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Abstract

Background: The regenerative response of Schwann cells after peripheral nerve injury is a critical process directly
related to the pathophysiology of a number of neurodegenerative diseases. This SC injury response is dependent
on an intricate gene regulatory program coordinated by a number of transcription factors and microRNAs, but the
interactions among them remain largely unknown. Uncovering the transcriptional and post-transcriptional
regulatory networks governing the Schwann cell injury response is a key step towards a better understanding of
Schwann cell biology and may help develop novel therapies for related diseases. Performing such comprehensive
network analysis requires systematic bioinformatics methods to integrate multiple genomic datasets.

Results: In this study we present a computational pipeline to infer transcription factor and microRNA regulatory
networks. Our approach combined mRNA and microRNA expression profiling data, ChIP-Seq data of transcription
factors, and computational transcription factor and microRNA target prediction. Using mRNA and microRNA
expression data collected in a Schwann cell injury model, we constructed a regulatory network and studied
regulatory pathways involved in Schwann cell response to injury. Furthermore, we analyzed network motifs and
obtained insights on cooperative regulation of transcription factors and microRNAs in Schwann cell injury recovery.

Conclusions: This work demonstrates a systematic method for gene regulatory network inference that may be
used to gain new information on gene regulation by transcription factors and microRNAs.
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Background
Schwann cells (SCs), the main glia cells in the peripheral
nervous system, are among a limited number of mam-
malian cells capable of dedifferentiation. The ability of
SCs to dedifferentiate is critical to their role in support-
ing peripheral nerve regeneration. Following peripheral
nerve injury, SCs mount a regenerative response involv-
ing coordinated dedifferentiation, proliferation and redif-
ferentiation that supports axonal regrowth and helps
restore peripheral nerve function [1]. Like other cellular
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processes tightly coupled with cell fate determination
and developmental timing control, this SC injury re-
sponse requires precise spatiotemporal regulation of
gene expression. This is achieved via an intricate tran-
scriptional program that maintains the balance between
positive and negative regulators of SC differentiation [2].
In addition to transcriptional control, recent studies
have shown that SC myelination [3-5] and response to
injury [6] are also post-transcriptionally modulated by
microRNAs (miRNAs).
Although the role of individual TFs that regulate SC

myelination has been investigated, cooperation and inter-
action among different TFs involved in the response of
SCs to nerve damage remain largely unknown. More
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importantly, how miRNAs integrate into the genetic pro-
gram of TFs to modulate SC gene expression remains un-
clear. A comprehensive delineation of the TF and miRNA
regulatory network underlying the SC injury response
may shed light on fundamental aspects of SC biology.
This information could also help fulfill the therapeutic
potential of modulating the SC injury response in a
number of neurodegenerative diseases characterized by
peripheral axonopathy.
Systematically inferring TF and miRNA regulatory net-

works is difficult to achieve by experimental methods and
has motivated development of computational approaches.
Computational tools have been created to construct TF
and miRNA regulatory networks using information such
as gene expression profiling, miRNA expression profiling,
and predicted TF and miRNA binding sites [7-11]. How-
ever, most of these tools utilized a subset of these data and
few studies have combined all of these datasets to infer
TFs and miRNA regulatory networks. For example,
MIR@NT@N [9] uses TF and miRNA target prediction
but does not use mRNA and miRNA expression data.
Moreover, transcriptional regulation of miRNAs is often
not included due to the challenge in reliable prediction of
miRNA promoters [12,13]. In addition, chromatin immu-
noprecipitation with sequencing (ChIP-Seq) data for TFs
experimentally characterize TF regulatory targets and have
been combined and co-analyzed with mRNA expression
profiling data [14], but usually only a small number of
TFs were included. Multiple ChIP-Seq datasets from
independent experiments were seldom compiled and
incorporated into computational network inference.
These limitations highlight the need for additional
tools to systematically integrate genomic profiling datasets
to better understand gene regulatory networks that govern
complex biological systems.
In this study we developed a computational pipeline,

InteGRaNet, to infer the gene regulatory network involved
in Schwann cell response to injury. This network includes
TF-mRNA, TF-miRNA and miRNA-mRNA regulatory
interactions. This pipeline utilizes previously developed
and new computational tools to integrate mRNA and
miRNA expression data, ChIP-Seq data, and in-silico TF
and miRNA target predictions. Starting with a set of genes
and/or miRNAs obtained from expression profiling ana-
lysis, our approach initially constructs a network by con-
necting TFs to genes or miRNAs using TF targets
identified from ChIP-Seq experiments. This network is
then expanded to include additional regulatory targets of
TFs and miRNAs by using genome-wide target prediction.
We apply our computational pipeline to infer the
Schwann cell injury response network and study the regu-
latory interactions around Egr2, a known key regulator of
myelination. Furthermore, we study cooperative TF/
miRNA regulation involved in the Schwann cell injury
response network. This work demonstrates a systematic
approach to integrate multiple genomic datasets and to
infer TF and miRNA regulatory networks, which may be
used to better understand coordinated gene regulation by
TFs and miRNAs in complex biological systems.

Results
Overview of TF and miRNA regulatory network inference
We developed a systematic approach, termed InteGRa-
Net, for inferring TF and miRNA regulatory networks
involved in SC injury response. This approach integrates
mRNA and miRNA expression profiling data, chromatin
immuneprecipitation with sequencing (ChIP-Seq) data,
and computational TF and miRNA target predictions
(Figure 1). Our approach first identified a set of genes
involved in SC response to injury using previously col-
lected mRNA and miRNA expression data. These genes
consist of the initial set of genes included in the regula-
tory network. Briefly, co-expressed gene clusters that
were dynamically regulated after SC injury, termed in-
jury response gene clusters (IRGCs), were first identified
(Figure 1, Step 0). TFs and miRNAs that were correlated
or inversely correlated with the expression profiles of
the IRGCs were identified as potential regulators of the
IRGCs (Step 1). To identify TF-mRNA and TF-miRNA
interactions, for TFs that have available ChIP-Seq data,
regulatory interactions between TFs and their targets
(mRNA or miRNA) were identified using ChIP-Seq peak
locations (Step 2). For TFs that do not have ChIP-Seq
data, we performed computational prediction to identify
mRNAs or miRNAs that they regulate (Step 3). Next,
miRNA-mRNA interactions were identified using com-
putational miRNA target prediction (Step 4). All the
identified interactions were organized into a regulatory
network. This network was further expanded to include
TFs that, although not correlated with IRGCs, were
master regulators of coexpressed genes in each IRGC or
that were master regulators of miRNAs coexpressed
with each IRGC (Step 5). Similarly, miRNAs that were
not correlated with IRGCs but were master regulators of
genes in the IRGCs were identified (Step 6). These add-
itional TFs and miRNAs were added to the network as
nodes, and regulatory interactions between these regula-
tors and other nodes already in the network were identi-
fied using interactions identified by ChIP-Seq data and
computational predictions (Step 7). This final step com-
pleted the network inference. Each step in this approach
to network construction is described in detail in the fol-
lowing sections.

Identification of an initial set of genes involved in the SC
injury response network
To identify a set of genes that are critical to SC injury re-
sponse, we analyzed a published gene expression profiling



Figure 1 Workflow of TF and miRNA regulatory network inference. Starting with TFs and miRNAs that are correlated (blue profile) or anti-
correlated (red profile) with a coexpressed gene cluster (black profile), sequential steps in this workflow illustrate how multiple types of
experimental and computational information are integrated in regulatory network construction. In each intermediate step, nodes and interactions
identified from earlier steps are placed in the background. Circles: TFs. Hexagons: miRNAs. Blue nodes: TFs or miRNAs that are correlated with the
coexpressed gene cluster. Red nodes: TFs or miRNAs that are anti-correlated with the coexpressed gene cluster. Grey nodes: master TF or miRNA
regulators of coexpressed genes.
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dataset based on a mouse nerve injury model [15]. This
study showed that core myelination genes were dynamic-
ally regulated and had distinct expression profiles during
SC injury recovery and development [15]. Therefore, we
performed unsupervised k-means clustering on the pub-
lished mRNA expression data from the nerve injury ex-
periment and from a SC development study [16]. Of all
the genes profiled on the microarray, a total of 7,595 genes
were expressed during at least one time point in the com-
bined expression datasets, and we focused on gene clus-
ters that were differentially expressed after nerve injury
and that contained at least one known myelination genes
(Additional file 1: Table S1) (see Methods). As a result,
four coexpressed injury response gene clusters were iden-
tified (Figure 2A). Two of these clusters were downregu-
lated immediately after crush and returned to pre-injury
levels as the nerve regenertated (Clusters 1 and 2, referred
to as myelination gene clusters, MGC). The other two
clusters (Clusters 3 and 4, referred to as proliferation gene
clusters, PGC) showed a reciprocal pattern of expression.
These clusters contained 234, 160, 385, and 119 genes, re-
spectively (Additional file 2: Table S2). The expression



Figure 2 Coexpressed gene clusters that are dynamically regulated during SC injury response. These gene clusters are enriched for
functional categories involved in SC myelination and proliferation, and many of the genes annotated in these categories are potential targets of
dynamically regulated miRNAs. (A) Expression profiles of the four dynamically regulated injury response gene clusters (IRGCs). (B) Gene Ontology
terms enriched in each of the four IRGCs. Color coding of bars matches that of the expression profiles shown in (A). (C) Expression profiles of
miRNAs that are anti-correlated with clusters 1 or 2 (red) and miRNAs that are anti-correlated with clusters 3 or 4 (blue) and. (D) The percentage
of genes in the enriched functional categories that have a seed sequence match to dynamically regulated miRNAs. Enriched categories that have
at least 50 % of the genes that are potential targets of dynamically regulated miRNAs are highlighted with grey bars.
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profiles of these clusters were similar to the previously
identified profiles of myelination and proliferation genes
using anchor genes [15].
To better understand the functions of these gene clus-

ters, we performed Gene Ontology (GO) term enrich-
ment analysis on the IRGCs. Consistent with initial
dedifferentiation/proliferation and subsequent rediffer-
entiation of SCs after nerve injury, we found that PGC
genes (upregulated immediately after crush) were enriched
for functional categories involved in cell proliferation, in-
cluding cell cycle and chromatin assembly. MGC genes
(donwregulated immediately after crush), on the other
hand, were enriched for functional categories involved in
SC differentiation, including lipid metabolic process and
myelination (Figure 2B). The enriched categories in these
clusters were therefore consistent with their expression
pattern after nerve injury. Genes in the four IRGCs were
used as the initial set of nodes for TF and miRNA network
inference.

Identification of potential TF and miRNA regulators in the
SC injury response network
Transcriptional activators or repressors are likely to be
correlated or anti-correlated with the expression of their
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target genes. Thus, to identify potential regulators of
genes in the IRGCs we identified TFs that were corre-
lated or inversely correlated with the expression profile
of each IRGC. As a result, 6, 2, 23, and 2 TFs were
found to have correlated expression with the four
IRGCs, respectively. Three TFs, Cbfb, Taf9, and Mef2a,
were found to have inversely correlated expression with
Cluster 2. As shown in a recent study, miRNA regulators
may be anti-correlated or correlated with the expression
of their targets, functioning as either a reinforcer or a
fine-tuner [17]. Thus, to identify miRNA regulators for
genes in IRGCs, we analyzed the nerve miRNA expression
measured before and after crush injury [6]. Comparing
miRNA expression profiles with mRNA expression pro-
files, we found that, of the 87 miRNAs expressed in per-
ipheral nerve, 17, 26, 6, and 6 miRNAs were correlated
with the expression profile of the four IRGCs, respectively
(Additional file 3: Table S3). 5 and 8 miRNAs were anti-
correlated with the expression profile of Cluster 3 and
Cluster 4 (Additional file 4: Table S4). Overall, this analysis
identified 30 miRNAs that were expressed similar to
MGC genes and 6 miRNAs that were expressed similar to
PGC genes (Figure 2C, Additional file 5: Table S5). To
check if the dynamically regulated miRNAs regulate key
gene functions involved in myelination, we examined
whether genes in the GO categories enriched in dynamic-
ally regulated IRGC genes (Figure 2B) were potential tar-
gets of the dynamically regulated miRNAs. For 12 of the
16 GO categories enriched in IRGCs, more than 50% of
the annotated genes have a seed sequence match to at
least one of these correlated or anti-correlated miRNAs
(Figure 2D). This result suggests that these correlated or
anti-correlated miRNAs are likely to be regulators of dy-
namically regulated genes in IRGCs.
Table 1 ChIP-Seq datasets used to identify TF regulatory inte

TF Species GEO accession number Publication

Sox2 Mouse GSE11431 Chen, 2008

Klf4 Mouse GSE11431 Chen, 2008

E2f1 Mouse GSE11431 Chen, 2008

SOX2 Human GSE23795 Fang, 2011

Lmo2 Mouse GSM552237 Hannah, 2011

Cebpb Mouse GSM537985 Hannah, 2011

Fli1 Mouse GSM552233 Hannah, 2011

Mef2a Mouse GSE21529 He, 2011

NFKB1 Human GSE19486 Kasowski, 2010

E2F4 Human GSE21488 Lee, 2011

Cebpb Mouse GSE21314 Lefterova, 2010

STAT1 Human Robertson, 2007

STAT1 Human Schmid, 2010

HIF1A Human GSE28352 Schodel, 2011
Identification of TF-mRNA and TF-miRNA interactions
using ChIP-Seq data
To find TF-mRNA interactions among genes in the
IRGCs, we first used experimentally validated TF targets
characterized by ChIP-Seq analysis. Of all the 35 TFs
identified in the IRGCs, we found 8 TFs whose genome-
wide binding locations had been analyzed in 11 inde-
pendently published ChIP-Seq datasets (Table 1). To
identify more reliable TF-mRNA interactions we only
used ChIP-Seq peaks that were located between -10 kb
and +5 kb from the transcription start sites (TSS) of
annotated genes.
In addition to identification of TF-mRNA interactions,

the genome-wide mapped reads of ChIP-Seq data may
also be used to identify TF-miRNA interactions. Perform-
ance of such analysis depends on accurate characterization
of pri-miRNA promoters. Several studies have developed
computational methods to predict pri-miRNA TSSs using
several promoter features [18-21]. However, given that
many of these methods rely on limited experimental data-
sets, they tend to only predict TSSs for a subset of miR-
NAs. To address this limitation we developed a new
voting algorithm (TSSvote) for predicting human and
mouse miRNA TSSs, which uses a comprehensive set of
transcription-related sequence features (Figure 3A, see
Methods). These included mapping of known transcripts/
ESTs, CpG islands, CAGE tags, H3K4me3 marks, and
evolutionary conservation. Using TSSvote’s predicted pri-
miRNA TSSs, we defined the promoter sequences of miR-
NAs as the genomic region between -5 kb and +1 kb from
the predicted TSS. We used a shorter range compared to
the analysis of mRNA because miRNAs genes are much
shorter and 1 kb is usually enough to cover the entire gene
and an additional downstream region. We then identified
ractions in the SC injury response network

Pubmed ID Number of peaks Number of targets

18555785 4303 47

18555785 10296 387

18555785 17629 168

21211035 4883 41

21338655 9518 859

21338655 27683 5206

21338655 19482 4217

21415370 1337 75

20299548 15522 2148

21247883 16246 1950

20176806 24414 4435

17558387 11004 2877

20625510 4446 197

21447827 940 80



Figure 3 (See legend on next page.)

Chang et al. BMC Genomics 2013, 14:84 Page 6 of 20
http://www.biomedcentral.com/1471-2164/14/84



(See figure on previous page.)
Figure 3 A new computational method, TSSvote, predicts the transcription start site of miRNAs reliably. (A) Illustration of the TSSvote
algorithm. For intergenic miRNAs (top sequence bar), the TSS search range is defined as the genomic sequence between the end of the
upstream gene and the start of the pre-miRNA. For intragenic miRNAs (bottom sequence bar), the TSS search range is between the TSS of the
host gene and the start of the pre-miRNA. TSSvote calculates a score for each 100 bp sequence window within the TSS search range based on
five supporting sequence features of TSS. The sequence window that is “voted” by the most features is predicted as the miRNA TSS. (B)
Benchmarking computational methods for miRNA TSS prediction using a set of 21 experimentally validated miRNA TSS. For each method, the
percentage of test cases where the distance between the predicted TSS and the true TSS is with a given distance is plotted. (C) The distribution
of the distance between the predicted miRNA TSS and the annotated pre-miRNA. (D) The distribution of the percentage of sequence
conservation in predicted miRNA promoters versus random sequences. (E) The distribution of the number of TF binding sites found in predicted
miRNA promoters versus random sequences.
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ChiP-Seq peaks of TFs located within these predicted
miRNA promoters (for the TFs included in IRGCs). miR-
NAs that have TF ChIP-Seq peaks in their promoters are
deemed as TF targets. Overall, using published ChiP-Seq
datasets we identified 37 TF-mRNA and 15 TF-miRNA
interactions for TFs in the IRGCs, connecting 23 TFs and
11 miRNAs. These interactions were added to the SC in-
jury response network.
The overall performance of TSSvote is difficult to assess

due to the limited number of experimentally validated
miRNA transcription start sites. When the performance of
TSSvote was tested by a compiled benchmark set of 21 ex-
perimentally determined human and mouse miRNA TSSs
(Additional file 6: Table S6), TSSvote predicted 52% of
these test TSSs within 500 bp and 81% of them within
2500 bp, outperforming all other currently available meth-
ods tested (as measured by the number of miRNA TSSs
predicted within a given error range; Figure 3B). The pre-
dictions of TSSvote were further supported by the fact
that a large proportion of miRNAs (63% of intergenic and
45% of intragenic miRNAs in mouse) were located
within 10 kb from the pre-miRNA sequence (Figure 3C,
Additional file 7: Table S7). Furthermore, the miRNA pro-
moter sequences (as defined above) were more conserved
than randomly selected intergenic sequences of the same
length (Chi-square P-value=1.45E-51) (Figure 3D) and
contained significantly more TF binding sites than random
sequences (Chi-square P-value=1.28E-34) (Figure 3E).

Additional TF target prediction using genome-wide TFBS
enrichment analysis
Although ChIP-Seq data of TFs allowed the extraction
of experimentally characterized TF-mRNA and TF-
miRNA interactions, this information was only available
for a subset of TFs. Moreover, because ChIP-Seq experi-
ments might have been performed under different con-
ditions, some transcriptional regulatory interactions
critical to the SC injury response may not be identified.
To address this shortcoming, we included computation-
ally predicted transcriptional regulatory interactions
based on an improved version of a previously developed
statistical model for genome-wide TF binding site enrich-
ment [22] (see Methods). Briefly, this approach calculated
a binding probability score for each TF-gene pair using all
the evolutionarily conserved TF binding sites (TFBS) in
proximal promoters and evaluated a P-value using TFBS
permutation (see Methods, Additional file 8: Figure S1).
In this study, the model was improved by using a
phylogenetic tree-based scoring function to incorpor-
ate evolutionary conservation information from more
species. Using this model, we predicted 108,204 mouse
and 132,516 human TF-mRNA interactions. By apply-
ing this model to the miRNA promoters predicted by
TSSvote (Additional file 8: Figure S1) we also predicted
a total of 2,658 mouse and 5,395 human TF-miRNA
interactions. Using these predictions, we expanded the
regulatory network to include 79 TF-TF interactions
and 70 TF-miRNA interactions, connecting 34 TFs
and 22 miRNAs.
We validated this computational model for TF target

prediction using TF regulatory targets identified by
ChIP-Seq experiments. To perform this validation, we
compiled a set of 120 independent published ChIP-Seq
datasets for a total of 70 TFs (Additional file 9: Table
S8), and we tested if the target genes identified by ChIP-
Seq tended to have significantly higher scores for binding
among all the genes in the genome, based on a Mann–
Whitney U-test (Figure 4A). We found that ChIP-Seq
identified mouse and human mRNA targets had signifi-
cantly higher scores in 94% and 93% of the ChIP-Seq data-
sets, and ChIP-Seq identified mouse and human miRNA
targets had significantly higher scores in 55% and 64% of
the datasets (Figure 4B). This analysis showed that our
computational TF-target prediction was consistent with
experimental results, for both TF-mRNA and TF-miRNA
regulation.

Identification of miRNA-mRNA interactions using
computational prediction
The previous ChIP-Seq data analysis and genome-wide TF
target prediction identified TF-mRNA and TF-miRNA
interactions. To identify miRNA-mRNA interactions we
performed computational miRNA target prediction. A
previous study showed that better performance of miRNA
target prediction may be achieved by combining multiple
currently available algorithms in order to reach reasonable



Figure 4 Validating computational TF target prediction using the compendium of TF ChIP-Seq datasets. (A) ChIP-Seq identified TF
binding locations (peaks) within 15 kb around annotated mRNA transcription start sites (TSS) or predicted miRNA TSS were used to identify
regulatory targets of TFs. Mann–Whitney U test was used to test if identified targets have higher binding scores calculated by the computational
model. (B) Percent of ChIP-Seq datasets that were consistent with computational TF target prediction when tested using mouse or human
mRNAs or miRNAs.
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specificity while minimizing loss of sensitivity [23]. There-
fore we chose to combine TargetscanS [24] and pictar
[25], which provides higher specificity, with miRanda [26],
which provide higher sensitivity, to identify targets of miR-
NAs. Only targets of miRNAs predicted by at least two of
these three methods were included in the network con-
struction. Using this approach, we identified 57,980 mouse
and 75,570 human miRNA-mRNA interactions. The aver-
age number of targets is 250 genes per miRNA, respect-
ively, which is close to the speculated number of
targets per miRNA [27]. Using this result, 43 miRNA-
mRNA interactions were added to the SC injury response
network.

Expanding network to include master TF regulators of
coexpressed mRNAs or miRNAs
Up to this step, the TFs included in the regulatory net-
work were identified by their correlation or inverse cor-
relation with the dynamically regulated IRGCs. However,
master regulators of genes in the IRGCs may share a
similar expression profile but with a lag time, or they
may be constantly expressed throughout SC injury re-
sponse while being modulated by mechanisms other
than transcriptional control. These TFs will be missed by
expression correlation-based discovery but could be
identified as common regulators of genes in IRGCs based
on enrichment of their TF binding sites. Therefore, we
applied a previously developed tool, the Promoter Analysis
Pipeline (PAP) [28], to identify curated TF binding sites
that were enriched in the proximal promoter sequences of
genes in each IRGC. As a result, we found several TFBS
significantly enriched in genes in clusters 1, 2 and 4
based on a Bonferroni corrected P-value cutoff of 0.05
(Additional file 10: Table S9) (see Methods). These TFs
included E2f1 and Nfyc that were correlated with the
IRGCs and had been added to the network in Step 2.
Remarkably, known functions of these TFs were con-
sistent with the enriched GO terms for the corre-
sponding gene clusters they regulate (e.g. Nfkb1 for
inflammatory response, Egr2 for myelination, and E2f1
for cell cycle). Applying the same analysis to miRNAs
correlated with the IRGCs, we found one TF, Spz1,
whose binding sites were enriched in miRNAs corre-
lated with cluster 2. These master TFs were added to
the SC injury response network as additional nodes.

Expanding network to include master miRNA regulators
of coexpressed genes
Similar to TFs, common miRNA regulators of genes in the
IRGCs may not have expression profiles that are tightly
correlated or anti-correlated with their target genes. These
miRNAs may be identified by the enrichment of their pre-
dicted target genes in the IRGCs. Thus, for each miRNA
we calculated the hypergeometric P-value for its target
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enrichment (see Methods). As a result, we found 2, 2, and
3 miRNAs with a significant enrichment P-value for clus-
ters 1, 2, and 3 respectively (Additional file 11: Table S10).
Like the search of master TF regulators using TFBS enrich-
ment, this analysis identified three miRNAs (let-7a, let-7f
and miR-145) that were correlated with the expression of
the IRGCs. Interestingly, miR-140, whose predicted targets
were enriched in cluster 3, was not identified using expres-
sion correlation with IRGCs due to its low expression on
microarray. However, qPCR experiments showed that
miR-140 was indeed expressed in nerve and had an expres-
sion profile correlated with MGCs [6]. These results
showed that analysis of miRNA target enrichment may
identify miRNA regulators whose expression was not cor-
related or anti-correlated with its targets or miRNA regula-
tors whose expression was not accurately measured on
microarray.

Expanding network to include regulatory interactions for
additional regulators
After additional TF and miRNA regulators were identified
as described above, they were first added to the network
as additional nodes. Additional TF-mRNA, TF-miRNA,
and miRNA-mRNA regulatory interactions between these
regulators and other nodes in the network were then iden-
tified using ChIP-Seq data of TFs (Table 1) and computa-
tional TF and miRNA target predictions (Steps 2 and 3).
The resulting TF and miRNA network involved in SC in-
jury response included 146 TF-TF, 117 TF-miRNA, and
71 miRNA-mRNA interactions among TFs and miRNAs,
connecting 48 TFs and 32 miRNAs (Figure 5).

Availability of the InteGRaNet pipeline and datasets for
network construction
The network construction pipeline we developed in this
study including all the raw datasets is available to the
public. These include 71,346 mouse and 64,367 human
TF-mRNA interactions identified by the compendium of
public ChIP-Seq data, high quality sets of 1,183 mouse
and 1,511 human TF-miRNA interactions identified by
miRNA TSS prediction and ChIP-Seq data, 108,204
mouse and 132,516 human computationally predicted
TF-mRNA interactions, 2,658 mouse and 5,395 human
computationally predicted TF-miRNA interactions, and
57,980 mouse and 75,570 human miRNA-mRNA inter-
actions predicted by three algorithms. A Perl script can
take a list of genes and miRNAs these data files as input
and creates a network in a text format. These data files
and the script are available upon request.

Comparison to current algorithms for TF and miRNA
network construction
To test the performance of our approach, we compared
the InteGRaNet pipeline to currently available methods
for constructing TF and miRNA regulatory networks, in-
cluding GenMiR++ [8], MIR@NT@N [9], mirConnX
[10], MAGIA [11] and EdgeExpressDB [12]. These
methods use similar but different approaches and have
different strengths and limitations. Of the six algorithms,
MIR@NT@N, mirConnX, MAGIA and InteGRaNet pre-
dict all three types of interactions, i.e. TF-mRNA, TF-
miRNA and miRNA-mRNA regulation. EdgeExpressDB
only predicts TF-mRNA and miRNA-mRNA but not
TF-miRNA interactions; GenMiR++ only infers miRNA-
mRNA interactions using expression profiling data. Thus,
while EdgeExpressDB and GenMiR++ can be used to pre-
dicted particular types of interactions, they are limited in
comprehensive inference of comprehensive TF and
miRNA networks. MIR@NT@N, mirConnX, MAGIA and
InteGRaNet all use a pre-curated/pre-calculated set of TF
and miRNA targets and combine this dataset with user in-
putted mRNA and miRNA expression data. Of these four
methods, mirConnX allows users to change the weight of
the predefined target dataset in network construction,
whereas the other three do not provide this option.
mirConnX and InteGRaNet use sophisticated statistical
models to calculate TF and miRNA targets, whereas
MIR@NT@N and MAGIA merely extract information
from existing databases. Finally, EdgeExpressDB uses
one human leukemia dataset to generate networks and
does not allow users to use their own data to construct
regulatory networks.
To benchmark these algorithms, we first compiled a

set of known interactions using the GeneGO database
(http://www.genego.com). GeneGO includes manually
curated regulatory interactions from the literature. Using
genes and miRNAs in our Schwann cell injury recovery
network, the GeneGO database search returned a net-
work that consisted of 871 connections, including 772
TF-mRNA, 30 TF-miRNA and 69 miRNA-mRNA inter-
actions. Because these interactions were based on previ-
ous studies and were only a part of the complete SC
injury network, interactions found by computational
algorithms but not by GeneGO may not be false posi-
tives. Also, because GeneGO interactions were found in
diverse biological systems and were not specific to
Schwann cells, GeneGO interactions that were not found
by computational algorithms might not be false negatives.
For these reasons, it was difficult to evaluate the sensitivity
and specificity of the algorithms.
To reasonably test the performance of the algorithms,

we adopted an approach previously used to benchmark
the performance of miRNA target predicting programs
[23]. We calculated the number of total predicted con-
nections and the number of GeneGO validated connec-
tions that were predicted, and we compared these
numbers between different algorithms. When interac-
tions of all three types, TF-mRNA, TF-miRNA and

http://www.genego.com


Figure 5 The SC injury response regulatory network inferred by integrating experimental data and computational prediction. Circles:
TFs. Hexagons: miRNAs. Blue nodes: TFs or miRNAs correlated with myelination gene clusters. Red nodes: TFs or miRNAs correlated with
proliferation gene clusters. Grey nodes: master TF or miRNA regulators of coexpressed genes. Black edges: regulatory interactions derived from TF
ChIP-Seq data. Grey edges: regulatory interactions inferred by computational prediction. Arrowed edges: activation by TFs. T-shaped edges:
repression by TFs or miRNAs.
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miRNA-mRNA, were considered, EdgeExpressDB and
InteGRaNet performed better than all other methods
(Figure 6A). When each type of interactions was consid-
ered separately, EdgeExpressDB and InteGRaNet per-
formed better than other methods in the TF-mRNA
interactions and miRNA-mRNA connections (Figure 6B,
6D), and MIR@NT@N performed best in the TF-miRNA
interactions (Figure 6C).
The GeneGO network also allowed us to evaluate the

effect of including ChIP-Seq data in InteGRaNet. While
the performance of InteGRaNet without ChIP-Seq data
was similar to InteGRaNet with ChIP-Seq data in pre-
dicting TF-mRNA interactions (Figure 6B), ChIP-Seq
data significantly improved the performance in predict-
ing TF-miRNA interactions (Figure 6C). Predictions of
miRNA-mRNA interactions did not use ChIP-Seq data
and thus were not affected.
As a second approach to compare the performance of

different algorithms, we calculated for each method the
percentage of its predicted interactions that was also
predicted by at least one other method (Table 2). Using
this benchmark approach, InteGRaNet had the highest



Figure 6 Comparing the performance of InteGRaNet with current algorithms using known regulatory interactions in the literature. For
each algorithm, the total number of predicted interactions and the percentage of experimentally characterized interactions that were successfully
predicted were plotted. InteGRaNet-NC: InteGRaNet without using ChIP-Seq data. (A) All interactions. (B) TF-mRNA interactions. (C) TF-miRNA
interactions. (D) miRNA-mRNA interactions.
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agreement rate in TF-mRNA and miRNA-mRNA inter-
actions, and mirConnX had the highest agreement rate
in TF-miRNA interactions. Overall, a total of 5858 TF-
mRNA interactions were predicted by at least one of the
six methods, 143 of which were predicted by at least two
methods. A total of 691 TF-miRNA interactions were
predicted by at least one method, 8 of which were pre-
dicted by two methods. A total of 13821 miRNA-mRNA
interactions were predicted by at least one method, 582
of which were predicted by at least two methods and
182 of which were predicted by at least three methods.
These interactions predicted by multiple algorithms
would be good candidates for further study.

Effect of model parameters on InteGRaNet performance
Using the GeneGO network, we compared the perform-
ance of InteGRaNet using different statistical signifi-
cance cutoffs. The default P-value cutoff for predicting



Table 2 Percentage of predicted interactions made by each algorithm that are also predicted by at least one other
algorithm

InteGRaNet mirConnX EdgeExpress GenMiR++ MAGIA MIR@NT@N

TF-mRNA 1683 (8.4%) 257 (0%) 2100 (6.6%) NA 1963 (0.5%) 0 (0%)

TF-miRNA 176 (3.4%) 12 (8.3%) NA NA 462 (1.1%) 49 (8.2%)

miRNA-mRNA 757 (56.8%) 6397 (0.8%) 946 (47.4%) 188 (14.4%) 5810 (4.9%) 517 (25.1%)

The method that has the highest agreement rate in each type of interaction was highlighted in bold.
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TF-mRNA and TF-miRNA interactions was 0.005. We
compared the performance of InteGRaNet using four
different P-value cutoffs, including 0.001, 0.005, 0.01 and
0.05. When predicting TF-mRNA interactions, all four
cutoffs had similar performance in terms of the ratio be-
tween the total connections predicted and the number of
predicted GeneGO interactions, with a cutoff of 0.005 per-
forming slightly better than 0.001 and 0.01 (Figure 7A).
When predicting TF-miRNA interactions, a less stringent
cutoff of 0.005 predicted more interactions than a cutoff
of 0.001 as expected but did not predict more GeneGO
curated interactions (Figure 7B). Although this suggested
that a P-value cutoff of 0.001 might be better, this bench-
mark result was based on a small set of 30 GeneGO TF-
miRNA interactions.

The Egr2 subnetwork revealed biological insights on
regulation of myelination
To demonstrate the utility of the inferred TF and
miRNA regulatory network, we studied regulatory inter-
actions that involved a known key regulator of SC
Figure 7 Testing the performance of InteGRaNet using different statis
of predicted interactions and the percentage of experimentally characterize
mRNA interactions. (B) TF-miRNA interactions.
myelination, the early growth response 2 (Egr2/Krox-20)
transcription factor. Egr2 is required for peripheral nerve
myelin formation and maintenance and it is often
mutated in patients with peripheral myelinopathies [29].
Specifically, we defined the Egr2-centered subnetwork as
direct mRNA and miRNA targets of Egr2, TFs and miR-
NAs that directly regulate Egr2 and the interactions
among them. In the Egr2 subnetwork, five TFs were pre-
dicted to regulate the expression of Egr2, two as activa-
tors (Nfkb1 and Tef) and three as repressors (Fli1,
Gabpa and Fos) (Figure 8A). Interestingly, Nfkb1 and
Fos, which forms the transcription factor complex AP-1
with c-Jun [30] have been previously associated with SC
myelination [31] and dedifferentiation [32,33] respect-
ively. In addition to TFs, two miRNAs, miR-140 and
miR-124, were found to target Egr2. Additional experi-
mental studies confirmed these interactions and showed
that these two miRNAs contribute to the modulation of
the expression of Egr2 (Additional file 12: Figure S2) [6].
Importantly, recent work from our laboratory showed
that overexpression of miR-140 in SCs impaired their
tical significance cutoffs. For each cutoff selection, the total number
d interactions that were successfully predicted were plotted. (A) TF-
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Figure 8 The SC injury response regulatory subnetwork around Egr2 and Egr2 participating network motifs. (A) Upstream regulators and
downstream targets of Egr2 and regulatory interactions among them. (B) Two feedforward loops found in the Egr2 subnetwork. These
feedforward loops are likely to maintain the expression level of Hic1 within a small functional range. (C) Three feedback loops found in the Egr2
subnetwork. These feedback loops may function as modulators of Egr2 expression levels. Circles: TFs. Hexagons: miRNAs. Blue nodes: TFs or
miRNAs correlated with myelination gene clusters. Red nodes: TFs or miRNAs correlated with proliferation gene clusters. Grey nodes: master TF or
miRNA regulators of coexpressed genes. White boxes: downstream target genes not included in the network. Arrowed edges: activation by TFs.
T-shaped edges: repression by TFs or miRNAs.
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ability to form myelin in vitro, thus demonstrating a
meaningful biological interaction between this miRNA
and Egr2. Note that four of the five TFs regulating Egr2
expression were also found to modulate some of its tar-
gets, hence enhancing the ability of these TFs to regulate
the myelination process.
Egr2 was in turn predicted to directly regulate the ex-

pression of the TF Hic1 and 3 miRNAs (let-7f, let-7a,
and miR-22) (Figure 8A). These targets were particularly
interesting as they may allow Egr2 to broadly regulate a
number of genes and signaling cascades important for
SC differentiation. For example, let-7a and let-7f, as well
as other let-7 family members, are known to interact
with a variety of targets to enhance cellular differenti-
ation [34]. Similarly, the tumor suppressor miR-22 has
been shown to target the 3’UTR of Pten and modulate
Akt signaling, which critically determines the extent of
SC myelination [35,36]. These results showed that our
method to delineate the genetic networks driving the SC
injury response elucidated Egr2 regulatory pathways that
were consistent with current knowledge on the regula-
tion of SC differentiation.
Examination of the Egr2 subnetwork also revealed that

Egr2 participates in a number of potentially important
regulatory network motifs [17,27,37]. In a network motif
such as a coherent or incoherent feedforward loop, TFs
and miRNAs cooperate to reinforce or modulate the
transcriptional control of the common target gene. In
the Egr2 subnetwork, Egr2 was found to participate in
feedforward loops involving the tumor suppressor Hic1
and the miRNAs let-7a and let-7f (Figure 8B). The ex-
pression of Hic1 is not tightly correlated with Egr2, sug-
gesting that the function of this feedforward loop is to
maintain the expression level of Hic1 within a small
range. In addition, we uncovered two feedback loops of
Egr2 (Figure 8C). In the Egr2/Hic1/miR-124 negative
feedback loop, Egr2 regulates Hic1, which induces miR-
124 to inhibit the expression of Egr2. Using this feed-
back loop, Egr2 modulates its own expression with an
oscillatory behavior. When Egr2 expression is too high
or too low, it raises or lowers its own expression level
through Hic1/miR-124. As a result, Egr2 expression is
maintained within a range. Moreover, the expression of
the mediator of this loop, Hic1, is also closely modulated
by the Egr2/Let-7/Hic1 loop mentioned above, ensuring
the robustness of this mechanism. Finally, Egr2 forms a
positive feedback loop with let-7 and Gabpa. Egr2 acti-
vates let-7, which inhibits Gabpa, an inhibitor of Egr2.
This loop allows Egr2 to assuage the inhibitory effect of
Gabpa and increases its own expression. These feed-
forward and feedback loops cooperate to maintain the
expression of Egr2 within a constant range. Together,
these Egr2 network motifs suggest that the cooperation
between miRNAs and TFs ensures rapid and robust
transitions between the distinct differentiation states of
SCs that are necessary to support nerve regeneration.
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TF and miRNA feedforward loops in the SC injury
response network
Recent studies have shown that coherent and incoherent
loops of TFs and miRNAs are prevalent in the human gen-
ome [17]. The discovery of feedforward loops in the Egr2
subnetwork thus raised two interesting questions: whether
coherent and incoherent feedforward loops are prevalent
in the SC response network, and whether there exists a
bias on the usage of coherent and incoherent loops to
regulate genes in the SC injury response. To answer these
questions, we searched for all the feedforward loops in the
SC injury response network, and we analyzed these motifs
in the context of the target gene’s expression profile
(Figure 9, Additional file 13: Table S11). Namely, an in-
coherent or coherent feedforward loop may target
genes that are correlated with the expression of differ-
entiation/myelination genes (termed myelination genes)
or with the expression of proliferation genes (termed
Figure 9 Biased usage of incoherent and coherent feedforward loops
into four categories according to the expression pattern of its target gene:
loop regulating proliferation genes, C1: a coherent loop regulating myelina
each category, the number of network motifs in the SC injury response ne
those motifs are shown, with more prevalent network motifs highlighted in
nodes: genes or miRNAs correlated with myelination gene clusters. Red no
Arrowed edges: activation by TFs. T-shaped edges: repression by TFs or mi
proliferation genes), with the participating miRNA acting
as a reinforcer or modulator (Figure 9). When we categor-
ized all the regulatory loops based on the target gene’s ex-
pression and the type of the feedforward loop, we found
that there is a significantly higher frequency of myelin-
ation genes in the incoherent loops than the coherent
loops (Figure 9, I1 as opposed to C1). In contrast, there is
a significantly higher frequency of proliferation genes in
the coherent loops than the incoherent loops (Figure 9,
C2 as opposed to I2). These results suggest that in SC in-
jury response, regulation of myelination gene expression
tends to be modulated or carefully controlled by miRNAs
in incoherent feedforward loops, whereas regulation of
proliferation gene expression tends to be reinforced by
miRNAs in coherent feedforward loops. This analysis
demonstrated that the inferred gene regulatory networks
may provide new insights on the cooperative gene regula-
tion by TF and miRNA in complex biological systems.
in the SC injury response network. Feedforward loops are divided
I1: an incoherent loop regulating myelination genes, I2: an incoherent
tion genes, and C2: a coherent loop regulating proliferation genes. For
twork and the number of TFs, miRNAs, and targets that participate in
grey. Circles: TFs. Hexagons: miRNAs. Rectangles: target mRNAs. Blue

des: genes or miRNAs correlated with proliferation gene clusters.
RNAs.
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Discussion
In this study, we developed a computational pipeline for
TF and miRNA regulatory network inference that inte-
grates expression profiling data of mRNAs and miRNAs,
TF regulatory targets derived from ChIP-Seq data, and
computational TF and miRNA target prediction. Our
method takes a step-wise, bottom-up approach that
starts with dynamically regulated co-expressed gene
clusters as the basic network node set and sequentially
adds TFs and miRNAs and their regulatory interactions to
the network. By applying our approach to comprehensive
delineation of the gene regulatory network underlying the
SC response to nerve injury, we showed that this method
allows inference of integrated gene regulation by TFs and
miRNAs in complex biological settings. Our method was
able to provide new insights into fundamental aspects of
the SC regenerative response, indicating its potential to
help elucidate the complexities of biological processes
governed by intricate networks of TFs and miRNAs.
An important step in our approach was to use avail-

able Chip-Seq data to derive mRNA and miRNA targets
of TFs. While a significant number of transcription fac-
tor ChIP-Seq data has been accumulated, only few stud-
ies have combined these datasets and used this resource
to study transcriptional regulation of mRNAs [38], and
no studies have co-analyzed these datasets to infer tran-
scriptional regulation of miRNAs. This is partly due to
the lack of reliable prediction of miRNA promoters. Our
TSSvote algorithm incorporates several sequence fea-
tures that imply transcription start sites and our method
does not rely on experimental data that probe promoter
usage, which may be dependent on the experimental
conditions. Testing our algorithm using experimentally
validated miRNA TSS sites showed that the accuracy of
our prediction was within 2500 bp in 81% of the cases
and the performance was better than current methods
(Figure 3B). These predicted miRNA TSS allowed for
the identification of ChIP-Seq peaks that were located
within miRNA promoters. The identified miRNA pro-
moters also allowed for the computational prediction of
TFs that regulate miRNAs (Additional file 8: Figure S1).
Our computational predictions are expected to be more
accurate than previously reported methods [12,13] due
to the more accurate miRNA promoter annotation and a
more robust TF binding site analysis model.
A notable strength of our methods is that it integrates

multiple types of experimental and computational data
via a modular approach. Thus, individual components of
the network inference pipeline may be improved or
replaced separately, and additional information about TF
or miRNA regulation may be added to the prediction
model. For example, the computational prediction of TF
targets may be further improved by incorporating epi-
genetic information [39]. Also, additional regulatory
mechanisms, such as regulation by non-coding RNAs
and by RNA binding proteins [40], may be added into
the network once experimental data or computational
prediction become available for these interactions.
The three major components in our pipeline include

identification of TF targets using ChIP-Seq data, identifi-
cation of TF targets using computational prediction and
identification of miRNA target using computational pre-
diction. All these components use a set of parameters
and cutoffs to perform target identification or prediction,
and their performance depends on the selection of cut-
offs, with a lower cutoff generating more targets and a
high cutoff generating fewer targets. While an arbitrary
choice of cutoff is inevitable, we attempted to optimize
our cutoff selection using independent datasets. For TF
targets identified by ChIP-Seq data, the number of iden-
tified targets depended on the ChIP-Seq peak calling al-
gorithm and its parameters. This performance of peak
calling can be optimized but is beyond the scope of our
manuscript. For computational prediction of TF targets,
the P-value cutoff was selected and optimized in a previ-
ous publication by comparing to an independent study
[22]. For computational prediction of miRNA targets,
the cutoff was selected based on a previous estimate of
the number of targets per miRNA [27].
A key component of our method was the prediction of

TF-target interactions by computational models of TFBS
enrichment. Regulatory networks inferred by large-scale
genome-wide prediction methods like ours are often dif-
ficult to validate thoroughly and experimentally. How-
ever, our prediction method was based on a published
statistical model that was validated using multiple datasets,
including compiled sets of co-regulated genes and multiple
ChIP-chip datasets [28]. Furthermore, the improved ver-
sion of this model was compared to a large set of inde-
pendent ChIP-Seq experiment data for 70 TFs and
demonstrated good consistency for both TF-mRNA and
TF-miRNA regulation. In addition, regulatory pathways
identified in the subnetwork around Egr2, a well known
transcription regulator of myelination, are consistent with
current knowledge of regulation of SC myelination
(Figure 8A). Remarkably, the post-transcriptional regula-
tion of Egr2 by two miRNAs, miR-124 and miR-140, iden-
tified in our network were validated experimentally using
luciferase assays (Additional file 12: Figure S2) [6]. These
results suggest that our method produced an informative
and reliable regulatory network for SC injury response.
To demonstrate that our network construction method

may be used to gain insight on gene regulation and regula-
tory pathways in complex biological systems, we applied
our method to study the TF and miRNA regulatory net-
works governing the SC injury response. This response
involves the cycling of SCs between distinct differentiation
states that support nerve regeneration. Proper cycling is
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accomplished through the reciprocal regulation of genes
driving SC dedifferentiation and myelination respectively,
through transcriptional control by TFs as well as post-
transcriptional modulation by miRNAs [3-6]. The import-
ance of transcriptional and post-transcriptional control in
the SC injury response as well as the reciprocal nature of
the genetic programs driving this process make SC injury
recovery an ideal system for studying the cooperation of
TF and miRNA mediated gene regulation. When we
examined the SC injury response subnetwork around
Egr2, a known key regulator of myelination, we found
other regulators previously associated with SC differenti-
ation. Furthermore, we found that Egr2 interacts with
miRNAs in feedforward and feedback loops, which may
be important for modulating the expression of both Egr2
and its targets.
miRNAs and TFs tend to cooperate in coherent or inco-

herent feed-forward loops, in which miRNAs may func-
tion as either a reinforcer or a modulator, to control the
expression of a target gene [17,27,37]. In our analysis of
network motifs in the SC injury response network, we
found that genes involved in proliferation tend to be regu-
lated by coherent loops, where their repression during SC
injury response is reinforced by miRNAs. Genes involved
in myelination, on the other hand, tend to be regulated by
incoherent loops, where their activation during SC in-
jury response is “fine-tuned” by miRNAs (Figure 9).
This suggests that fast and precise timing of the activa-
tion/inactivation of genes associated with the immature
state of SCs is most critical for the dedifferentiation of
these glia after nerve injury. In contrast, proper remyelina-
tion seems not to require as carefully controlled timing of
gene expression, but instead depend mostly on achieving
precise functional levels of myelin-related proteins. This is
particularly interesting because myelin formation and
maintenance is very sensitive to gene dosage effects. In
fact, both abnormally low or high levels of specific myelin
proteins can cause peripheral neuropathy in humans [41].

Conclusions
We present in this work a novel approach to TF and
miRNA regulatory network inference. Our approach sys-
tematically integrates multiple types of experimental data
and computational prediction on gene regulation and thus
produces more reliable gene regulatory networks. Apply-
ing our approach to the SC injury response dataset
demonstrates that our method may be used to gain new
insight on gene regulation by TFs and miRNAs.

Methods
Identification of dynamically regulated SC injury response
gene clusters (IRGCs)
SC mRNA expression profiling before and after crush
and transection injury were performed using Affymetrix
MU74Av2 chips in a previous study (Nagarajan et al.,
2002). Gene expression levels were measured for unin-
jured nerves, on days 4, 7 and 10 after crush injury, and
on days 1, 4, 7, and 10 after transection injury. Mouse
gene expression profiling data during SC development
were collected from an independent study [16]. This
dataset profiled mRNA expression on days 0, 2, 4, and
10 after birth. Expression data were processed and nor-
malized using Affymetrix MAS5 algorithm. A nerve-
expressed gene was defined as one that was called
present in at least one data point during SC injury re-
sponse or development. k-means clustering was used to
cluster genes based on the combined expression profiles
of injury response and development. Gene clusters that
contained known myelin genes and that were differen-
tially expressed before and after crush injury based on a
t-test were identified. Clusters with similar expression
profiles based on the Pearson correlation coefficient
were identified and merged. The average expression pro-
file, i.e. the centroid, was calculated for each cluster.
Nerve-expressed genes that were correlated with the
centroids based on a Pearson correlation coefficient cut-
off of 0.8 were identified as the final coexpressed IRGCs.

Identification of miRNA regulators of SC injury response
gene clusters
SC miRNA expression profiling before and after crush
injury were performed using HTG Molecular qNPA
miRNA microarrays in a previous study [6]. Expression
of 1046 miRNAs was profiled using this microarray plat-
form on days 0, 4 and 14 after crush injury. miRNA ex-
pression data were filtered using the following criteria:
miRNAs that had an expression level lower than the
average expression of the control miRNA probesets were
removed from further analysis. miRNAs for which the
expression of one duplicate probeset at all time points
were significantly higher than that of the other duplicate
probeset based on a Mann–Whitney U test were also
removed from further analysis. After this filtering pro-
cedure, the average expression of the two duplicate pro-
besets at each time point was used as the expression at
that time point. miRNAs that were correlated or anti-
correlated with the expression of IRGCs were identified
using miRNA expression data and crush injury mRNA
expression data on days 0, 4, and 10.

Analysis of ChIP-Seq datasets
Publicly available ChIP-Seq datasets for human and
mouse transcription factors were compiled and collected
from literature search. Peak locations identified in the
original studies were used if they are available. When
peak locations were not available, Partek Genomic Suite
with default parameters was used to identify peaks using
raw alignment data. All peak locations were converted
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to genomic coordinates of human genome build hg18 or
mouse genome build mm9. Peak locations of human
datasets were then mapped to the mouse genome using
UCSC’s liftover tool. Peaks that were located within the
promoters of mRNAs or miRNAs were identified using
NCBI’s gene annotation for mRNAs and computationally
predicted miRNA TSS (see below). When peaks were
mapped across species, only peaks that were located
within proximal promoters and mapped to proximal
promoters of orthologous genes (based on Homolo-
Gene) were retained in the further analysis.

Computational prediction of miRNA transcription start
sites
To predict miRNA TSS, all human and mouse miRNAs
were categorized as intergenic or intragenic miRNAs.
Intragenic miRNAs were defined as miRNAs located be-
tween the start and end of a protein coding gene that is
on the same strand (termed the host gene). miRNAs that
are not intragenic were defined as intergenic. For inter-
genic miRNAs, the TSS search range was defined as the
genomic sequence between the end of the upstream
gene and the start of the pre-miRNA. For intragenic
miRNAs, the TSS search range was defined as the gen-
omic sequence between the start of the host gene and
the start of the pre-miRNA. To predict miRNA TSS, a
new algorithm, TSSvote, was developed to score each
100 bp window within the TSS search range based on
transcription related sequence features. Mapping loca-
tions of known transcripts or ESTs and CpG islands
were downloaded from the UCSC genome browser.
CAGE tags were downloaded from the FANTOM pro-
ject [42]. H3K4me3 histon modification marks were col-
lected from a compiled set of H3K4me3 ChIP-Seq
studies [43-51]. Conservation score was calculated as the
number of aligned species in the 100 bp sequence win-
dow divided by the number of species in which the pre-
miRNA was conserved. Using these sequence features,
TSSvote calculated the score of each sequence window
by score = 2δtranscript/EST + δCpG + δCAGE + δH3K4me3 + con-
servation where δfeature equals one if a given feature is
located within the sequence window. Otherwise, δfeature
equals zero. For each miRNA, the sequence window
within the TSS search range that had the highest score
was predicted as the miRNA TSS. When multiple se-
quence windows had the same score, the sequence win-
dow closest to the miRNA was assigned as the predicted
TSS.

Computational prediction of TF regulatory targets
To predict TF regulatory targets, we applied a previously
developed computational model of transcription factor
binding site (TFBS) enrichment [22] with several
extended features, including more TF binding models
and an improved phylogenetic model for TFBS conser-
vation. Briefly, multiple sequence alignments of ten ver-
tebrates, whose genomes were completely sequenced
with a good coverage (>6x), were obtained from the
UCSC genome browser download site. Using NCBI’s
mouse genome annotation (build 37.1), for each mouse
gene the multiple alignments of genomic sequence from
-100 kb of the TSS to the end of the gene itself were
extracted. Within this range, the sequence between
-10 kb and +5 kb of the TSS and the sequence regions
that have a regulatory potential (RP) score [52] larger
than 0.1 were identified and collected as the TFBS
search space. To search for TFBS, a total of 867 verte-
brate position weight matrix models (PWMs) of TFs
were compiled from the TRANSFAC [53], JASPAR [54],
and UniProbe [55] databases. Using these PWMs, puta-
tive TFBS were identified in the TFBS search space using
the program patser with the default score cutoff, and the
evolutionary conservation of each site was determined
using multiple sequence alignments.
The original model [22] only considered TFBS con-

served in human, mouse and rat. Therefore, transcrip-
tional regulation based on non-conserved sites was not
accurately modeled, and the regulation of non-conserved
genes was neglected. To overcome these limitations of the
original model, we developed a phylogenetic tree-based
scoring function to weight the contribution of each TFBS
to the overall score by their evolutionary conservation.
Namely, for each TF-gene pair, the phylogenetically
weighted probability score of binding was calculated as

X

x∈X

wx exp sxð Þ

where X is the collection of all sites, sx is the PWM score
of binding site x and wx is the total phylogenetic tree
branch length of all the species in which binding site x is
conserved, based on a previously published tree [56]. Note
that in this scoring formula the common branch length
shared by two close species was only counted once. In this
model, a site that is conserved in a distantly related spe-
cies will gain a higher weight than one conserved in a
closely related species.
Using this scoring model, the probability score for bind-

ing and the P-value were calculated based on all the iden-
tified TFBSs. Because the consolidated database of TF
binding weight matrix models may have multiple models
for the same TF, the bias in P-value calculation implanted
by multiple hypothesis testing was removed by performing
a Bonferroni correction on the raw P-value for each indi-
vidual weight matrix of the same TF. Regulatory targets of
TFs were identified using an adjusted P-value cutoff of
0.005, which was determined by comparing the num-
ber of computationally predicted targets to the number
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of ChIP-Seq identified targets for available TFs. The
same analysis was applied to identify TFs that regulate
miRNAs using miRNA promoters, which were defined
as the sequence between -5 kb and +1 kb of the
miRNA TSS predicted by TSSvote. For more details on
the computational model please refer to the original
paper that described the model [22].

Computational prediction of miRNA regulatory targets
We combined miRNA target predicted by three algo-
rithms, including TargetscanS [24], pictar [25], and mi-
Randa [26]. miRNA targets predicted by TargetscanS
were downloaded from http://www.targetscan.org/ (Re-
lease 4.2). miRNA targets predicted by pictar were
downloaded from http://pictar.mdc-berlin.de/ and tar-
gets predicted by miRanda were downloaded from
http://www.microrna.org (September 2008 release).

Identification of master TF regulators of coexpressed
mRNAs or miRNAs
Common TF regulators of coexpressed mRNAs were
identified by the previously developed Promoter Analysis
Pipeline (PAP) tool [28], which is available via a web inter-
face or API at http://bioinformatics.wustl.edu/webTools/
PromoterAnalysis.do. PAP searches for the enriched TF
binding sites in the promoter sequences of coexpressed
mRNAs or miRNAs. Briefly, an R-score was calculated for
each gene in the mouse genome based on the ranking of
the probability score for binding. Genes that are more
likely to be regulated by a TF will have a higher R-score
for that TF. For a set of coexpressed genes, the average of
the R-scores of the member genes were calculated for
each TF. The P-value for a given R-score was then calcu-
lated by using randomly selected gene clusters of the same
size. A Bonferroni corrected P-value cutoff of 0.05 was
used to identify TFs that had significantly higher average
R-scores as common regulators. The same analysis was
applied to identify common TF regulators of coexpressed
miRNAs based on miRNA R-scores, which were calcu-
lated using the probability score for binding for miRNAs.

Identification of master miRNA regulators of coexpressed
mRNA genes
Common miRNA regulators of coexpressed mRNA genes
were identified by the enrichment of miRNA targets in
the coexpresed genes. The hypergeometric P-value for en-
richment was calculated for a miRNA using the total
number of nerve expressed genes that were predicted as
targets of any miRNA (population size), the number of
coexpressed mRNA genes (sample size), the number of
nerve expressed genes that were predicted as targets of
the miRNA (number of successes in population), and the
number of coexpressed genes that were predicted as tar-
gets of the miRNA (number of successes in sample).
Common miRNA regulators were identified using a
hypergeometric P-value cutoff of 0.05.

Experimental validation
Plasmids: pre-mir-124 was obtained through PCR amplifica-
tion from genomic DNA. The resulting fragment was
cloned between the BamHI and Nhe I sites in the miRNA-
Select pEP-MIR Cloning and Expression Vector (Cell Bio-
labs) using the InFusion HD cloning system (Clonetech)
according to the manufacurer’s recommendations. Pre-mir-
124 included the miRNA stem loop and ~100 nt of flanking
sequence on either side. For luciferase assays, the 3’UTR re-
gion of Egr2 was PCR amplified from genomic DNA using
the following primers: Egr2 3’UTR: F, AAAGCT GCGCAC-
TAGTGATGAAGCTCTGGCTGACACACCA; R, ATCCT
TTATTAAGCTTACCA TAGTCAATAAGCCATCCAT. DNA
fragments were cloned downstream of the luciferase gene
between the HindIII and SpeI sites in the pMIR-REPORT
miRNA Expression Reporter Vector (Ambion). The 3’UTR
of Egr2 lacking the miR-124 pad was cloned in an analo-
gous manner. pRL-CMV Renilla Luciferase Reporter vec-
tor (promega) was used as a transfection control.
Luciferase assays: HEK293T cells were seeded at a

density of 50,000 cells/well in 24 well plates in DMEM
media (Invitrogen) supplemented with 10% fetal bovine
serum (FBS), 2 mM L-glutamine. Cell were transfected
24 h later, with either a pEP-MIR vector expressing a
pre-miRNA or with the pEP-mir Null control and with
the pMIR-REPORT luciferase reporter vector containing
the appropriate 3’UTR linked to luciferase. pRL-CMV
Renilla Luciferase Reporter vector (Promega) was used
as a transfection control. A total of 200 ng of plasmid
DNA/well were transfected at a ratio of 50:1:0.5 (miRNA :
luciferase reporter : transfection Ctrl). Cells were har-
vested 48 h post-transfection and assayed using a Dual-
Luciferase Reporter Assay System (Promega) according to
the manufacturer’s protocol.
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Additional file 8: Figure S1. Workflow of the computational method
for predicting TFs that regulate mRNAs or miRNAs. The same
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computational model is used to predict TFs that regulate mRNAs using
NCBI’s TSS annotation and to predict TFs that regulate miRNAs using
computational TSS prediction.

Additional file 9: Table S8. ChIP-Seq datasets used in validating
computational TF target prediction.

Additional file 10: Table S9. Enriched TF bind sites in genes in SC
injury response gene clusters.

Additional file 11: Table S10. Enriched miRNA binding sites in genes
in SC injury response gene clusters.

Additional file 12: Figure S2. Luciferase assays confirm a direct
interaction between miR-124 and the 3’-UTR of Egr2. Overexpression of
miR-124 but not of a Ctrl miRNA in HEK293T cells expressing a luciferase
reporter construct carrying the 3’-UTR of Egr2 results in significantly
decreased luciferase activity (p<0.05, two-tailed Student’s t-test). Mutating
the predicted landing pad for miR-124 in the 3’-UTR of Egr2 disrupts the
interaction between miR-124 and the Egr2 3’-UTR luciferase construct
and restores luciferase activity.

Additional file 13: Table S11. TF and miRNA regulatory network motifs
in the SC injury response network.
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