulated transcripts in

http://www.seas.ucla.edu/~liaoj/downloads.html
http://www.seas.ucla.edu/~liaoj/downloads.html


Figure 1 Heat map visualization of the cold transcriptome of the ten ecotypes. The heat map visualizes hierarchical clustering
(with Pearson’s correlation coefficient using average linkage method) of top 1000 cold regulated transcripts based on gene expression fold
change ratios compared to their respective controls from 10 different ecotypes. Genes are shown as columns and ecotypes are shown as rows.
As a global observation, this heat map indicates differential regulation signatures in response to non-freezing cold treatment in different
A. thaliana ecotypes. Cold tolerant ecotype Col-0 ecotype is distinctly separated out from others.
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response to cold stress. From the list of differentially
regulated transcripts, it was found that 498 encoded for
Arabidopsis TFs and 320 TFs (~ 64% of all the differen-
tially regulated TFs) were differentially regulated in single
ecotypes. The ecotype specific differentially cold regulated
TFs are listed in Table 2. The list of differentially regulated
transcripts includes many well-known cold regulators like
CBFs, DREB1A, DREB1B, DREB2B, RAV1, ERF2, and
ERF5. We have surveyed existing available transcription
factor - target gene (TF-TG) regulatory interactions avail-
able in public databases and literature. There were 59 TFs
reported as associated to cold responses in GO (Gene
Ontology) database and TAIR (The Arabidopsis Infor-
mation Resources). Unfortunately, none of them were
included in the AtRegNet server which contained
experimentally validated regulatory interactions for only
69 out of nearly 1922 known Arabidopsis TFs.
Nimblgen12-plex Arabidopsis microarray chip in-

cluded 3822 transposable element (TE) probes. We have
observed 315 TEs (~10% of the total TE probes printed
on the chip) in the ecotype specific differentially regu-
lated transcript list. The distribution of the differentially
regulated TEs in ten ecotypes were as follows – Col-0
(21), Ler (81), Cvi (71), Eri (31), Kas2 (16), Kond (39),
Kyo2 (23), C24 (15), Sha (22) and An1 (8). Somatic
events, in particular, the activity of transposable ele-
ments (TEs) do play an important role in plant genome
evolution [49]. Lee et al. [50] reported that cold-
regulated gene expression was not only controlled tran-
scriptionally, but might also be regulated at the posttran-
scriptional and chromatin level [50]. A change in the
epigenetic state of TEs by cold stress might contribute
to regulatory activities for adjacent genes [51]. Recently
Wang et al. has demonstrated that both TE sequence
polymorphisms and presence of linked TEs are positively
correlated with intraspecific variation in gene expression
[52]. Some of the differentially regulated TEs in our cold
experiments might potentially be interesting targets to
explore diversity of cold stress responses among diffe-
rent A. thaliana ecotypes. Further targeted experiments
in this direction can explore the molecular level details
of any potential role of these TEs on genomic adaptation
of the ecotypes to their local environment.

Gene set enrichment analysis indicates activation of
common and unique processes in different ecotypes
To investigate functionally relevant changes, gene onto-
logy based overrepresentation analysis was performed
using BinGO software considering the up-regulated gene
lists from each of the ten ecotypes (Additional file 3).
From this analysis we have created a GO attribute table by
uniting all the statistically significant overrepresented GO
categories from each of the ten ecotypes (Additional file
4). Genes showing significant variation in mRNA expres-
sion level in A. thaliana during different stress conditions
mainly belong to categories like signal transduction,
transcription and stress response [53]. This reflects the
potential variations in the regulatory mechanisms of
these genes among different ecotypes. Apart from common
cold stress responsive categories like- response to cold
stress, response to low temperature, cold acclimation etc.,
we observed few other biological processes to be differen-
tially up-regulated in various ecotypes (Table 3). Some of
the interesting and top GO categories were as follows.

Cold response is coupled with light stimulus
Along with the general cold response pathways or pro-
cesses, there were several overrepresented categories re-
lated to ‘response to light’. Few genes in these categories
were as follows- At1g29920 (LHCB1), At5g24470 (PRR5),



Table 2 Cold regulated transcription factors

Ecotype Unique TFs (Up regulated) Unique TFs (Down regulated)

Cvi ANAC014, ANAC042, ANAC058, AtHB24, AtHB32, AtMYB103, CUC1,
HEC1, HSFB2A, LBD27, LBD35, LD, PIL6, SRL2, At3g20880, At4g00150,
At1g09060, At3g11450, At5g45270

AIL6, ANAC041, ANAC074, ANAC103, ARR2, ASML2, AtHB23,
AtMYB11, AtMYB17, AtMYB86, AtNAC3, AtY13, bt5, EMB3008, ETC1,
GNC, HAt22, HDG12, IAA18, LBD23, MAF4, MYB113, MYB3, MYB33,
MYB92, MYC6.2, NTL9, PAN, PCF1, PUX2, SDG40, SGR1, SPL5, SUVR4,
tcp17, TCP3, TGA6, VND1, WOX13, WRKY50, At1g16640, At3g06160,
At4g34400, At4g00940, At5g49300, At3g57480, At5g10970,
At2g05160, At5g40880, At3g16940, t5g38140, At2g20110, At1g07520,
At1g63100, At1g44810, At4g00232, At4g26170, At1g09710,
At1g33420, At2g01810, At3g53370, At5g51910, At1g76870,
At1g26260, At1g62975, At4g00870, At4g14410, At4g29930,
At5g46830, At5g65320

Kas.1 AtGRF3, BPC6, HAt3, HSFA8, IAA29, SSL2, SWN, WRKY3, WRKY32,
WRKY66, At3g45260, At1g67310, At2g45460

AL1, BT4, DUO1, GBF6, HSFB1, HSFB4, MNP, TED5, TIFY3B, U2AF35B,
ZBF1, ZFN3, ZFP4, At5G52020, At5G06770, At5G41920, At4G22140,
At5G50670, At1G03040, At3G23690

Kyo.2 AtIDD2, CAL1, HAt14, LCL1, PHE2, RAP2.9, SNZ, SPL3, TOC1,
At4g18870, At5g51790

HDT3, PMG1, TRFL6, UNE12, WER1, At5g61190, At4g23800,
At2g45800, At1g69170, At1g68920, At2g46510

Col-0 At3G50750, At2G27630, At5G22990, At1G48195, At4G37850 ACD6, ACS3, CYP71A28, CYP81K1, MEA, MLP28, MYB24, PSRP5, RCK,
STR16, XIJ, At3g21570, At5g33260, At2g21930, At5g26930,
At5g15620, At3g18840, At1g31370, At2g01031, At2g09850,
At2g24930, At1g79120, At4g09070, At3g56600, At5g39150,
At2g35300, At1g23570, At5g02140, At1g23060, At3g14750,
At1g27300, At3g16840, At3g03920, At2g07671, At1g53060,
At5g66230, At5g58570, At5g26690, At1g27330, At1g18720,
At5g18850

Kond AGL79, ANAC077, AtGRF6, LBD14, SCL11, TIFY9 (JAZ10), WRKY10,
At3g06410, At3g51950,

ADOF2, ANAC097, AtHB27, BME3-ZF, bZIP61, GIF2, HAP3A, HAP5B,
ING1, RAP2.11, TGA1, At3g51080, At2g40970, At5g47390

Sha AGL58, ANAC009, SET1, STY2, At4g33880 AGL24, AGL43, CRF1, ETT, IAA7, LBD38, PHB-1D, PTAC1, SRS8, ZFHD2,
At5g02460, At5g41030

C24 ADOF1, ANAC045, ANAC061, ANAC069, AtIDD16, AtIDD5, CDF1,
CDF2 , COL2 , DREB2A, HSF A4A, IAA1, LBD32, MP, MYB51, MYB77,
RVE2, SPL1R2, SSRP1,SUVH3, WRKY26, WRKY33, WRKY40, WRKY55,
At5g51190, At2g17410, At4g17570, At1g26610, At4g15420,
At5g26610, At5g12440, At3g52250, At5g06110, At1g20640,
At1g64530, At2g18090, At2g37520, At1g01260 , At5g57150

ANAC065, AtHB16, AtMYB63, BPC5,HSFB2B, LBD22, RGA2, SCL3,
ZFHD3, At1g49475, At1g68520, At4g24060, At3g24050, At4g14540,
At2g44730, At2g21235

Ler ddf2, HSFC1 AGL26, ARF21, DAR7, emb2746, LBD1, MYB105, NAI1, ZFP6,
At4g31680, At5g12850, At1g75530, At5g41765, At2g17150

An.1 AGL56, RD26, SOC1, SUVH1, tify5a, At1g79700, At4g15250,
At2g42150,

AtGRF6, LBD14 , At3g51950

Eri ALC, ANAC011, ANAC019, ANAC044, ANAC046, AtAF2, AtNAC3,
AZF2, BPC4, COL9, DAG2, ERF5, ERF8, IAA17, IAA5, MYB59, MYBR1,
RAP2.10, SHN3, SHY1, TIFY10B, WRKY22, WRKY27, WRKY28, ZFHD4,
At4g01580, At2g40340, At2g40350, At4g32800, At2g45050,
At3g49930, At3g60580, At3g08505, At3g14020, At1g25550,
At3g12730, At5g01200, At5g05790, At3g21210, At3g53680,
At2g18850, At3g21330, At3g23210 , At1g19490

AtbZIP,BZR2, DAG2 , WOX12, ZFP8, At3g23140, At1g19040

List of differentially cold regulated (up and down) TFs, unique for each of the 10 A. thaliana ecotypes (significance threshold p ≤ 0.01).
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At4g08920 (OOP2), At1g02340 (RSF1), At1g06040 (STO),
At3g27690 (LHCB2.4), At3g54720 (PT), At2g42540
(COR15A), At2g26990 (FUS12), At5g24120 (SIGE), At2g
46970 (PIL1), At4g18130 (PHYE), At5g67030 (ZEP), At5g
45340 (CYP707A3), At1g02400 (GA2OX6), At2g46790
(TL1), At3g28860 (PGP19) At2g46340 (SPA1), At4g19230
(CYP707A1), At2g18790 (PHYB). Light and cold signals is
known to integrate and cross talk for cold tolerance, via a
CBF and ABA-independent pathway [54]. Franklin et al.
[55] investigated the modulation of low R/FR signalling by
ambient temperature and results showed that a low red to
far-red ratio (R/FR) light signal increases CBF gene
expression in A. thaliana in a manner dependent on the
circadian clock. Red or far-red light signalling pathway is
one of the significantly up-regulated GO categories in
some of the ecotype [55]. Such signals stimulate expres-
sion of CBF genes through ambient temperature–
dependent coupling of CBF transcription factors to down-
stream COLD REGULATED (COR) genes.

Chlorophyll biosynthetic process
Another overrepresented GO category was chlorophyll
biosynthetic process which included several genes like
At1g78600 (STH3), At5g54190 (PORA), At3g59400 (GUN4),



Table 3 GO terms attribute matrix from the significantly regulated gene-list for each ecotype, generated using BiNGO
software

GO-terms An.1 Col −0 Cvi Eri Kas.1 Kond Kyo.2 Ler C24 Sha

Response to abiotic stimulus ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Response to chemical stimulus ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Response to cold ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Response to organic substance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Response to endogenous stimulus ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Response to hormone stimulus ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓

Circadian rhythm ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓

Response to light stimulus ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ ✓

Response to water ✓ ✓ . ✓ ✓ . ✓ ✓ ✓ ✓

Response to jasmonic acid stimulus ✓ . ✓ ✓ . ✓ ✓ ✓ ✓ ✓

Response to water deprivation ✓ ✓ . ✓ ✓ . ✓ ✓ ✓ ✓

Response to red or far red light ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ ✓

Cold acclimation ✓ . . ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rresponse to other organism ✓ . ✓ . ✓ ✓ ✓ ✓ ✓ ✓

Response to blue light ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ ✓

Response to abscisic acid stimulus ✓ . ✓ . ✓ ✓ ✓ . ✓ ✓

Response to far red light ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ .

Multi-organism process ✓ . ✓ . ✓ ✓ ✓ . ✓ ✓

Response to red light ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ .

Response to fungus ✓ . ✓ . ✓ . ✓ ✓ ✓ ✓

Response to carbohydrate stimulus ✓ . . ✓ ✓ ✓ ✓ . ✓ ✓

Regulation of transcription ✓ . . ✓ ✓ . ✓ . ✓ ✓

Regulation of macromolecule biosynthetic process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Regulation of nucleobase, acid metabolic process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Pigment biosynthetic process ✓ . ✓ . . ✓ ✓ ✓ ✓ .

Regulation of biosynthetic process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Regulation of nitrogen compound metabolic process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Regulation of gene expression ✓ . . ✓ ✓ . ✓ . ✓ ✓

Regulation of cellular metabolic process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Regulation of primary metabolic process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Regulation of macromolecule metabolic process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Regulation of metabolic process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Response to chitin ✓ ✓ . ✓ . . ✓ . ✓ ✓

Regulation of cellular process ✓ . . ✓ ✓ . ✓ . ✓ ✓

Response to osmotic stress ✓ . . ✓ ✓ . ✓ . ✓ .

Response to ethylene stimulus ✓ . . ✓ ✓ . ✓ . ✓ .

Regulation of transcription, DNA-dependent ✓ . . ✓ ✓ . ✓ . ✓ .

Regulation of RNA metabolic process ✓ . . ✓ ✓ . ✓ . ✓ .

Chlorophyll biosynthetic process ✓ . ✓ . . . ✓ ✓ ✓ .

Porphyrin biosynthetic process ✓ . ✓ . . . ✓ ✓ ✓ .

Tetrapyrrole biosynthetic process ✓ . ✓ . . . ✓ ✓ ✓ .

Regulation of biological process ✓ . . ✓ . . ✓ . ✓ ✓
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Table 3 GO terms attribute matrix from the significantly regulated gene-list for each ecotype, generated using BiNGO
software (Continued)

Red or far-red light signalling pathway . . ✓ . ✓ . . ✓ ✓ ✓

Cellular response to radiation . . ✓ . ✓ . . ✓ ✓ ✓

The rows contain different GO terms, and the columns represent 10 ecotypes. A ‘✓’ sign represents statistically significant (Hypergeometric test, Benjamini &
Hochberg False Discovery Rate FDR correction, significance level 0.05) overrepresentation of that GO term in corresponding ecotype in that column. Due to space
limitations, only some of the interesting GO terms overrepresented in multiple ecotypes were included in this table. The complete result obtained from the BiNGO
analysis has been presented in the Additional file 3.
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At3g56940 (CRD1), At4g34740 (CIA1), At1g78600
(STH3), At1g71030 (MYBL2), and At5g67030 (ZEP).
Havaux et al. [56] reported that A. thaliana was able to
survive in cold stress through light independent xantho-
phyll cycle by illustrating protective functions of caroten-
oid and flavonoid pigments against excess visible radiation
at cold temperature [56]. Cold stress also induces synthe-
sis of early light-induced proteins (ELIPs) [57]. Low
temperature induces the accumulation of various antioxi-
dants including carotenoids (except β-carotene), vitamin E
(α- and γ-tocopherol) and non-photosynthetic pigments
(anthocyanins and other flavonoids) [58]. Genes in the
overrepresented category pigment biosynthetic process
from our analysis support the previous reports.

Cold stress and circadian rhythms
Circadian rhythm is one of the most prominent overrepre-
sented categories in our dataset. It included many well-
known genes belong to this category like At1g22770 (GI),
At1g68050 (FKF1), At1g18330 (RVE7), At5g24470 (PRR5)
[59], At5g17300 (RVE1), At2g46790 (TL1), and At2g46830
(CCA1). Previous studies reported a circadian clock regu-
lated induction of CBF genes during low-temperature
treatment in A. thaliana plants [60,61]. The circadian clock
gates both gene expression and physiological responses to
low R/FR during rapid shade avoidance [62,63]. Mikkelsen
et al. [64] reported that cold- and clock-regulated gene ex-
pression are integrated through regulatory proteins that
bind to Evening Element (EE) and Evening Element Like
(EEL) elements supported by transcription factors acting at
ABA response element (ABREL) sequences [64]. They
established a role for circadian evening elements in cold-
regulated gene expression in A. thaliana. Our current
results are in good agreement with these previous reports.

Co-regulation of cold and biotic stress responsive genes
Few categories in our gene set enrichment analysis (GSEA)
were related to biotic stress response processes. Some of
these categories were as follows -response to other orga-
nism, response to fungus, and response to bacterium,
multi-organism process etc. Some of the up-regulated
genes in these categories include At2g40140 (ZFAR1),
At5g25110 (CIPK25), At5g25910 (RLP52), At1g20440
(RD17/COR47), At4g37150 (MES9), At3g50970 (XERO2),
At2g42530 (COR15B), At2g44490 (PEN2), At5g64750
(ABR1), At1g51090, At4g12470, At4g36010 (pathogenesis-
related thaumatin family protein), At3g51660 (MIF family
protein), At1g20030 (pathogenesis-related thaumatin family
protein), At3g50260 (CEJ1), At3g15210 (RAP2.5), At5g58600
(PMR5), At3g52400 (SYP122), At3g06490 (MYB108),
At1g19180 (TIFY10A), At4g23810 (WRKY53). Additional
file 4 contains all the GO categories from each of ecotypes
including the ecotype specific categories. One important
observation was that biotic stress response related
categories- response to other organism, response to fungus,
response to bacterium, response nematode were overrepre-
sented mainly in the southern ecotypes like Cvi, Kas1,
Kyo2, Kond. Probable reason may be that plants from
southern latitude often face such biotic invaders compare
to their northern counterparts, and consequently have co-
evolved with better and prompt defence response mecha-
nisms against them. Based on genetic resources of A.
thaliana, coupled with 39 years of field data, it has been
reported that natural enemies drive geographic variation in
plant defences [65].
Unlike cold tolerance, molecular mechanism of patho-

gen resistance obtained through cold treatment is not
understood well. Plazek et al. reported that cold treat-
ment on spring barley (Hordeum vulgare.), meadow fes-
cue (Festuca pratensis) and oilseed winter rape (Brassica
napus var. oleifea) induced resistance to their specific
pathogens [66]. Zhu et al. identified a plant temperature
sensitive component in disease resistance and provided a
potential means to generate plants adapting to a broader
temperature range [67]. Besides the available reports
about enhanced disease resistance acquired through cold
treatment, it is not yet known if these two traits are reg-
ulated by the same signal transduction pathway [68]. We
have observed overrepresentation of GO categories like
steroid hormone mediated signalling pathway, brassino-
steroid mediated signalling pathway, jasmonic acid stim-
ulus etc. Phytohormones are involved in induction of
disease resistance upon pathogen infection. Plant hor-
mones like salicylic acid (SA) ethylene (ET), jasmonic
acid (JA) pathways are known to play important func-
tions in the signal transduction during biotic stresses
[69]. The occurrence of simultaneous biotic and abiotic
stresses increases the complexity, as the responses to
these are largely controlled by different hormone signal-
ling pathways that may interact and inhibit one another
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[70]. Interaction of cold temperature and pathogen at-
tack results potentially negative impact on plants [71].
Plants grow in heavy snowfall areas need to enhance
disease resistance to survive from the attack of patho-
gens like snow molds [72]. Hence, as a nascent observa-
tion, the co-evolution of regulatory mechanism for co-
occurring stress related genes and processes are highly
possible. Further targeted screening of more ecotypes
may find interesting results in this direction to explore
interaction of biotic and abiotic stress on adaptive evo-
lution of plant defence response.

CBF regulon genes exhibits differential expression
pattern in Arabidopsis ecotypes during cold treatment
The A. thaliana CBF cold response pathway has a major
role in cold response. CBF genes appear to be present
across plant species and are almost always present as a
gene family. In A. thaliana, there are four characterized
CBF genes: CBF1, 2 and 3, located on chromosome 4, are
cold induced; except CBF4 located on chromosome 5,
which is reported to be involved in drought tolerance
[73,74]. All the CBF genes as well as the selected COR
genes were cold regulated in 10 ecotypes. But we observed
different levels of expression of CBF and COR genes in the
ten ecotypes. All the CBF genes were induced but COR
genes had preferential expressions in different ecotypes
(Figure 2). DREBA1 expression consistently occurred in all
the accessions. In a previously published study CBF1 and
CBF2 were reported to have quite comparable expression
levels in 9 ecotypes except low expression of both in Cvi
[17]. Low expression of CBF1, 2 in Cvi ecotype is clearly
visible in our data (Figure 2). It was reported that expres-
sion of the CBF1, 2 and 3 genes was not correlated with
cold tolerance level among ecotypes [59].
Variation in gene expression reflects the interplay

between ‘robustness’ and ‘evolvability’; which is generally
Figure 2 Difference in gene expression among the CBF and COR gen
in all accessions. But there were noticeable differences in the levels of expr
achieved by regulatory divergence. An organism has to
preserve a consistent function under different conditions
and at the same time, it needs to sustain the ability to
evolve in order to adapt to new environments. The plasti-
city of gene expression may be achieved by selective accu-
mulation of mutations in the promoter. As about 100
downstream genes and processes are regulated by the CBF
and COR proteins, difference could be seen in the expres-
sion pattern of down-stream genes which was visible in
the heat-map of 1000 genes and other ecotype specific dif-
ferentially regulated genes (Figure 1). We chose to investi-
gate the polymorphism present in the CBF1, 2 and 3
genes and few COR genes using recently released data
from A. thaliana 1001 genome project [75].

Sequence polymorphisms seen in the CBF genes using
data from Arabidopsis thaliana 1001 genome project
Sequence variation of CBF and COR genes could exert an
effect at two different levels: either in the expression of the
CBF genes themselves, via polymorphism in the respective
promoter and/or in the expression of their downstream
genes. It has been reported earlier that all three CBF genes
were highly polymorphic, particularly in their promoters,
with CBF1 the most and CBF2 the least polymorphic gene
[17,76]. Hence, we have downloaded the sequence data
(including 1kbp upstream of the coding region) available
from the 1001 genome database and calculated Tajima’s D
statistic to evaluate the allele frequency spectrum and
quantify the excess of rare alleles. We observed significant
number of non-synonymous amino acid changes in the
coding region of the CBF genes (Additional file 5). The
three CBFs have shown significantly negative Tajima’s D
values (CBF1 = −1.291, CBF2 = −2.223, DREBA1 = −2.165).
More negative and significantly lower values of Tajima’s D
indicate an excess of rare and recent, alleles [45]. But, it is
known from earlier studies that the average distribution of
es. CBF genes as well as the selected COR genes were cold regulated
ession among ten A. thaliana ecotypes.
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Tajima’s D in the A. thaliana genome is known to be
biased towards negative values [77-79]. We could not con-
clude any direct correlation between sequence polymorph-
ism on gene expression pattern of the CBF and COR
genes. The non-existence of a clear correlation between
CBF and COR gene expression with sequence polymorph-
ism in 10 ecotypes might have several reasons. There are
other CBF independent pathways and their complex inter-
actions between different components contribute to cold
tolerance [12]. So, how these complex interactions of
other pathways affect CBF and COR gene expression
would be difficult to predict. Again, COR genes are often
up-regulated much later, and this is also true for protein
expression. Gene expression without protein synthesis can
not generate downstream product. Apart from genotype
variation, the length of cold exposure and treatment
temperature also affect the gene expression level that leads
to freezing tolerance [80]. While studying natural variation
of transcriptional auxin response networks in A. thaliana,
Delker et al. reported that differentially regulated signal-
ling networks had a greater role to play than sequence
polymorphism [81]. Considering such facts, we wanted to
explore the pattern of regulatory divergence of cold stress
response network among these ten A. thaliana ecotypes.

Reverse engineering transcriptional regulatory network
during cold stress response in A. thaliana
Due to the lack of experimentally validated transcrip-
tional regulatory information in A. thaliana, we have de-
cided to reverse engineer an in-silico transcriptional
regulatory network model during cellular responses to
cold stress in A. thaliana using our gene expression
data. For this purpose, we have selected top 1,509 differ-
entially cold regulated transcripts from the union of the
entire cold regulated transcripts list, considering a criter-
ion that a transcript had to be significantly regulated at
least in 2 of the 10 ecotypes. The resulting list contained
178 TFs and 1,331 target genes (TGs). By using NCA
method (explained in materials and methods), we have
constructed the network at correlation-coefficient thre-
shold ≥ 0.8. Activation and repression interactions were
calculated using the positive and negative correlations.
The resulting network contained 1,275 nodes and 7,720
connections; out of them 6,731 connections were activa-
tions (positive) and 989 were repressions (negative)
(Additional file 6 and Figure 3A). Some of the highly
connected positive regulators (TFs) were ATTLP7,
POSF21, AS1, RTV1, APRR9, BT1, ANAC102, ANAC035,
GLK2, ZFN1, WRKY11, HAC5, MYB73, DA1, LBD41,
SR1, WRKY70. Further details of the constructed net-
work including calculated Pearson’s correlation coeffi-
cient and p-values have been given in Additional file 6.
In the network visualization, transcription factors were
marked as green triangles and target genes were marked
as red circles. General network topology based analysis
has revealed that the network exhibited power-law de-
gree distribution [82] (Figure 3B). We have also calcu-
lated several other graph-theoretic parameters as
described by Barabasi et al. [83]. Some of the parameters
were as follows- clustering coefficient = 0.3, connected
components =3, network diameter = 11, characteristic
path length = 3.67, average number of neighbours =
11.385. The constructed network satisfies the existing
notion about scale free behaviour of biological networks
[84]. Few of the TFs in the network are highly connected
(hubs) than others. The generated network (.cys file) has
been provided as Additional file 7. Interested reader can
locally open the file using Cytoscape software [85] and
do more interactive exploration. The presented view of
the annotated network in this manuscript has been sim-
plified manually.

Correlation between activity and expression values of TFs
Simple correlation between the expression profile of a
transcription factor and its targets is not obvious, and
simple clustering based methods have not been very suc-
cessful in deciphering them [86]. The key assumption
during prediction of interactions between TFs and their
target genes using gene expression data is that high di-
mensional mRNA expression profiles contain hidden
regulatory signals, which can be decomposed to low-
dimensional regulatory signals driven through an
interacting network [87]. The lower dimensional regula-
tory signals can be represented as a bipartite networked
system of the transcription factors and the target genes,
where the gene expression levels are transformed into
weighted functions of the intracellular states corre-
sponding to the activity of the transcription factors
[31,33]. Several such methodologies have been used in
plant systems to infer regulatory relationships at various
occasions [23,33,88-91].
The NCA algorithm requires two inputs to calculate the

hidden regulatory activity profiles: a series of gene expres-
sion profiles and a pre-defined regulatory network. The A.
thaliana transcription factor list were collected from the
Database of Arabidopsis Transcription Factors (DATF)
[25], The Arabidopsis Gene Regulatory Information Server
(AGRIS) [26], and the Plant Transcription Factor Database
(PlantTFDB) [92]. List of 59 cold regulated transcription
factors were collected from Gene Ontology database
under the annotation category ‘response to cold’ [43]. The
constructed network was able to capture 30 (~50%) of
these already reported cold regulated TFs.

Transcription factor activity under cold stress in different
Arabidopsis ecotypes
We have compared the predicted activities of the 30 pre-
viously reported cold responsive transcription factors



Figure 3 Transcriptional regulatory network constructed using cold stress microarray data from 10 A. thaliana ecotypes. (A) Topological
overview of the constructed network. The network contains 1,275 genes (nodes) and 7,720 connections. Transcription factors are marked as
green triangles and target genes are marked as red circles. Predicted regulatory interactions are shown as arrow (→) for activation (6,731) and
down-horizontal bar (┤) as repression (989). Network was visualized in Cytoscape software using ‘Force-Directed Layout’. (B) Scale-free behaviour
of the predicted network. This plot shows the power-law degree distribution of the network P (k) at correlation thresholds (r ≥ 0.8). Here k
indicates connectivity, and P (k) indicates the connectivity distribution of the genes (nodes) in the network. This satisfies the existing notion about
scale free behaviour of biological networks. Few TFs in the network are highly connected (hubs) than others.
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with their corresponding gene expression values in the ten
A. thaliana ecotypes. About 57% of transcription factors
showed moderate correlation (Pearson correlation coeffi-
cient, |r| > 0.5) between their activities and expressions
(Figure 4). Thirteen TFs ((ZFAR1 (At2G40140), At1G
28050, ERF2 (At5G47220), ZAT10 (At1G27730), At5G
46710, CRF4 (At4G27950), At1G78700, At5G17300,
At4G28140, At5G48250, At4G29190, RAP2 (At1G46768),
and WRKY7 (At4G24240)) exhibited positive correlations
(r > 0.5). For instance CZF-1 (At2G40140) had correlation
r = 0.9206 which indicated that there might be chance of
auto regulation. This assumption was supported by
literature [93] and information available from the
Arabidopsis Gene Regulatory Information Server (AGRIS).
Four transcription factors ((WRKY25 (At2G30250), ERF6
(At4G17490), DREB2B (At3G11020) and TIFY10A (At1G
19180)) showed strong negative correlation (r < −0.5) and
the remaining TFs displayed low or no correlation at all
(|r| < 0.5). Three of these predictions have been confirmed
from AGRIS database.
The predicted activity profiles of thirty cold regulated

TFs have clearly shown the ecotype specific variations
in the ten A. thaliana ecotypes (Figure 4). For example,
Figure 4 Differential activity profiles of 30 known cold regulated tran
NCA algorithm. Rows represent the TFs and columns different eco-types r
in blue their expression values were represented as red colour. Here values
different eco-types (1 = Cvi, 2 = Kas1, 3 = Kyo.2, 4 = Col, 5 = Kond, 6 = Sha, 7
transcription factor At5G17300 (RVE1) was highly active
in Eri, C24 and Col ecotypes compared to the others.
Most of the transcription factors were active in more than
two ecotypes (Table 4). We have also identified ecotype
specific transcription factors (highly active in single
ecotype). Transcription factors At1G04240 (SHY2),
At2G46830 (CCA1) and At3G11020 (DREB2B) were ac-
tive in Sha ecotype and transcription factor At4G25490
(DREB1B/CBF1) was more active in Eri ecotype. Spatio-
temporal regulatory dynamics of SHY2 [94] and CCA1
[95,96] have been reported earlier. The transcription factor
At5G17490 (RGL3) [97] was active in Col-0 ecotype.
We found a group of transcription factors, which were
highly active in a particular set of ecotypes. For example,
transcription factors At1G27730 (ZAT10), At1G28050,
At3G17609 (HYH), AtAt4G27950 (CRF4), At5G17300
and At5G48250 were active in Eri, C24 and Col-0 eco-
types and transcription factors At1G9180 and At4G25480
were highly responsive in Eri and Col-0 ecotypes during
cold treatment. All the A. thaliana ecotypes had at least 7
(out of 30 core cold responsive TFs) active TFs, except the
Kond ecotype. This ecotype had only two significantly
active TFs (At1G76590 and At4G04450).
scription factor in ten ecotypes of A. thaliana predicted using
esponse to cold treatment. Transcription factor activities were shown
are scaled for direct comparison purposes. X-axis represents the
= C24, 8 = Ler, 9 = An.1, 10 = Eri).



Table 4 Ecotype specific transcriptional activity profiles of the 30 cold responsive TFs

TF ID Alias Ecotypes

At1G01060 LHY1 Eri, Col-0, Cvi, Kyo-2

At1G04240 SHY2 Sha

At1G13260 RAV1 Eri, C24

At1G19180 TIFY10A Eri, Col-0

At1G27730 ZAT10 Eri, C24, Col-0

At1G28050 At1G28050 Eri, C24, Col-0

At1G46768 RAP2.1 An-1, Sha, Ler, Cvi

At1G76590 At1G76590 Eri, Kond, C24, An-1, Col-0, Sha, Ler, Cvi, Kyo-2, Kas-1

At1G78700 At1G78700 Sha, Ler, Cvi, Kas-1

At2G30250 WRKY25 Sha, Ler, Cvi

At2G40140 ZFAR1/CZF1 Eri, C24

At2G46830 CCA1 Sha

At3G11020 DREB2B Sha

At3G17609 HYH Eri, C24, Col-0

At4G04450 WRKY42 Eri, Kond, C24, An-1, Col-0, Cvi, Kyo-2, Kas-1

At4G17490 ERF-6-6 An-1, Sha, Ler, Cvi, Kyo-2, Kas-1

At4G24240 WRKY7 Eri, Col-0

At4G25470 CBF2 C24, Col-o, Kas-1

At4G25480 DREB1A Eri, Col-0

At4G25490 DREB1B/CBF1 Eri

At4G27950 CRF4 Eri, C24, Col-0

At4G28140 At4G28140 An-1, Sha, Ler, Cvi, Kas-1

At4G29190 At4G29190 Eri, An-1, Cvi, Kyo-, Kas-1

At5G17300 At5G17300 Eri, C24, Col-0

At5G17490 RGL3 Col-0

At5G24470 PRR5 An-1, Ler, Cvi, Kyo-2, Kas-1

At5G46710 At5G46710 An-1, Sha, Ler, Cvi, Kas-1

At5G47220 ERF2 Sha, Ler, Kas-1

At5G48250 At5G48250 Eri, C24, Col-0

At5G61270 PIF7 Col-0, Kas-1

This table presents, which of the 30 previously reported cold responsive TFs are active among ten ecotypes during our experiments based on their predicted
activity profiles using NCA algorithm.
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Conclusions
Here we undertook an experiment to analyze the natural
variation in genome-scale cold stress response regulatory
networks in ten A. thaliana ecotypes at a single time
point (3 hours) gene expression measurement. The
analysis indicated that the 10 A. thaliana ecotypes had dif-
ferent transcriptome level signatures in response to non-
freezing cold stress. Col-0 being known as cold tolerant
ecotype had significantly less number of differentially
regulated transcripts while Cvi as the most southern
most ecotype had the highest number of differentially
regulated transcripts. Among the differentially cold regu-
lated transcripts, 75% showed ecotype specific expres-
sion pattern. There were 315 transposable elements
(TEs) in the ecotype specific differentially regulated gene
list. These TEs may play an important role in plant ge-
nome evolution while adapting to local climatic tempera-
tures. CBF genes were cold induced in all the ecotypes,
irrespective of their geographic origin. But their levels of
expressions varied among different ecotypes. Expression
pattern of the COR genes were not consistent in all eco-
types. Sequence data available from the 1001-genome pro-
ject indicated that the mutations in their sequences might
contribute to the dramatic difference in the expression
pattern. Significant numbers of non-synonymous amino
acid changes were observed in the coding region of all the
CBF genes. All of the CBFs had shown significantly nega-
tive Tajima’s D values, indicating an excess of rare and
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recent, alleles. Gene ontology analysis had shown that
apart from common cold stress regulated processes; se-
veral other biological processes were differentially regu-
lated in the 10 ecotypes. Some of the important GO
categories were - pigment biosynthesis, circadian rhythm,
response to light, response to water deprivation, response
to ABA. By looking at the differentially regulated genes re-
lated to pathogen responses induced by cold stress, a pri-
mary assumption was made that the co-evolution of
severely affecting co-occurring stress related genes and
processes was highly possible. We have constructed an in
silico transcriptional regulatory network model during cel-
lular responses to non-freezing cold stress in A. thaliana,
using gene expression data from 10 ecotypes. The network
contained 1,275 nodes and 7,720 connections, which in-
cluded 178 TFs and 1,331 target genes. Apart from
retaining several previously known interactions (cross vali-
dated using AGRIS), many novel regulatory interactions
during the cold stress response in A. thaliana were sug-
gested. Differential regulatory activities were observed
among the cold regulated TFs, which might contribute
towards cold adaptation of the ecotypes. In addition, since
the approach is general, it could in principle be used to
study networks regulating biological process in any bio-
logical systems. As far as cold stress is concerned, it could
be implemented for identification of useful molecular
markers or relevant forward genetics experiments to
develop cold tolerant crop varieties.

Additional files

Additional file 1: List of all transcripts from 10 ecotypes with
annotations, p-values and fold change values during cold
treatment. United list of 6061 differentially cold regulated transcripts and
498 TFs are in separate sheets of the same excel file.

Additional file 2: List of statistically significant ecotype specific
gene expressions during cold treatment from 10 ecotypes are
presented in 10 different sheets.

Additional file 3: Results of Gene Set Enrichment Analysis using
BinGO software. The individual results for each of the 10 ecotypes have
been put in a single file. Each analysis contains the detailed statistical
test, significance score for each GO-term and corresponding gene IDs in
that category.

Additional file 4: GO category contingency table from the
significantly regulated gene-list, generated using BiNGO software.
The rows contain different GO terms, and the columns represent 10
ecotypes. A ‘✓’ sign represents statistically significant (Hypergeometric
test, Benjamini & Hochberg False Discovery Rate FDR correction,
significance level 0.05) overrepresentation of that GO term in
corresponding ecotype in that column. The column with the header
‘occurrence count’ represents in how many ecotypes the respective term
is significantly over represented.

Additional file 5: Analysis of sequence polymorphism in CBF and
COR genes.

Additional file 6: TF-TG regulatory bipartite connections predicted
using NCA algorithm based on their activity profiles, using Pearson
correlation coefficient threshold (PCC) ≥0.80. The second sheet
(TF_ACT_REP) includes predicted pattern of regulation (activation or
repression) in the network.
Additional file 7: Predicted TF-TG regulatory networks as a .cys file,
which can be open locally by a reader for interactive exploration.
For visualizing the network locally, download cytoscape software from
http://www.cytoscape.org/ and load the .cys files on the software. The
presented view of the annotated network in this manuscript has been
simplified manually for representation purpose.
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