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Abstract

Background: A number of spider species within the family Theridiidae exhibit a dramatic abdominal
(opisthosomal) color polymorphism. The polymorphism is inherited in a broadly Mendelian fashion and in some
species consists of dozens of discrete morphs that are convergent across taxa and populations. Few genomic
resources exist for spiders. Here, as a first necessary step towards identifying the genetic basis for this trait we
present the near complete transcriptomes of two species: the Hawaiian happy-face spider Theridion grallator and
Theridion californicum. We mined the gene complement for pigment-pathway genes and examined differential
expression (DE) between morphs that are unpatterned (plain yellow) and patterned (yellow with superimposed
patches of red, white or very dark brown).

Results: By deep sequencing both RNA-seq and normalized cDNA libraries from pooled specimens of each species
we were able to assemble a comprehensive gene set for both species that we estimate to be 98-99% complete. It
is likely that these species express more than 20,000 protein-coding genes, perhaps 4.5% (ca. 870) of which might
be unique to spiders. Mining for pigment-associated Drosophila melanogaster genes indicated the presence of all
ommochrome pathway genes and most pteridine pathway genes and DE analyses further indicate a possible role
for the pteridine pathway in theridiid color patterning.

Conclusions: Based upon our estimates, T. grallator and T. californicum express a large inventory of protein-coding
genes. Our comprehensive assembly illustrates the continuing value of sequencing normalized cDNA libraries in
addition to RNA-seq in order to generate a reference transcriptome for non-model species. The identification of
pteridine-related genes and their possible involvement in color patterning is a novel finding in spiders and one that
suggests a biochemical link between guanine deposits and the pigments exhibited by these species.
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Background
Visible polymorphisms provide tractable systems within
which to examine the molecular basis of adaptation be-
cause of their often-simple patterns of inheritance and the
general ease with which morph/allele frequencies can be
estimated [1,2]. Many spider species show visible variation
in color and pattern [3]. A number of unrelated species
within the Theridiidae (cobweb spiders) exhibit a heritable
color polymorphism. In most cases examined, the poly-
morphism consists of two or three morphs, as in the sister
species Enoplognatha ovata Clerck and Enoplognatha
latimana Hippa & Oksala [4,5]. Two other, distantly re-
lated species within the genus Theridion have become
of particular interest because they exhibit a spectacular
array of color morphs. The Hawaiian happy-face spider
Theridion grallator Simon occurs in native forest on
four of the Hawaiian islands and displays more than 20
discrete abdominal color patterns [6,7] while Theridion
californicum is found along the Pacific coast of North-
America and exhibits at least 12 discrete abdominal
color patterns [8,9]. The morphs displayed by these spe-
cies are remarkably similar, and in the case of T. grallator
may have evolved repeatedly, subsequent to colonization
of each of the Hawaiian islands [10]. Many of the morphs
exhibited by these species are illustrated in references [9]
and [9,11]. The most common morphs of each species are
also convergent with those displayed by Enoplognatha
ovata, E. latimana and some other polymorphic species in
the Theridiidae. In all species examined there is a common
Yellow morph that typically represents 60-70% of any
population and that is recessive to all other morphs, with
the Colored (patterned) morphs displaying a dominance
hierarchy that broadly reflects the extent of pigmentation
[3,4,8,9]. The morphs are created from a palette of yellow,
red and dark-brown (almost black) pigments laid down on
a reflective background of white guanine crystals and all
the pigment appears to be ommochrome based [3,12].
These recurring patterns led Oxford [9] to propose
that in the Theridiidae there is a common ground plan
for patterning and that the occurrence of shared morphs
across species implies canalization of the processes by
which the color patterns are generated. Furthermore,
studies in E. ovata, T. grallator, and T. californicum have
shown that the inheritance of the color polymorphism
follows a broadly Mendelian pattern with segregation at
a single locus with multiple alleles [4,6,9]. The pattern of
simple Mendelian inheritance is occasionally complicated
by the presence of sex-limitation (see [3] for a review) in
the expression of color morphs. Indeed, 7. grallator indi-
viduals from the island of Hawaii, compared with those
from Maui, have experienced a shift in the mode of inher-
itance of the polymorphism with possibly two loci in-
volved and some color morphs exhibiting sex limitation
[7,13]. This change in the pattern of inheritance has led to
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the suggestion that the color polymorphism has to some
extent evolved independently on different islands [10,13].

Chemical basis for spider coloration

Much of the pigment-based coloration in invertebrates
results from products of the ommochrome, pteridine,
papiliochrome, melanin and heme synthesis pathways
[14]. To date only ommochrome and bilin-based pigments
have been identified in spiders. Ommochromes, which are
derivatives of the amino acid tryptophan, via kynurenine
and 3-hydroxykynurenine, are the best-known spider pig-
ments and are responsible for a wide range of colors from
yellow through red to gold and very dark brown. The
usual reduced form is red/brown and the oxidized form
usually yellow [15]. Ommochromes have been the focus of
considerable research in particular in the 1970s and 1980s
[12,16-18]. More recent work on these pigments in spiders
has largely been limited to color change in Misumena
vatia, where it appears that color change is associated with
a cyclic pattern of formation and degradation of pigment
granules [19].

Bilins, which tend to be blue or green, have been
found in the form of micromatabilin in the green hunts-
man spider Micrommata virescens (Sparassidae) [20,21].
In addition to these pigments, the purine-base guanine,
a terminal excretory product in spiders, is often laid
down in crystalline form in specialized guanocytes on
the surface of the gut diverticula, directly beneath the
hypodermis [3]). The guanine crystals produce a white
or silvery coloration by reflection and scattering and are
therefore structural colorants. However they are frequently
directly associated with pigment-based colors, either
contributing to the overall color pattern or acting as a
reflective layer beneath pigmented areas [6,22-24].

Melanin is found, with a variety of structures, ubiqui-
tously throughout the tree of life [14] and commonly
plays a role in defense and isolation of infections. Melanin
has however not been reported as a pigment in spiders [3].
Although identified in some mites [25,26], carotenoid pig-
ments have also not been detected in spiders [3]. Perhaps
most surprising is the apparent absence of pteridine-based
pigments. The pteridine pathway is found in both plants
and animals and a key compound in the pathway, tet-
rahydrobiopterin, acts as an essential cofactor in the
degradation of phenylalanine and the synthesis of the
neurotransmitters serotonin, melatonin, dopamine, nor-
epinephrine and epinephrine [27]. Pteridine and ommo-
chrome pigments form the basis of the visible eye-color
variants of Drosophila and much of the variation in butter-
fly wing patterns, and have consequently been central to
the development of genetics itself [28]. Indeed the plethora
of observed eye-color mutants in Drosophila results from
the complex spectral interactions of pteridine and ommo-
chrome pigments. Given the use of guanine as a colorant
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in spiders, it is also interesting to note that this is the
key substrate for the pteridine pathway (as opposed to
tryptophan for the ommochrome pathway). Finally,
many pigment proteins contain heme groups or result
from conjugates of heme-containing compounds (e.g.
bilins) [3,14].

The parallel evolution of genetically based adaptive
changes amongst both unrelated species and the highly
structured populations of these spiders (i.e. in 7. grallator
[10,29]) makes these systems ideal for examining evolution
under balancing selection. Our ultimate aim is to elucidate
the molecular basis of the evolutionary changes that have
led to the parallel evolution of similar coloration in these
species. However, a necessary step in this process is the
determination of the pigment synthesis pathways that are
present in these spiders and the gene sequences associated
with them. Subsequently candidate genes associated
with the allelic basis of the color polymorphism or that
are differentially expressed among color morphs can be
identified. The advent of next-generation sequencing
technologies has permitted rapid profiling and de novo
assembly of the complete set of expressed mRNA se-
quences in a specific tissue or whole organism (tran-
scriptome sequencing, RNA-seq [30]). In addition to
providing information on the structure of expressed
gene transcripts (as de novo assembled “contigs”), the
digital nature of RNA-seq facilitates the determination
of both relative transcript expression levels within a tis-
sue or organism and the differential expression of tran-
scripts among tissues or experimental treatments. Using
data generated through a combination of RNA-seq and
the sequencing of normalized ¢cDNA libraries to com-
pensate for the under-sampling and poor assembly of
rarer transcripts, we report on the near-complete
whole-body expressed transcriptomes of two species of
color-polymorphic spider, Theridion californicum and
T. grallator. This represents the most extensive genomic
data set for spiders so far available. We report on the
gene complement of these species and highlight gene
families that appear to have experienced expansion in
the lineage leading to spiders. In particular we identify
pigment-pathway genes in these spiders and we second-
arily examine these, as well as the larger gene set, for
evidence of differential expression between the common
(double recessive) Yellow (unpatterned) morph and
Colored (patterned) morphs.

Results

Sequencing and de novo assembly of two spider
transcriptomes

The transcriptomes of the two spider species, Theridion
grallator and T. californicum, were assembled from a
combination of RNA-seq and normalized cDNA Illumina
short-read data. The annotated contigs are available as
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Additional file 1 (7. californicum transcriptome) and
Additional file 2 (T. grallator transcriptome). The TRINITY
based assemblies returned a large number of contigs (or
“Isotigs”, i.e. transcript models) clustered into a number of
components (“genes”) and the numbers of reads and con-
tigs at each assembly step is outlined in Table 1. Although
all contigs > 100 bp were retained by TRINITY, here we re-
port the statistics and counts for all contigs>200 bp and
refer the reader to Tables 1 and 2 for full count informa-
tion. The assembly for 7. californicum consisted of
128,391 contigs (>200 bp) in 83,701 components and
that for T. grallator of 104,481 contigs in 89,166 com-
ponents. The maximum contig length for T. californi-
cum was 24,235 bp and for T. grallator was 17,866 bp
(both corresponding to twitchin/titin muscle proteins).
The mean contig length for T. californicum was 606 bp
and for T. grallator 601 bp and the N50 contig lengths
were 901 bp and 926 bp respectively. The frequency
distribution of contig lengths for each assembly is
given in Additional file 3: Figure S1. The large number
of contigs between 100 and 200 bp in length can be as-
sumed to consist of both real short transcripts (that
are difficult to annotate by BLASTX searches since
they are so short) and many contigs that represent
non-overlapping fragments of single genes - greatly in-
flating gene counts. The extent of this fragmentation
was explored by using the 19,693 genes of the UniprotKB
Drosophila  melanogaster proteome as a target for
BLASTX searches with each of the spider transcriptomes.
Of the 4,641 T. grallator contigs >100 bp that generated
BLAST hits to D. melanogaster genes 2,499 (54%) were
unique best hits (i.e. the D. melanogaster protein was not
the best hit for any additional contigs). When only contigs
>200 bp were considered 2,273 of 3,543 (64.15%) hits
were unique. Similarly, for T. californicum contigs>
100 bp in length 2,783 of 5,161 (54%) of hits were unique
and for contigs>200 bp, 2,622 of 4,251 (62%) were
unique. This increase in the proportion of unique hits
(ca. 10%) when contigs 100-199 bp are excluded indi-
cates that contigs of this length are likely highly
fragmented.

Functional annotation and filtering of putative
contaminant organisms

The subset of putative protein-coding transcripts present
in the assemblies was identified using two approaches.
First, all the transcripts were subject to BLASTX
homology searches against the entire NCBI non-redundant
nr protein database. For T. californicum 43,009 contigs >
200 bp (in 23,586 components) and for 7. grallator 42,538
contigs >200 bp (22,658 components) had at least one
BLAST hit with an expected E-value smaller than 1x107
(Table 2). Examination of the BLAST hits indicated that a
significant proportion of the contigs in both species were
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Table 1 Theridion californicum and T. grallator transcriptome sequencing and assembly statistics

Input T. californicum T. californicum T. grallator T. grallator

“Yellow” “Colored” “Yellow” “Colored”

Initial reads' RNA-seq 165,289,830 166,918,608 219,423,001 297,051,726

Initial reads’ ncDNA 111,126,430 102,037,432 241,426,000 187,430,684

Total initial reads’ 276,416,260 268,956,040 460,849,001 484,482,410

Preprocessed reads 141,712,102 109,218,670 88,114,377 151,149,116
Combined reads 250,930,772 239,263,493
Reads entering assembly2 171,894,396 168,943,057
Inchworm Kmers 885,888,079 820,735,751
Chrysalis contigs 5,658477 6,140,420

Butterfly contigs

128,391 (389,967)

104,481 (459,452)

Butterfly components (“Genes”)

83,701 (295,585)

89,166 (427,020)

Mean contig length (bp) 606 (289) 601 (235)
Median contig length (bp) 344 (152) 332 (130)
N50 contig length (bp) 901 (429) 926 (273)
Mean coverage depth (reads)* 2284 (1722) 4493 (3001)
Median coverage depth (reads) 99 (33) 329 (45)
Maximum transcript length (bp) 24,235 17,866

'All counts are expressed as “single” reads for comparative purposes.
2Subset due to RAM limitations.

3Values outside parentheses are for contigs > 200 bp, inside parentheses contigs > 100 bp.

“Coverage calculated using RSEM [31].

likely to originate not from the spider per se but from
parasitic, commensal and environmental contaminants
(the “meta-transcriptome”). The contigs with BLASTX hits
were therefore filtered into two sets based upon the
BLASTX hit species tag, using the program MEGAN 4
[32]. All contigs that were assigned to the Metazoa (with
the exception of Nematoda — because these species are
likely to be infected with nematodes — see Methods) were
designated as “spider” contigs and all others “non-spider”.
This resulted in a final spider BLASTX-positive set
of 35,411 contigs >200 bp (20,611 components) for
T. californicum and 22,724 contigs >200 bp (18,868
components) for T. grallator (Table 2). In other words,

17.67% of the BLAST X-positive T. californicum contigs
(>200 bp) are likely not to correspond to spider
genes. The same is true of a remarkable 46.58% of
T. grallator contigs (>200 bp). This resulted in the final
number of spider BLASTX-positive components (“genes”)
between the two species being only 8% different (20,611
versus 18,868). Relative abundances and taxonomic distri-
butions of the non-spider taxa at the Phylum level and for
bacterial classes are given in Additional file 3: Tables S1
and S2. Most of the non-spider taxa are bacteria or fungi
indicating a rich microbiome that is more complex in the
tropical species. The BLAST2GO annotation pipeline
rejected 1,737 T. californicumm and 2,521 T. grallator

Table 2 Theridion californicum and T. grallator transcriptome annotation and coding gene composition statistics

T. californicum T. grallator

BLASTX + ve' Transcripts 43,009 (54,777) 42,538 (76,610)
BLASTX + ve Components 23,586 (33,789) 22,658 (68,541)
Metazoan (“spider”) BLASTX + ve Transcripts 35,411 (47,179) 22,724 (34,062)
Metazoan (“spider”) BLASTX + ve Components 20,611 (28,215) 18,868 (29,397)
Mean coding contig length (bp) 1090 (855) 1270 (892)
Median coding contig length (bp) 751 (459) 990 (443)
N50 coding contig length (bp) 1699 (1628) 1903 (1832)
Coding transcriptome%GC 3643 35.17
Coding transcriptome size (Mbp)? 2247 - 2584 2396 - 27.56

'BLASTX + ve = BLASTX-positive, i.e. those transcripts or components that had received a positive hit to a known and putatively homologous protein sequence.
2Mean transcript size multiplied by number of spider BLASTX-positive components (genes) — with and without an additional 15% of components based upon

Markov-ORF analysis (see text).
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BLASTX-positive contigs because the minimum /hsp
length was shorter than 33 aa. Overall, the E-values of the
BLASTX hits were very low with 42,999 (94.62%) of
T. californicum and 29,846 (94.63%) of T. grallator
hits (considering all contigs >100 bp) having an E-value
<1x107° (Additional file 3: Figure S2).

The top 20 taxa generating BLASTX hits to the
spider contigs are illustrated in Additional file 3: Figure
S3. Although this distribution partly reflects the biased
composition of the NCBI nr database, 14 of the top 20
taxa were invertebrates, including three arachnids —
the deer tick Ixodes scapularis (the top-hit taxon being
hit by 21.22% of T. californicum and 21.13% of T. grallator
sequences), the Gulf Coast tick Amblyomma maculatum
(hit by 3.34% of T. californicum and 3.91% of T. grallator
sequences), and the western black-widow spider Latro-
dectus hesperus (hit by 1.75% of T. californicum and
2.15% of T. grallator sequences). (Annotated protein se-
quences from the recently sequenced two-spotted spider
mite Tetranychus urticae [33] were not available in the nr
database and were therefore not used for annotation here).
The overall distributions of the top BLAST hits were
highly similar for both spider species (Additional file 3:
Figure S3). The BLASTX hits were used for mapping the
contigs and subsequently assigning gene ontology (GO)
annotations using BLAST2GO PRO. In total GO annota-
tions were assigned to 32,603 (69.10%) T. californicum
and 22,825 (67.01%) T. grallator contigs (considering all
contigs >100 bp).

The BLASTX homology searches (with subsequent fil-
tering through MEGAN 4) indicate the presence of a large
protein-coding gene set in the two species — ca. 20,000
genes (1. californicum: 20,611; T. grallator: 18,868; 28,215
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and 29,397 respectively if contigs 100-199 bp are in-
cluded). Since the public databases currently contain
relatively little gene-sequence information for spiders,
we also employed a second approach to coding-gene
identification using Markov-model prediction based
upon GENEID [34], as implemented in TRINITY. Only
open reading frames ORFs greater than 100 aa (ca.
300 bp) were considered. This analysis identified a similar
number of putative genes to the BLASTX analyses: 19,328
components (genes) in 7. californicum and 17,380 compo-
nents in 7. grallator. A detailed analysis of the overlap
among the various protein-coding gene set predictions is
given in Supplemental Section 6, and Additional file 3:
Figure S4. The results of the Markov-ORF prediction
suggest that the two spider species might have ca. 4#.5%
more protein-coding genes than predicted by BLASTX
homology alone - i.e. at least 21,495 coding genes. The
protein coding transcriptome size was estimated to be
between ca. 23.43 Mbp to 27.30 Mbp and the GC content
is low: T. californicum is 36.93% and for T. grallator
35.17% (Table 2).

Comparative genomics and generation of orthologous
gene clusters

The most parsimonious reconstruction of gene family
gain and loss is presented on the recovered phylogeny in
Figure 1. The spider gene data was based upon the sets
of Markov-predicted ORFs (see above). The phylogeny
was supported by high bootstrap values (all nodes = 100%).
Our gene family evolution results are largely congruent
with those presented by Grbic et al. [33] in which the
genome of the mite Tetranychus urticae was described,
and any discrepancies are likely due to recent updates of

Genes
Chelicerata:
Arachnida 17,380
+2367/-322
+159/-686 19,328
+645/-1579
Tetranychus urticae 3,932 18,313
5 | +553/-1267
P L 189 19,800
| +334/-722
— 1,996 13,937
0.11
+580/-0 +247/-441
3,377 16,422
+1698/-830
4,902 30,907
PR
1,036 26,484
+1383/-0
Nematostella vectensis 2,173 27,273
Figure 1 Gene family gains and losses across the Metazoa. Dollo parsimony phylogeny of select metazoans derived from complete protein
sets, documenting the history of orthologous gene family gains and losses among the metazoans with particular respect to the Araneae. The
anemone Nematostella vectensis acts as an outgroup for rooting the phylogeny. The number of genes for T. californicum and T. grallator is from
Markov-model-based predictions for ORFs > 100 aa, and therefore excludes many shorter genes.
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several of the predicted protein datasets. In our analysis,
the ancestor of the arachnids had 6033 gene families. The
lineage leading to the mite 7. urticae gained 645 gene fam-
ilies while apparently losing 1,579. T. urticae represents
the smallest arthropod genome sequenced, at ~90 Mb,
and is of atypical size for arachnids. In contrast, the unfin-
ished genome of the tick Ixodes scapularis, also a member
of the Acari, is much larger (~2,100 Mb) [33]. It is import-
ant to note that in these analyses, and also in the pigment-
pathway associated gene search, that when we state that a
gene (or gene family) was not detected this does not ne-
cessarily mean that the gene is absent; it may merely be
that we failed to detect the contig because of weak expres-
sion, low sequence similarity, lack of expression in adult
females, or environment specific expression.

Regarding the Araneae, the lineage leading from the
arachnid ancestor to the genus Theridion (assuming our
two species are representative) accumulated 2,367 novel
gene families while apparently only loosing 322. Nearly
half of the genes in these novel gene families (45.64% -
T. californicum; 45.80% - T. grallator; and 45.72% - total)
could not be assigned to gene ontology (GO) domains
(i.e., molecular function, biological process, or cellular
component) and did not receive GO annotations. Be-
tween the full transcriptomes of the two Theridion
species sequenced here, 135 unique GO terms were
assigned by BLAST2GO. Of these, 131 were present in
the T. californicum annotations; each of these was
shared with T. grallator. The T. grallator transcriptome
contained four unique GO terms: GO:0023033 (signal
transduction), GO:0045735 (nutrient reservoir activity),
GO0:0071568 (UFM 1 conjugating enzyme activity), and
GO:0071569 (protein ufmylation). The latter two are
associated with the protein UFM 1, a ubiquitin-like pro-
tein. The nearly complete overlap of GO annotations
between the two species further validates the complete-
ness of our transcriptome data. In order to characterize
the spider transcriptome functionally, we explored the
level II and level III GO annotations for each of the
three GO domains in terms of frequency with which
each GO-term was assigned to the dataset. We also in-
cluded the set of Araneae-specific genes (as defined by
the gene-family analysis — Figure 2) in order to attempt
to highlight any functional differences that may be
enriched within this group. For brevity, these results are
discussed in the Supplementary material alongside the
accompanying Supplementary Section 13, and Additional
file 3: Figures S5-S10.

Pigment pathway-associated genes in T. californicum and
T. grallator

A principle aim of this study was to identify and cha-
racterize expressed pigment-pathway-associated genes in
T. californicum and T. grallator: 1) to clarify which
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Figure 2 De novo purine and pteridine biosynthesis pathways
indicating key gene products [35-38]. Abbreviations: AMP,
adenosine monophosphate; APRT, adenine phosphoribosy!
transferase; PRPP, 5-phospho-a-D-ribosyl 1-pyrophosphate; PRAT,
phosphoribosylamidotransferase; ADE3, adenosine3 (encodes GARS,
glycineamide ribotide synthetase; AIRS, aminoimidazole ribotide
synthetase; GART, phosphoribosylglycinamide formyltransferase); IMP,
inosine monophosphate; IMPD (ras), inosine monophosphate
dehydrogenase (raspberry); XMP, xanthine monophosphate; GMPS
(bur), guanine monophosphate synthase (burgundy); GMP, guanine
monophosphate; GK, guanylate kinase; NDK, nucleoside diphosphate
kinase; GTP, guanosine triphosphate; GTP-CH (Pu), guanosine
triphosphate cyclohydrolase (Punch); H,-NTP, dihydroneopterin
triphosphate; PTP SYNTHASE (pr), 6-pyruvoyl-tetrahydropterin
synthase (purple); 6-PTP, 6-pyruvoyl-tetrahydropterin; SPR, sepiapterin
reductase; H,Biopterin, tetrahydrobiopterin; PAH (Hn), phenylalanine
hydroxylase/tetrahydropterin oxidase (Henna); 7,8-H,PTERIN,
dihydropterin; PDA synthase (se), pyrimidodiazepine synthase (sepia);
(cl), (clot); PDA, pyrimidodiazepine; DHPO, dihydropterin oxidase;
XDH (ry), xanthine dehydrogenase (rosy). Symbols: <, supported by
reciprocal BLAST hit, =, supported by one-way BLAST hit

(D. melanogaster protein versus translated spider transcriptome);
A, either not supported by reciprocal BLAST hit or not part of the
D. melanogaster AmiGO pigment gene set but identified by
BLAST2GO annotation; X, not detected; [], not searched for.




Croucher et al. BMC Genomics 2013, 14:862
http://www.biomedcentral.com/1471-2164/14/862

pigment pathways are expressed; and 2), to identify
candidate loci responsible for the allelic basis of the
color polymorphism. Homologues of known pigment-
process-associated proteins from Drosophila melanogaster
were sought in the full transcriptome assemblies of both
T. californicum and T. grallator. Putative homologues
were detected to 59 out of 69 D. melanogaster proteins
(Tables 3 and 4). Of these, 40 were confirmed as likely
homologues by reciprocal best hit (RBH). Again, it is
important to note that absence of evidence for a contig
is not evidence of absence of a gene. The pigment pathway
genes were divided into five broad categories of path-
way: heme, melanin, rhodopsin/carotenoid, pteridine and
ommochrome . (Tables 3 and 4; details of D. melanogaster
proteins used for RBH are given in Additional file 3:
Table S7).

Heme

Of nine D. melanogaster heme genes examined, eight
were confirmed by RBH. The products of the eight con-
firmed genes are all involved in heme synthesis [39,40],
confirming that the heme pathway, known to be highly-
conserved across the tree-of-life [39], is largely intact in
these spiders. The gene for heme oxygenase (HO) was
not detected by RBH; because HO catalyses the degrad-
ation of heme into biliverdin [41,42], its apparent absence
supports the notion that these spiders do not produce
bilin pigments.

Melanin

Only seven out of 19 melanin-associated genes (37%)
were confirmed by RBH. Melanin pigments have not
been reported in spiders [3], although their role in parasite
encapsulation in spiders has been assumed [64]. Key genes
associated with melanin pigmentation in D. melanogaster
were not detectable by RBH e.g. Spn27A, which regulates
the melanization cascade in D. melanogaster [45]; yellow-f
(dopachrome isomerase) that converts dopachrome to
5,6-dihydroxyindole [14]; nor ebomy (NBAD-synthase)
[43]. The lack of a melanin pigmentation pathway, also
implies that spiders do not produce the yellow papilio-
chrome pigments that are typical of swallowtail butterflies
as these depend upon both the melanin and ommochrome
pathways [43].

Rhodopsin/carotenoid

Although not structurally related, we group rhodopsin
and the carotenoid pigments together here simply because
rhodopsins are intimately bound to the carotenoid derived
cofactor retinal (vitamin A). Only three out of 10 (30%) of
the rhodopsin/carotenoid-associated genes were identified
by RBH. Santa-maria and ninaA are important in general
carotenoid metabolism [49] and KHI contains RNA
helicase domains [48].
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No genes strongly associated with vision were identified—
a testament to the “poor vision” characteristic of most
spiders families.

Pteridine

Nine (69%) of 13 pteridine-associated genes were identi-
fied by RBH (Table 4). Although the pteridine biosynthesis
pathway starts with guanosine triphosphate (GTP) as its
substrate, the homology search also included key genes
from the de novo purine synthesis pathway through which
GTP is generated (Figure 2) [35-38]. We detected two
genes whose products are involved in purine nucleotide
salvage: adenine phosphoribosyl transferase, APRT; and
hypoxanthine-guanine phosphoribosyltransferase, HGPRT
(detected by keyword search; not shown in Figure 2).
Genes for all key de novo purine synthesis enzymes that
were searched for were detected including the classic
D. melanogaster eye-color loci raspberry (inosine mono-
phosphate dehydrogenase, IMPD) (received only one-way
BLAST support but was identified by keyword search
against annotations) and burgundy (guanine monopho-
sphate synthase, GMPS). Furthermore, all key enzymes
leading to the production of Hybiopterin [27] were de-
tected: Punch (guanosine triphosphate cyclohydrolase,
GTP-CH (EC 3.5.4.16)), which catalyzes the production
of dihydroneopterin triphosphate, H,-NTP; purple (6-
pyruvoyl-tetrahydropterin synthase, PTP-synthase (EC
4.6.1.10)) which eliminates the phosphate groups yielding
6-pyruvoyl-tetrahydropterin, 6-PTP; and sepiapterin re-
ductase (SPR (EC 4.6.1.10)) which yields H, biopterin [36].
The conservation of the Hybiopterin pathway in spiders is
not surprising given that the pathway is shared by plants
and animals [14]. However, the detection of the genes
Henna (phenylalanine hydroxylase/tetrahydropterin oxi-
dase, PAH (EC 1.14.16.1)) [37] and clot, a thioredoxin-like
protein [38], suggest the possibility that the yellow pig-
ment sepiapterin and orange/red drosopterin pigments
could be present. In addition, the gene maroon-like
was also detected. This encodes a protein with a
molybdopterin cofactor sulphurase activity and may
regulate the activities of aldehyde oxidase and xanthine
dehydrogenase [54].

Ommochrome

Of the 18 ommochrome-associated genes that were
searched for, 13 were identified Table 4). Neither cardinal
(which codes for a heme peroxidase) nor zeste (which en-
codes a transcription regulator) [55,56] was detected. The
two key enzymes of the ommochrome synthesis pathway
sensu stricto — vermillion (tryptophan 2,3-dioxygenase),
and cinnabar (kynurenine 3-hydroxylase) (see Figure 3) —
were clearly detected. Other enzymes known to be in-
volved, including kynurenine formamidase (KE, KFase)
[52,60] and phenoxazinone synthase (POS) [52] were not
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Table 3 Occurrence of “Drosophila” heme, melanin and rhodopsin pigment-pathway-associated genes in T. californicum
and T. grallator transcriptome assemblies as identified by reciprocal-BLAST-hit (RBH) analysis

Pigment Gene Gene name Selected  T. californicum T. grallator
pathway'  symbol references RBH? RBH
Heme Alas Aminolevulinate synthase [39,40] = =S
CG3156 CG3156 (ABC Transporter) [39,40] > o
(CG3803 Heme A synthase [39,40] Pz o
CG5037 Protoheme IX farnesyltransferase [39,40] =S =S
Coprox Coproporphyrinogen oxidase [39,40] =S o
ferrochelatase  ferrochelatase [39,40] Pz o
Ho Heme oxygenase [41,42] NA =>
Ppox Protoporphyrinogen oxidase [39,40] < o
Updo Uroporphyrinogen decarboxylase [39,40] =S o
Melanin bsk basket S i
dl dorsal o o
e ebony [43] > >
egr eiger NA NA
grim grim NA NA
Gr28b Gustatory receptor 28b NA NA
hep hemipterous =S PEN
Hml Hemolectin [44] < o
MPI1 Melanization Protein 1 > >
Nrg Neuroglian & &
PGRP-LC Peptidoglycan recognition protein LC > >
Rhol Rhol = o
Sp7 Serine protease 7 > ES
Spn27A Serpin 27A [45] > >
Spn77Ba Serpin 77Ba > >
7l Toll [46]
y yellow [43] NA NA
yellow-f yellow-f (14,471 NA NA
yellow-f2 yellow-f2 [14,47] NA NA
Rhodopsin  Cnx99A Calnexin 99A > ES
CGI3611 CG13611 => NA
Xport exit protein of rhodopsin and TRP NA NA
KH1 KH1 [48] o o
ninaA neither inactivation nor afterpotential A [49] P=S =S
ninaB neither inactivation nor afterpotential B > >
ninaD neither inactivation nor afterpotential D > ES
ninaG neither inactivation nor afterpotential G [50,51] = ES
pinta prolonged depolarization afterpotential (PDA) is not apparent [50,51] > ES
santa-maria  scavenger receptor acting in neural tissue and majority of rhodopsin is absent [49] =Y o

YIndicates pigment pathways with which these genes can be broadly associated (see Additional file 3: Table S5).
2: TBLASTN hit (E < 1x10-5) between the D. melanogaster protein and a transcript in the spider transcriptome; <Reciprocal BLAST hit (RBH) (BLASTX, E < 1x10-5)
between best TBLASTN hit and Uniprot-Uniref-100 database; “NA”": No BLAST hit detected.
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Table 4 Occurrence of Drosophila ommochrome and pteridine pigment-pathway-associated genes in T. californicum
and T. grallator transcriptome assemblies as identified by reciprocal-BLAST-hit (RBH) analysis

Pigment pathway' Gene Gene name Selected T. californicum T. grallator
symbol references RBH? RBH
Pteridine ade3 adenosine3 [36] e o
Aprt adenine phosphoribosyl transferase [36] IS o
Prat Phosphoribosylamidotransferase [36] P=S o
bur burgundy (GMPS) [36] =S oS
ras raspberry [36] >A =>A
bw brown® [52,53] = =
d clot [38]
DhpD Dihydropterin deaminase [14] NA NA
Hn Henna [36,37] =S =S
mal maroon-like (CG1665) [54] < <
Pu Punch [36] < =3
pr purple [36] P=S =S
se sepia [35-38] > NA
Ommochrome cd cardinal [55-58] > >
cn cinnabar [55] P=S =S
kar karmoisin [52,55,59] & o
st scarlet® [52,53] > >
v vermillion [55] P=S =
w white® [52,53] & o
z zeste [55,56] NA NA
KFase Kynurenine formamidase [52,60] NA NA
Ommochrome & Pteridine “granule group” cm carmine [56,61] =>A =>A
car carnation [56,61] & =S
ca claret [62] =S =3
or orange [57,61] P2 &
dor deep orange [56,61] =3 P=s
g garnet [56,61] =S =S
It light [56,61] B o
Itd lightoid [63] =S o
p pink [56,61] P=S =S
b ruby [56,61] < <

"Indicates pigment pathways with which these genes can be broadly associated (see Additional file 3: Table S5).
25 TBLASTN hit (E < 1x10-5) between the D. melanogaster protein and a transcript in the spider transcriptome; <Reciprocal BLAST hit (RBH) (BLASTX, E < 1x10-5)
between best TBLASTN hit and Uniprot-Uniref-100 database; ‘A" Verified by BLAST2Go pipeline annotation (only if = or NA).

3White/Scarlet/Brown complex not distinguishable by RBH.

deteced (although the possibility that the cardinal gene
may encode for POS has been suggested [56-58]). Overall
xthough, our results confirm that the ommochrome path-
way is expressed and intact in these spiders.

Ommochrome and pteridine transport-associated genes

ABC-type membrane transporters. The white, brown and
scarlet genes encode subunits of ABC-type membrane
transporters. The white and scarlet subunits combine to

form an ommochrome precursor transporter and the
white and brown subunits combine to form a pteridine
precursor transporter [53]. Although the white gene was
identified by RBH in both spiders, the brown and scarlet
genes were only identified at the level of the one-way
BLAST and therefore their presence cannot be confirmed,
although they are likely to be present.

Tryptophan transport. The gene karmoisin was con-
firmed by RBH. It has been suggested that the product
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TRYPTOPHAN

TDO (v) =

v
N-FORMYLKYNURENINE

KF/spontaneous?

v
L-KYNURENINE

KMO (cn) =

3-HYDROXYKYNURENINE

POS/spontaneous?

OMMOCHROMES
(XANTHOMMATIN,
DI-XANTHOMMATIN,
OMMATIN-D)

Figure 3 Ommochrome biosynthesis pathway [55].
Abbreviations: TDO (v), tryptophan 2,3-dioxygenase (vermilion); KF,
kynurenine formamidase; KMO (cn), kynurenine 3-monooygenase
(cinnabar); POS, phenoxazinone synthase. The genes for KF and POS
have not been identified in Drosophila.

of this gene, which is probably orthologous to mam-
malian TAT1, is a tryptophan cell-membrane trans-
porter and is therefore essential to ommochrome
biosynthesis [52,55,59].

Endosomal and vesicle trafficking. The four subunits
of the AP-3 complex (associated with pigment granule
formation in invertebrates [56,61]) were all detected by
RBH or BLAST2GO annotation: carmine (AP-3 subunit x),
garnet (AP-3 subunit 6), orange (AP-3 subunit ¢) and
ruby (AP-3 subunit ). We also detected two genes that
encode clathrin heavy-chain peptides: deep orange and
light. In addition we also detected the BLOC-2 compo-
nent pink (HPS5), the HOPS component carnation, the
Rab GTPase lightoid (Rab38) which has been implicated
in trafficking to lysosome-related organelles [63], and
claret — a guanine nucleotide exchange factor that acts
with lightoid [62].
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Relative and differential expression of genes and isoforms
in T. grallator and T. californicum

The RNA-seq reads for each spider species were mapped
back to the assembled transcriptome data so that both
overall relative expression levels, and differential expres-
sion, of genes could be examined between Yellow and Col-
ored morphs. Of the three most highly expressed genes
from each of the two spider species, 5 out of 6 show clos-
est homology to genes from other arachnids and actin is
among the most highly expressed genes in both species.
(The top 100 expressed genes for each species are given
in Additional file 3: Tables S8 (7. californicum) and S9
(T. grallator)).

Differential expression (DE) between the read pools
from Yellow and from Colored individuals was examined
by comparing the read mappings between the two groups
using edgeR [65-67]. Since no true biological replicates
were present in our data, the data sets were normalized
against a set of 196 RBH-verified Drosophila melanogaster
house-keeping (HK) genes. The HK genes were expressed
at similar levels in the Yellow and Colored groups of each
species. The average absolute difference in the number of
reads mapped to the HK genes in the Yellow and Colored
categories (as a proportion of the total number of mapped
reads) for T. californicum was 2.81x10° reads, and for the
T. grallator was 2.84x10™ reads. In comparison, the set of
pigment-associated genes (see below) had average absolute
differences in the number of mapped reads (as a propor-
tion of the total number of mapped reads) of 3.80x107 for
T. californicum (135 times that of the HK genes) and
1.86x107° for T. grallator (66 times the HK genes). In
order to test for ‘statistical significance’ the common
dispersion was also estimated using the set of HK
genes. Even so, any interpretation of significance in DE
among the samples here must be treated with extreme
caution, especially when the entire transcriptome data-
set is considered. The most differentially expressed
components for each species are given in Additional
file 3: Tables S10 and S11. Nonetheless, our DE analysis
suggested that when 7. californicum Color was com-
pared to T. californicum Yellow, 26 components (genes)
were “significantly” over-expressed and 19 were under-
expressed (P < 0.05 after Benjamini-Hochberg false dis-
covery rate correction). When the same comparison
was made for T. grallator, 356 genes were “significantly”
over-expressed and 282 under-expressed. The reason
for the discrepancy in the magnitude of these numbers
is not clear, however it may well be a simple conse-
quence of fewer individuals entering the sequencing
pool for T. grallator, generating greater variance in this
species’ data. Examination of the differences in GO-
term assignment percentages between the entire tran-
scriptome and the DE gene sets (Supplemental Section
26, Additional file 3: Figure S11 and associated text)
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also revealed little agreement between the two species
with respect to DE GO-term enrichment, highlighting
the need for caution in interpreting our transcriptome-
wide DE assessments.

The identification of reciprocal homologues among
both the T. grallator and T. californicum HK gene-set
and the pigment-associated genes, permitted a more ro-
bust analysis for this sub-set of that data than was pos-
sible for the transcriptome-wide data. We therefore
focused on DE patterns for those pigment genes with
measurable expression (RNA-seq) to identify shared
changes in expression among Colored versus Yellow
samples of both species (Figure 4). The log, fold-change
for Color compared to Yellow is plotted in decreasing
order from positive to negative. No gene showed statisti-
cally significant DE (smallest uncorrected P-value =0.11
for dl.). The use of only two (pseudo-) biological replicates
yields little statistical power. In lieu of “statistical signifi-
cance” for this data, some confidence in the extent of DE
was obtained by examining the standard deviation (SD) in
DE among the HK genes; taking any pigment-gene log,
fold-change more than or less than 2 SD around the HK
mean to be likely to be meaningful (2 SD =-0.75 — 1.04;
mean = 0.14; equating to a fold-change < 0.6 or > ~2.1). Of
40 pigment-associated genes examined (Figure 4), three
were down-regulated (one by more than 2 SDyy) and 37
were up-regulated (30 by more than 2 SDyy). Six genes
showed a log, fold-change >3.0 (> 8 fold), most notably
these genes included the guanine nucleotide exchange
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factor claret (ca) and the ABC transporter white (w).
Both of these proteins are involved in pigment granules
formation and trafficking. Another, notably up-regulated
gene was Phosphoribosylamidotransferase (Prat), which is a
key enzyme in purine synthesis and is therefore upstream
in the pteridine biosynthetic process (see Figure 2).

Discussion

The transcriptome of each of two species of color-
polymorphic theridiid spider was sequenced using Illu-
mina technology and assembled using the assembler
TRINITY. By sequencing pools of individuals at great
depth and by combining RNA-seq libraries and sequen-
cing libraries derived from normalized-cDNA (ncDNA)
libraries we have been able to reconstruct the transcrip-
tome of each species with apparent completeness. The
great utility of RNA-seq data comes from its ability to
capture digital gene expression information in the form
of relative read coverage. Consequently, RNA-seq is biased
towards generating sequence from the most highly-
expressed contigs. Since many contigs are likely to be
rare, with perhaps less than 1% of expressed genes
accounting for 50% of cellular mRNA [68], a typical
RNA-seq experiment will fail to record sequence from
many transcripts. By using both ncDNA-derived data
and RNA-seq data we have been able both to assemble
rare transcripts into contigs and fentatively examine
DE. The contribution of the ncDNA data to the assem-
blies was clear as only 70-80% of the RNA-seq reads

Yellow|Color

dl [M]

santa-maria
ca [0/l

Prat
ferrochelatase
mal

Pigment Gene

Updo
cn
KH1
Rho1

cl /
ca3fds

W e e e e

2 -1 0

log, Fold Change (Color relative to Yellow)

Figure 4 Differential expression of read-mapped pigment-associated genes in Colored versus Yellow individuals. Genes plotted in order
of decreasing fold-change (log, scale). Red bars indicate +/— 2 S.D. around the mean fold-change (Color versus Yellow) of the house-keeping
genes. O = Ommochrome, P = Pteridine, M = Melanin, H = Heme, R = Rhodopsin/Carotenoid. For full gene names see Tables 3 and 4.
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mapped back to the Metazoan BLASTX-positive com-
ponents (>100 bp). However, it is also likely that the
use of ncDNA resulted in the detection of a large and
diverse spider “meta-transcriptome” — an inventory of
expressed genes from organisms associated with the
spiders (endo- and ectoparasites, commensal and external
contaminant organisms). The fascinating discrepancy in
the proportion of non-spider sequences between the tem-
perate, mainland species T. californicum and the tropical,
island species T. grallator will be explored elsewhere.

Our transcriptome assemblies are naturally not complete
in terms of sampling the full diversity of genes and their
various isoforms or in their full-length assembly into
contigs. Since the detection of gene transcripts by tran-
scriptome sequencing depends upon the expression of
those transcripts, those transcripts that are only expressed
at certain life-stages will be missed. Since adult female
spiders will contain developing eggs our use of this life
stage will naturally also include some transcripts from
early development. Accepting the absence of some life-
stage specific transcripts, several lines of evidence indicate
that our gene sampling is otherwise quite comprehensive.
First, the numbers of coding genes predicted, and other
characteristics of the assemblies, were consistent between
the two species (for example see Table 2 and Figure 1),
with the number of Metazoan BLASTX-positive compo-
nents (> 200 bp) only differing by 8% (7. californicum:
20,611; T. grallator: 18,868). Second, the distributions of
the top hit taxa and associated E-values (Additional file 3:
Figures S2 and S3) from the BLASTX homology searches,
as well as all GO-term assignment analyses (Additional
file 3: Figures S5, S7, S9), were remarkably consistent
across both species. Furthermore, when GO-terms were
assigned to gene families the two species shared 131 of
135 (97.04%) unique GO terms. Third, the CEGMA
analysis (Supplementary Sections 8—12, Additional file 3:
Tables S3-S6) indicated that 99% (7. californicum) and
98% (T. grallator) of the 248 CEGs were at least partially
represented.

The transcriptomes of T. californicum and T. grallator
contain a large number of contigs that represent com-
ponents or “genes” (>200 bp: T. californicum 83,701;
T. grallator 89,166; Table 1). These components include
both protein-coding genes (whose sequence includes un-
translated regions (UTRs) ie. 5UTR, 3'UTR, and tran-
scribed introns) and transcribed non-coding sequences.
The non-protein-coding genes (i.e. microRNA, ribosomal
RNA, transfer RNA, transposons and transposable ele-
ments) likely comprise more than 50% of the spider tran-
scriptome but we have not attempted to characterize these
here. The set of putative protein-coding components is
however impressive and we estimate that these species
express at least 18,868 (>200 bp) protein-coding genes
and probably in excess of 21,495 (>200 bp; perhaps
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many more if contigs between 100 and 199 bp are consid-
ered). Theridion spiders, assuming that T. californicum
and T. grallator are representative of the genus, therefore
appear to have more protein-coding genes than the well-
characterized two-spotted spider mite Tetranychus urticae
(18,423) and a similar number to Homo sapiens (21,828)
[69]. For T. californicum and T. grallator only ca. 4.5% of
the Markov-predicted genes (shared among the species
and not microbial) had no known homology. Given the
large number of Araneae-specific gene families (Figure 1)
this low percentage of genes with no known homologues
may seem surprising. However, many of these homologues
are likely to stem from the fact that the relatively few pro-
tein and EST sequences derived from spiders and available
in public databases are biased towards those that are spe-
cific to spiders i.e. venom and silk gland EST-sequencing
experiments (e.g. Latrodectus hesperus — see Additional
file 3: Figure S3), and venom-gland sequences from other
organisms. Of 961 curated venom peptide sequences
downloaded from Arachnoserver [70], T. californicum had
18 and T. grallator had only 14 (23 overall for both spe-
cies) RBH BLAST matches to diverse arachnid venom
peptides (see Additional file 3: Table S12), so if many
Theridion genes do code for venom peptides then these
might be mostly unknown. Until the reads/transcripts can
be mapped back to a reference genome it is not possible
to be sure about the numbers of Theridion genes. Our
transcripts are de novo assembled and will include errone-
ously concatenated transcripts and single transcripts that
have been split into separate components. Fragmentation
is likely to be common for highly-repetitive silk genes, for
example and we have demonstrated that short contigs
(100-199 bp) are likely to contain many fragments of
single genes). However, this is unlikely to detract from
the fact that the gene catalogue for these spiders, the first
comprehensive list for any spider, is undoubtedly /arge.

In this study, pooling individuals placed a constraint
upon our ability to measure DE between the (double
recessive) Yellow and (dominant) Colored morphs of
these spiders and hence to detect gene pathways associ-
ated with the color polymorphism. Without true biological
replicates, estimation of the coefficient of variation and
hence testing statistical significance becomes impossible.
We attempted to circumvent this limitation by borrowing
from microarray approaches, normalizing read counts and
estimating common dispersion from a defined set of
house-keeping (HK) genes. Even so, over such a large set
of genes this approach was still of limited utility (as evi-
denced by the lack of congruence between the two species
in terms of numbers of DE genes and enriched GO-terms
(Supplemental Sections 23-26, Additional file 3: Tables
$10, S11 and Figure S11). Consequently, we chose to focus
on the subset of ommochrome- and pteridine-associated
genes identified by RBH against D. melanogaster
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homologues in a survey of pigment-pathway associated
genes. Since homology was established among the pig-
ment genes and among the HK genes we were able to use
the two species as biological replicates, and although stat-
istical power was still weak for significance testing, both
species showed a marked and congruent increase in ex-
pression in pigment-associated genes in Colored indi-
viduals. This result is logical since it is known that the
Yellow form is double recessive with respect to all the
patterned, colored morphs. As such, the recessive Yel-
low alleles would be expected to show lower expression
levels for associated pigment genes when compared to
the dominant Color alleles, and this one-tailed expectation
is corroborated by both ommonchrome and pteridine
pigment pathway genes (Figure 4). These results are also
important because they demonstrate that many pig-
mentation genes are differentially expressed in adult
spiders i.e. expression is not restricted to younger instars,
perhaps because pigment granules are constantly being
cycled [19]. The implication of a role for pteridines in
the color polymorphism of these spiders is also very sig-
nificant because: 1) pteridine pigments have not been
described in spiders [3], and 2) because the involvement
of this pathway provides an intriguing link between
stored guanine and overlying yellow, red and very dark-
brown pigments, which have been assumed to be exclu-
sively ommochrome-derived. Together these components
interact to generate the various color morphs [6,23]. Of
course, the mere presence of the pteridine pathway genes
does not necessarily mean that the animals generate pteri-
dine pigments in any appreciable amount, even if it is sug-
gestive of this.

This homology-based approach to pathway-gene identi-
fication works because of the deep evolutionary conserva-
tion of the pathways associated with the production of
many animal pigments. Indeed pigments are often derived
from the waste or terminal products of key metabolic pro-
cesses such as heme [39] and guanine [27], or metabolites
generated during the production and recycling of the co-
factor Hybiopterin [14]. Nonetheless, the pathways and
the enzymes recruited into various roles do vary and the
assumption that spider homologues to D. melanogaster
enzymes should have equivalent roles is not trivial, es-
pecially given that these organisms probably had a last
common ancestor some 725 Ma [71].

Conclusions

We have generated an exhaustive assembly of the tran-
scriptomes of two species of theridiid spider and been able
to identify homologues to an array of pigment-pathway
genes from D. melanogaster. This confirmed the presence
of genes from the pathways of known pigments (i.e.
ommochromes) and indicated the presence of previously
unknown pathways in spiders that may be implicated in
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the color patterning and polymorphism exhibited by these
species (i.e. pteridines). Obvious future work includes the
confirmation of the presence these pigments by mass-
spectrometry and the verification of putatively differ-
entially expressed genes by qPCR. Our analyses also
indicated the likely absence of some pigment pathways.
Most notable is the apparent lack of key enzymes asso-
ciated with melanization in spiders. Although there has
been much work on the role of eumelanin in pigmentation
and innate defense (encapsulation) in insects and crusta-
ceans [72], this study exemplifies how little is known about
innate immunity in spiders (and other non-insect arthro-
pods). Arachnid immunity is likely to be a fruitful avenue
of research that, like studies of silk and venom, promises
far-reaching medical, agricultural and technological ap-
plications. This first comprehensive gene catalogue rep-
resents a valuable baseline genomics resource for future
research into spider genetics and represents a first and
fundamental step towards understanding, and eventually
identifying, the genetic basis of the incredible color poly-
morphism and patterning displayed by these animals.

Methods

Samples, RNA extraction, normalization and sequencing
Specimens of T. californicum were collected from Albany
Hill, Albany, Alameda County, California (37° 54" N, 122°
20" W) from beneath the leaves of blackberry plants
(Rubus ursinus) during the early summer when most
individuals are either adult or sub-adult. Specimens of
T. grallator were collected from Lower Waikamoi Preserve,
Haleakala, East Maui, Hawaii (20° 48" N, 156° 14" W)
from the undersides of leaves of the native Broussaisia
arguta and Clermontia arborescens, and the invasive
ginger Hedychium gardnerianum. All necessary permits
and permissions were obtained and no additional special
permissions were required for these species. In order to
facilitate the identification of differentially expressed color
genes, two sets of animals were collected for each species.
Each pool consisted of either the “Yellow” (i.e. unpatterned)
morph or a mixture of “Colored” (patterned) morphs. This
simple scheme is based upon the fact that in all species
studied, the Yellow morph appears to be recessive to all
other color morphs [6,9] and a similar scoring scheme
has been used previously [8,73]. For T. californicum the
“Yellow” pool comprised 20 Yellow individuals and the
“Colored” pool 20 individuals of the following morphs
defined in Oxford [9]: “Red lines” (n = 6), “Black spot” (2),
“Black blob” (2), “White” (1), “Red ring A” (4), “Red ring
B” (2), “Red stripe A” (3). For T. grallator the “Yellow”
pool consisted of 2 Yellow individuals and the “Colored”
pool 2 “Red front and back” individuals as defined in [7].
All animals were adult females and therefore of a similar
size. Individuals were examined to ensure that no mites
were present, starved for at least 3 days and then flash
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frozen at -80°C. Animals were homogenized and total
RNA extracted using an RNeasy Mini Kit (Qiagen) ac-
cording to the manufacturer’s instructions. Five pug of total
RNA was used to generate an mRNA-seq library from
each sample pool. In addition, and in order to recover the
maximum number of genes, 2 pg of total RNA was con-
verted to cDNA using a MINT ¢DNA synthesis kit and
this was subsequently used to generate a normalized
¢DNA library using the TRIMMER kit (both Evrogen,
Moscow, Russia), according to the manufacturer’s instruc-
tions. Illumina sequencing libraries were created from
50 ng of each normalized cDNA (ncDNA) pool following
the NEXTERA protocol (Evrogen, Moscow, Russia) and
paired ends sequenced (50 and 76 bp reads, insert sizes ca.
200-300 bp) on either a Genome Analyzer II or Hi-Seq
2000 sequencer (Illumina).

Sequence quality assessment, pre-processing and de novo
assembly

The raw sequence reads were graphically inspected for
quality using FastQC v.0.10.0 (Babraham Bioinformatics).
Reads were subsequently trimmed to a quality greater
than 20 (Phred Score) throughout and adaptor/primer se-
quences removed using the ‘preprocess’ module of String
Graph Assembler, SGA [74]. Further trimming of low
quality, redundant and polyN sequences was performed
using the ShortRead Bioconductor package [75]. In order
to recover an assembly that would be both as representa-
tive as possible of the full transcript complement and
comparable between the color categories (Colored and
Yellow), we assembled the transcriptome of each species
using all the reads for each species combined (RNA-seq
and ncDNA from both Colored and Yellow pools), creat-
ing a single read-pool for each species (each ~250 million
reads). Due to RAM limitations the number of reads en-
tering the assembly pipeline was subsequently reduced
to ~170 million. Each transcriptome was assembled
using the de novo transcriptome assembler TRINITY
(release 2011-10-29) [76] on a 48 core cluster with
256 GB RAM. The assembly used the default kmer size
of 25 bp and a minimum contig length of 100 bp.

Functional annotation and identification of the meta-
transcriptome

The complete set of TRINITY transcripts was assessed for
homology by executing local BLASTX searches against
the entire downloaded National Center for Biotechnology
Information (NCBI) non-redundant (nr) protein database
(as of Dec. 29, 2011). All E-values up to 1x1073 (using
the PAM30 similarity matrix) were accepted as signifi-
cant and up to 20 best hits per transcript were retained.
All sequences with significant BLASTX hits were
loaded into BLAST2GO PRO ([77,78] for functional
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annotation. BLAST2GO was used to manage internet
based INTERPROSCAN (IPS) searches for conserved pro-
tein motifs, map enzyme codes, search KEGG pathway
maps [79] and to map gene ontology (GO) terms to each
sequence.

Percentage assignments of GO terms to the TRINITY
transcripts for the three GO functional domains “cellular
component”, “molecular function” and “biological process”
were assessed at GO levels II and IIL. Positive enrichment
of particular GO terms (functional classes) (i.e. all tran-
scripts versus spider lineage specific transcripts - see
Comparative Genomics, below — and DE genes — also
see below) was assessed in two-ways. First, specific GO-
terms (only level II and III) within each GO domain
were assessed by Bonferroni-corrected contingency-table
(x*/Fisher’s exact test) analysis of the scores for each term
within each category. Second, positive enrichment was
examined using Fisher’s exact tests (FDR significance
threshold 0.05) and the directed acyclic graph (DAG)-
based enrichment analysis function of BLAST2GO
(which was not restricted to levels II and III).

Sequences that were likely to be derived from non-spider
contaminants (mainly parasitic, commensal and external
contaminant organisms - the spider “meta-transcriptome”),
were identified by filtering the BLASTX results for all
putatively non-metazoan transcripts. This was done by
mapping the BLASTX results against the NCBI taxonomy
using MEGAN v.4.69.4 [32] with the lowest common
ancestor (LCA) algorithm (settings: minimum support = 5;
minimum score = 35.0; top percent = 10.0; minimum com-
plexity = 0.3). Putative spider sequences were taken as
those mapping to the metazoa, with the exception of a
small subset of transcripts that were assigned by MEGAN
specifically to the Nematoda (7. californicum: 671 tran-
scripts, T. grallator: 126 transcripts) as these species are
known to be commonly parasitized by mermithid nema-
todes (PJPC, pers. obs. and [80,81]). All other “non-
metazoan” transcripts were therefore deemed part of
the meta-transcriptome of the spiders.

In addition to BLASTX searches, putative protein-coding
genes were also detected using a Markov Model-based
prediction scheme. Open read frames (ORFs) in each
transcriptome assembly were searched using scripts
provided by the TRINITY pipeline. The TRINITY
method essentially implements the ORF prediction
methods of GENEID [34]. We searched for the 500 lon-
gest ORFs in all 6-reading frames (those most likely to
represent true spider genes) in each dataset and used
these to parameterize a hexamer-based Markov model.
The same ORFs were then randomized to generate a
null-model for non-coding sequence and all transcripts
were then searched for the longest, most-likely coding
ORE. This was scored as putatively coding or non-
coding according to a likelihood ratio test.



Croucher et al. BMC Genomics 2013, 14:862
http://www.biomedcentral.com/1471-2164/14/862

Comparative genomics and generation of orthologous
gene clusters

Gene family clustering

Clusters of gene families were created using the
predicted proteins of T. californicum, T. grallator and
chosen outgroups with fully sequenced genomes. If iso-
forms for a gene existed in the predicted peptides of the
Theridion species, only the longest variant was retained.
For outgroup comparisons, the most recent CDS se-
quences (19 July 2012) were selected from the following
taxa with existing genome sequences: Nematostella
vectensis (Cnidaria: Anthozoa, http://genome.jgi-psf.
org/Nemvel/Nemvel.download.ftp.html), Homo sapi-
ens (Chordata: Mammalia, http://www.ncbi.nlm.nih.gov/
projects/CCDS/CcdsBrowse.cgi), Daphnia pulex (Arthro-
poda: Pancrustacea: Branchiopoda, http://genome.jgi-psf.
org/Dappul/Dappul.download.ftp.html), Nasonia vitripen-
nis (Arthropoda: Pancrustacea: Hexapoda: Hymenoptera,
ftp://ftp.hgsc.bcm.edu/Nvitripennis/annotation/), Tro-
bolium castaneum (Arthropoda: Pancrustacea: Hexa-
poda: Coleoptera, ftp://ftp.hgsc.bcm.edu/Tcastaneum/
Tcas2.0/annotations/), Drosophila melanogaster (Arthro-
poda: Pancrustacea: Hexapoda: Diptera, ftp://ftp.flybase.
net/releases/FB2012_04/dmel_r5.46/fasta/), and Tetra-
nychus urticae (Arthropoda: Arachnida: Acari, https://bio-
informatics.psb.ugent.be/gdb/tetranychus/). (As noted
earlier, T. urticae annotated protein sequences were not
available in the nr database for the earlier (Dec. 29,
2011) annotation stage and do not appear in Figure 2).

Phylogenetic inference

Orthologous genes were identified using the HAMSTR
pipeline [82]. HAMSTR uses hidden Markov models
(HMMs) and reciprocal best-hit (RBH) BLAST searches
against a predefined set of orthologous sequences de-
rived from model organisms. The identified orthologs
were aligned individually. The programs GBLOCKS
[83,84], ALISCORE [85], and ALICUT [86] were used to
remove poorly aligned and overly “gappy” portions of
the alignments. Sequences less than 100 amino acids in
length were removed, and any alignments with missing
taxa were deleted. The 352 trimmed alignments
remaining, comprising 170,965 aligned amino acid sites,
were concatenated using FASconCAT [87], and a parti-
tioned maximum likelihood (ML) phylogenetic analysis
run in the program RAXML [88]. The concatenated
alignments were partitioned by gene, and each partition
was assigned the PROTGAMMA (gamma shaped distri-
bution of site rates with four rate categories) model
using the WAG amino-acid-substitution matrix [89]. To
find the most likely tree topology, 1000 random addition
sequence (RAS) replicates were performed followed by
1000 bootstrap replicates. The “chronopl” command
from the R package “APE” [90] was used to create an
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ultrametric phylogeny via the non-parametric rate-
smoothing approach using the RAXML tree. The analysis
used no fossil or other calibration points, so the branch
lengths display time in “evolutionary units” from 0 to 1.
The resulting ultrametric phylogeny was used in down-
stream analyses.

Dollo parsimony reconstruction of gene family evolution

To delineate gene families, CDS sequences for all taxa
were combined into a single file and a BLAST-search-
able database was created. An all-against-all BLAST
search was performed using an E-value cutoff of 1x10,
Gene families were constructed using MCLBLASTLINE
[91] with an Inflation Factor of 2.0 and other default
parameters. Phylogenetic profiles were constructed for
all gene families reflecting the presence or absence of
each family within the genomes of all taxa. The most
parsimonious scenario for the gain and loss of gene fam-
ilies was inferred under the principle of Dollo parsimony.
Under this scenario once a complex character, such as a
gene family, is lost it cannot be regained. The program
DOLLOP in the PHYLIP package [92] was used to recon-
struct the ancestral presence and absence of gene families
along all branches of the phylogeny.

Detection of pigment pathway genes
The de novo-assembled transcriptome datasets of both
spider species were directly searched for pigment-
pathway-associated proteins. All Drosophila melanogaster
proteins from the AmiGO (v.1.8) [93] database under
the category “Pigment Metabolic Process” (GO:0042440)
(n=68) were downloaded and searched using the
TBLASTN algorithm (E < 1x107°) against BLAST da-
tabases constructed from the transcriptome assem-
blies of each spider species. Spider transcripts that
were returned as “significant” BLAST hits were then
extracted and subject to a reciprocal BLASTX search
(E<1x10°) against the Uniref 100 non-redundant
Drosophila melanogaster protein-sequence download
from the Uniprot database (release April 2012).
Ommochrome and pteridine/purine de novo synthesis-
pathway-associated genes/proteins that were not in-
cluded in this set, or which had failed to be detected by
RBH, were directly searched for in the BLAST2GO
annotated transcriptome sets (based upon the entire
NCBI nr database) for each species via non-exact-match
keyword searches against the sequence description. The
following keywords were employed: spr, sprt, rosy, sepia,
xanthine, pterin, pteridine, raspberry, inosine, brown,
pyrimidodiazepine synthase, cardinal, carmine, zeste,
yellow, white, scarlet, and ebony (melanin/papiliochrome
pathway).
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Read mapping, relative and differential expression
estimates

In order to estimate the relative expression levels of the
components/transcripts, to look for evidence of differ-
ential expression (DE) between “Yellow” and “Colored”
samples, we mapped the RNA-seq data back to the tran-
scriptome assemblies for each species using RSEM [31]
and BOWTIE [94]. This approach takes into account
the uncertainty in read-mapping that is present in
RNA-seq data due to the presence of multiple isoforms
and estimates maximum likelihood abundances. RSEM/
BOWTIE mapping was implemented using scripts pack-
aged with the TRINITY pipeline.

The experimental design used here did not include
within species/phenotype biological replicates. This lack
of replication places strong limitations on the ability to
make statistical inferences with respect to DE since bio-
logical and experimental coefficients of variation cannot
be estimated. Consequently, estimates of differential ex-
pression presented here must be treated cautiously. To fa-
cilitate normalization and to calculate a more meaningful
estimate of common dispersion, we chose to use a house-
keeping (HK) gene approach. We recovered 1197 putative
Drosophila house-keeping genes — as previously predicted
using a naive Bayes classifier [95] — using the BIOMART
(European Bioinformatics Institute - EBI) search tool.
These proteins were downloaded and searched using the
TBLASTN algorithm (E < 1x10™°) against BLAST data-
bases constructed from transcriptome assemblies of each
spider species. These proteins returned significant hits to
3063 T. grallator and 3507 T. californicum transcripts.
Only those putative HK genes that hit a single component
and had positive hits to both species were considered as
valid and subjected to reciprocal BLASTX searches against
the complete nr database. The final set of HK genes to-
taled 196 and was used to normalize the Yellow vs. Col-
ored RSEM count data and to estimate common
dispersion in the DE software EDGER [65-67]. This
procedure was used to examine the entire read-
mapped transcriptome datasets. For the subset of
pigment-pathway-associated genes, the homologous
contigs for each gene among T. californicum, T. grallator
and D. melanogaster were known, we therefore looked
for DE that was shared between both spider species.
This analysis treated Colored T. californicum and Colored
T. grallator as replicates, and Yellow T. californicum and
T. grallator as replicates and was therefore more robust
than the transcriptome-wide analyses. In each case signifi-
cant DE was determined according to the Benjamni-
Hochberg False Discovery Rate (FDR).

Availability of supporting data
The sequence data associated with this study are available
from the National Center for Biotechnology Information
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archives under the following BioProject accession
numbers: T. californicum PRJNA217181; T. grallator
PRJNA217184. Additional annotated sequence files are
available as Supplemental information to this article
(Additional file 1: Theridion californicum transcriptome;
Additional file 2: Theridion grallator transcriptome).
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