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Abstract

Background: Lichens are symbiotic organisms with a fungal and an algal or a cyanobacterial partner. Lichens inhabit
some of the harshest climates on earth and most lichen species are desiccation-tolerant. Lichen desiccation-tolerance
has been studied at the biochemical level and through proteomics, but the underlying molecular genetic mechanisms
remain largely unexplored. The objective of our study was to examine the effects of dehydration and rehydration on
the gene expression of Cladonia rangiferina.

Results: Samples of C. rangiferina were collected at several time points during both the dehydration and rehydration
process and the gene expression intensities were measured using a custom DNA microarray. Several genes, which
were differentially expressed in one or more time points, were identified. The microarray results were validated using
qRT-PCR analysis. Enrichment analysis of differentially expressed transcripts was also performed to identify the Gene
Ontology terms most associated with the rehydration and dehydration process.

Conclusions: Our data identify differential expression patterns for hundreds of genes that are modulated during
dehydration and rehydration in Cladonia rangiferina. These dehydration and rehydration events clearly differ from each
other at the molecular level and the largest changes to gene expression are observed within minutes following
rehydration. Distinct changes are observed during the earliest stage of rehydration and the mechanisms not appear to
be shared with the later stages of wetting or with drying. Several of the most differentially expressed genes are similar
to genes identified in previous studies that have investigated the molecular mechanisms of other desiccation-tolerant
organisms. We present here the first microarray experiment for any lichen species and have for the first time studied
the genetic mechanisms behind lichen desiccation-tolerance at the whole transcriptome level.
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Background
Lichens are symbiotic organisms, which are composed of
a fungal (mycobiont) and an algal or a cyanobacterial
(photobiont) partner [1]. The fungus is the dominant part-
ner in this symbiosis and provides the algae an optimised
space for photosynthesis within the lichen thallus. About
8% of the terrestrial ecosystems are lichen-dominated [2]
and lichens live in some of the harshest climates on earth.
Lichens are poikilohydric organisms and are unable to
actively control the water levels within their thallus.
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Lichens experience frequent drying and wetting cycles,
and they can survive long periods of desiccation in an
anhydrobiotic state e.g. when growing on exposed rocks,
tombstones and trees. Lichens can also tolerate this desic-
cation better than either of the isolated symbiotic partners
alone [3]. Once lichen is rehydrated, photosynthesis
resumes rapidly, typically within minutes [4].
The desiccation tolerance and rapid re-establishment of

photosynthesis have been studied at the biochemical level
and through proteomics [5-11], but the molecular genetics
and functional mechanisms behind these lichen-specific
traits remain largely unexplored. The protection against
reactive oxygen species (ROS) during desiccation and the
subsequent restoration of antioxidant pools during rehy-
dration have been previously investigated using detailed
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enzymatic assays [12]. Revealing the genetic mechanisms
used by lichens to survive long periods of drought could
have applications for crop plant development.
Cladonia rangiferina (L.) Weber ex F.H.Wigg, the

grey reindeer lichen, is a fruticose lichen of the northern
European and Arctic regions. It consists of a fungal part-
ner (C. rangiferina) and an algal partner (Asterochloris sp.),
and has been used as our model organism because of its
abundance in southern Finland. Our previous investi-
gation of lichen expressed sequence tags [13] identified a
number of contig consensus sequences that were anno-
tated using Gene Ontology. These analyses identified
candidate actors within the anhydrobiosis systems and
established the most basic of genomic foundations re-
quired for further molecular genetic analysis of the grey
reindeer lichen.
Gene expression studies have previously been used to

address the molecular interactions and mechanisms that
underlie the broadest range of biological processes that
include drought resistance [14] and tolerance [15-17] in
addition to the characterization of the molecular inter-
face between other candidate mutualisms [18] and con-
trolled parasitisms. Gene expression profiling may be
performed by targeted approaches such as qPCR or in
situ hybridization or may be performed using more
comprehensive genome scale approaches that include
the DNA microarray [19] or RNA-Seq [20,21]. A few
research studies have been performed that investigate
lichen gene expression. Expression has been studied
using the more targeted methods of in situ hybridization
[22,23] and qPCR [24,25]. However, no large or genome
scale approaches to study lichen gene expression have
yet been published.
We have used the DNA sequence data from our pre-

vious investigation of the lichen transcriptome [13] to
design a custom DNA microarray for C. rangiferina (in-
cluding probes from both the Asterochloris and Cladonia
partners) in order to identify the transcripts that are
expressed in the lichen thallus during dehydration and re-
hydration. The earlier transcriptome sequences were pre-
pared to sample the gene space and the normalized cDNA
libraries were not appropriate for quantitative studies. The
aim of this study was to identify the genes most diffe-
rentially expressed during the rehydration and drying pro-
cesses and also to establish a more integrative view of the
molecular players that contribute to the processes re-
quired for lichen desiccation tolerance and the rapid
re-establishment of photosynthesis through functional
annotation.

Results
Sample preparation
Lichen tissues collected from wild were subjected to a
rehydration and desiccation regime. Thallus tissue was
sampled at 15 minutes, 30 minutes, 1 hour and 3 hours
following rehydration and 1 hour, 3 hours, 6 hours and
24 hours after the commencement of drying. The sample
that had been wetting for three hours was considered
the wet sample and the sample that had been drying for
24 hours was considered the dry sample. The relative
water content (RWC) of the samples was measured du-
ring the sample collection. The RWC of the samples du-
ring wetting was 13% at 15 minutes, 30.9% at 30 minutes,
62.1% at one hour and 100% at three hours. The RWC of
the samples during drying was 45.3% at one hour, 5.7% at
three hours, 0% at six hours and 0% at 24 hours. The
experimental design is illustrated in Figure 1 and the sam-
ple groups and the abbreviations used in this study are
summarized in Table 1.

Lichen oligonucleotide microarray design
Clustered and assembled lichen unigene sequences from
deep sequencing and Sanger sequencing data were used
to design oligonucleotide probes for the manufacture of
a custom DNA microarray. Two oligonucleotide probes
were designed for each of the long sequences (arbitrarily
defined as ≥ 450 nt) in order to enable the detection of
potentially different isoforms of the transcripts. For the
sequences shorter than 450 nt (66.1%) a single oligo-
nucleotide probe was designed.

Data quality control
The distribution of the probe signal intensities from the
microarrays was investigated for equivalence through
review of box plots (data not shown). Principal compo-
nent analysis (PCA) of the samples was performed to
evaluate group clustering and candidate outlying sam-
ples (Additional file 1). The data appeared to be of satis-
factory quality and no replicates were removed from the
analysis. Of the 41,000 probes designed, an average log2
signal intensity of over 1 was observed for 29,076 of the
transcripts in one or more experimental conditions. This
shows that the design includes a significant number of
genes that are expressed.
The quality of the samples and the sample relations

were further investigated using correlation analysis and
clustering using Pearson’s metrics (Additional file 1). The
between sample correlation values varied between 0.775
and 0.994, whereas the within sample group correlation
values were between 0.943 and 0.988 (Additional file 1).
This illustrates a high reproducibility between the bio-
logical replicates.

qRT-PCR validation
The transcript identified as cr_lrc491 was chosen as the
endogenous control in the qRT-PCR analysis because it
demonstrated similar signal-intensity values across all of
the samples, and demonstrated suitability as a control



Figure 1 The experimental procedure and sample set up. Flowchart illustrating sample set up, the naming of the samples and the different
comparisons between the sample groups.
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gene. Five other transcripts selected for the qRT-PCR vali-
dation (cr_DMini_2305E01, cr_lrc5, cr_c3825, cr_c4168
and cr_DMini_673H04) also had steady intensity values
across the samples. The transcripts cr_lrc323, cr_c10766,
cr_c15269 and cr_lrc282 had different expression levels
between the samples. Three of the designed assays failed
in the qRT-PCR validations. Transcript cr_c18326 had low
intensity levels in all samples and thus probably failed.
The amplicon designed in the assay for cr_DMini_673H04
was 110 bp in length whereas for the other assays the
amplicons were 60–70 bp. This could be the reason for
the assays failure. The third failed assay was cr_lrc282.
The microarray and qRT-PCR results corresponded well

(Figure 2) with 91.1% of the measurements giving similar
results with both methods. The relative quantitation
Table 1 The sample groups and their abbreviations used
in the text

Sample group name Condition

W15m Wetted for 15 min

W30m Wetted for 30 min

W1h Wetted for 1 h

Wet Wetted for 3 hrs

D1h Air-dried for 1 h

D3h Air-dried for 3 hrs

D6h Air-dried for 6 hrs

Dry Air-dried for 24 hrs
values of some transcripts varied significantly between the
samples in some sample groups in the qRT-PCR analysis
(Additional file 2).

Annotation
The microarray design includes 40,924 oligonucleotide
probes for analysis of gene expression in lichen samples.
Since C. rangiferina is a symbiotic organism it is com-
posed of both fungal and algal partners and the probes
on the DNA microarray may represent either fungal or
algal genes. The genome of origin for the lichen EST
sequences used in the microarray probe design was pre-
dicted using Eclat [26]. 29.6% of the EST sequences used
in the microarray probe design are predicted to be of
algal origin while the remaining 70.4% are predicted to
be fungal sequences. The classification is included in the
annotation of the full differentially expressed gene lists
available as Additional files 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15.
Since no lichen reference genome has yet been pub-

lished, an annotation of the transcript sequences was
performed using a BLASTX homology-based approach.
Annotation could not be assigned to 15,816 probes
(38.6%) because their target sequences did not demon-
strate a BLAST match exceeding the required statistical
threshold of 1e-3. 13,852 (33.9%) transcript sequences cor-
responded to NCBI non-redundant database entries anno-
tated as “conserved hypothetical proteins”, “hypothetical
proteins” or “predicted proteins”. 27.5% of transcript



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 The validation of the microarray results using quantitative real-time RT-PCR. The qRT-PCR values are the mean of four replicate
measurements of each of the three samples in the sample group. The microarray values are obtained from linear modelling results, which are
calculated from the average expression intensities of the three replicates in each sample group, and therefore variance values are not available.
Both microarray and qRT-PCR results are compared to the Dry sample group.
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sequences could be assigned to an unambiguous and
natively annotated reference protein.

Differentially expressed transcripts
The thresholds for assigning differentially expressed (DE)
transcripts from either the mycobiont and photobiont
were selected from the plotted volcano plots and heat
maps (Additional files 16 and 17). The numbers of DE
transcripts in the different comparisons are shown in
Table 2. The full DE transcript lists for each comparison
are available as Additional files 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15.
The number of the differentially expressed transcripts

differs between the comparisons; W1h vs. Wet shows
only 162 DE transcripts while W15m vs. Dry compa-
rison yielded 1,108 DE transcripts. Also the ratio of up-
and down-regulated transcripts varies from comparison
to comparison. The W1h vs. Wet comparison reveals an
even distribution where approximately half of the DE
transcripts are up-regulated. Wet vs. Dry comparison
suggests 589 up-regulated transcripts and only 86 down-
regulated transcripts.
The DE transcripts from each comparison were com-

pared to one another to find out the number of transcripts
that the comparisons have in common (Additional file 18).
Uniformity of expressed transcripts is observed across
Table 2 Filtering parameters for all comparisons and the
amount of differentially expressed transcripts

Comparison FC logFC P type P Total Up Down

W15m vs. dry 32 5 FDR 0.001 1108 531 577

W15m vs. wet 32 5 FDR 0.001 931 348 583

W30m vs. dry 32 5 FDR 0.001 572 442 130

W30m vs. wet 8 3 FDR 0.01 560 402 158

W1h vs. dry 32 5 FDR 0.001 595 398 197

W1h vs. wet 8 3 P value 0.001 162 80 82

Wet vs. dry 16 4 FDR 0.001 675 589 86

D1h vs. dry 16 4 FDR 0.001 980 599 381

D1h vs. wet 16 4 FDR 0.001 919 393 526

D3h vs. dry 32 5 FDR 0.001 645 430 215

D3h vs. wet 32 5 FDR 0.001 614 266 348

D6h vs. dry 32 5 FDR 0.001 663 462 201

D6h vs. wet 32 5 FDR 0.001 624 317 307

FC = fold change, logFC = 2-logarithmic fold change, P = p value, FDR = false
discovery rate, Total = total amount of differently expressed transcripts,
Up = amount of up-regulated transcripts, Down = amount of
down-regulated transcripts.
both Dry and Wet comparisons, and across the wetting
and drying sample groups with the exception of group
W15m.
The most differentially expressed transcripts do not

have clear sequence orthologues or show sequence simi-
larity to only hypothetical proteins. An analysis of the DE
transcripts was performed using only the top DE tran-
scripts with annotation derived from primary annotation
sources rather than passaged secondary annotations
(Table 3). The most common up-regulated genes were
CaaX farnesyltransferase alpha subunit, U5 snRNP com-
ponent, nuclear pore complex subunit Nup192, Swr1p
complex component and cytochrome P450 family protein.
The most common down-regulated genes on the other
hand were heat shock protein HSP98, ion channel, nitrite
reductase and siroheme synthase.
The W15m sample group had only one gene in com-

mon with the other comparison groups; the nuclear pore
complex subunit Nup192 in up-regulated W15m vs. Dry
comparison. However, four of the five top annotated up-
regulated DE genes and all top five annotated down-
regulated DE genes were the same in W15m vs. Wet
and W15m vs. Dry comparisons.

Hierarchical clustering of the expression values of the
annotated transcripts
The expression values of the genes with primary annota-
tions were clustered across all samples to investigate
trends in the differential expression of genes across
the sample groups. The clustering of the top 20 well-
annotated DE genes is shown in Figure 3, for the full clus-
tering heat map see Additional file 19. Similar to the clus-
tering of the individual sample groups (Additional file 1),
the W15m samples differ significantly from the other sam-
ples in this heat map. The drying and wetting samples
form the two main clusters.

Functional analysis of the DE gene lists
Functional annotation was performed using Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases. For the functional analysis, lower
threshold values for both fold change (FC > |1.5|) and
p-value (p-value < 0.01) were applied in order to include a
larger number of transcripts in the input list. With these
less stringent thresholds more transcripts were selected
and finer changes within GO terms can be observed. The
full tables containing the over-represented GO terms for
each comparison are presented as Additional file 20. An



Table 3 The top five annotated genes for each comparison

Wetting sample groups vs. wet

Annotation Up W15m vs. wet Down W15m vs. wet Up W30m vs. wet Down W30m vs.
wet

Up W1h vs. wet Down W1h vs. wet

Short-chain dehydrogenase,
putative, F

Aspartic-type endopeptidase,
putative, F

Short-chain
dehydrogenase,
putative, F

Nitrite reductase,
F

CaaX farnesyltransferase alpha subunit, F Nitrite reductase, F

Mitochondrial molecular
chaperone, F

Enoyl-acyl-carrier-proteinreductase
1, F

CaaX
farnesyltransferase
alpha subunit, F

30 kDa heat
shock protein, F

Beta-glucosidase, putative, F 30 kDa heat shock
protein, F

Alcohol dehydrogenase, F NEDD8 conjugating enzyme, F Mitochondrial
molecular
chaperone, F

Ion channel, F Non-classical export protein Nce102,
putative, F

Siroheme synthase,
putative, F

PaaI thioesterase family
protein, putative, F

DNA-directed RNA polymerase
II subunit, F

Beta-glucosidase,
putative, F

Hsp98/Hsp104/
ClpA, putative, F

40S ribosomal protein, A Ion channel, F

Membrane-spanning
ATPase, F

Eukaryotic translation initiation
factor 3, F

Alcohol
dehydrogenase, F

Hsp98, F Vesicle coat complex COPII, subunit Sec24
family protein, F

DNA binding protein
SART-1, F

Wetting sample groups vs. dry

Annotation Up W15m vs. dry Down W15m vs. dry Up W30m vs. dry Down W30m vs.
dry

Up W1h vs. Dry Down W1h vs. dry Up Wet vs. dry Down Wet vs. dry

Short-chain dehydrogenase,
putative, F

Enoyl-acyl-carrier-
proteinreductase 1, F

Nuclear pore
complex subunit
Nup192, putative, F

Ion channel, F Nuclear pore,
complex Nup192,
putative, F

Ion channel, F DNA-directed RNA
polymerase, F

Ion channel, F

Nuclear pore complex
subunit Nup192, putative, F

Aspartic-type
endopeptidase,
putative, F

Riboflavin aldehyde-
forming enzyme, F

Nitrite reductase, F Swr1p complex
component, F

Nitrite reductase, F Cytochrome P450
family protein, F

Imidazole glycerol
phosphate synthase, A

Mitochondrial molecular
chaperone, F

NEDD8 conjugating
enzyme, F

DNA-directed RNA
polymerase, F

30 kDa heat shock
protein, F

Riboflavin
aldehyde-forming
enzyme, F

Siroheme synthase,
putative, F

Karyopherin, F 26S protease regulatory
subunit, A

PaaI thioesterase family
protein, putative, F

Eukaryotic
translation initiation
factor 3, F

Cytochrome P450
family protein, F

Siroheme
synthase, putative,
F

Cytochrome P450
family protein, F

30 kDa heat shock
protein, F

Swr1p complex
component, F

40S ribosomal
protein, A

Alcohol dehydrogenase, F DNA-directed RNA
polymerase II
subunit, F

Swr1p complex
component, F

Copia-type
polyprotein, F

DDHD domain
protein, F

Imidazole glycerol
phosphate synthase,
A

Riboflavin aldehyde-
forming enzyme, F

Molecular chaperone, F

Drying sample groups vs. dry

Annotation Up D1h vs. dry Down D1h vs. dry Up D3h vs. dry Down D3h vs. dry Up D6h vs. dry Down D6h vs. dry

Nuclear pore complex
subunit Nup192, putative, F

Ion channel, F Nuclear pore complex subunit
Nup192, putative, F

Ion channel, F Nuclear pore
complex subunit
Nup192, putative, F

Ion channel, F

UDP-glucose
4-epimerase, F

Nitrite reductase, F T-complex protein 1,
gamma subunit, F

Amino acid
permease, putative,
F

Phospholipase, F Siroheme synthase,
putative, F
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Table 3 The top five annotated genes for each comparison (Continued)

Karyopherin, F Siroheme synthase, putative, F Phospholipase, F Siroheme synthase,
putative, F

DDHD domain
protein, F

Siroheme synthase, F

Swr1p complex
component, F

Siroheme synthase, F Swr1p complex component, F Translation initiation
regulator, putative, F

T-complex
protein 1, gamma
subunit, F

Amino acid permease,
putative, F

Cytochrome P450 family
protein, F

Siroheme synthase, N-terminal
domain containing protein, F

DDHD domain protein, F Cation-transporting
ATPase, F

Cytochrome P450
family protein, F

Cation-transporting
ATPase, F

Drying sample groups vs. wet

Annotation Up D1h vs. Wet Down D1h vs. Wet Up D3h vs. Wet Down D3h vs. Wet Up D6h vs. Wet Down D6h vs. Wet

Dynamin GTPase, A Nitrite reductase, F Phospholipase, F Cation-transporting
ATPase, F

Phospholipase, F Cation-transporting
ATPase, F

Major royal jelly protein, F Siroheme synthase, N-terminal
domain containing protein, F

Mitochondrial carrier protein,
putative, F

Translation initiation
regulator, putative, F

Mitochondrial
carrier protein,
putative, F

Hsp98, F

CaaX farnesyltransferase
alpha subunit, F

Hsp98, F Nitrogen metabolite repression
regulator, F

Hsp98, F Benzoate
4-monooxygenase
cytochrome P450, F

Ferric reductase NAD
binding domain
containing protein, A

U5 snRNP component,
putative, F

Translation initiation factor IF-2, F U5 snRNP component, putative, F Ferric reductase NAD
binding domain
containing protein, A

MFS
monosaccharide
transporter,
putative, F

bZIP transcription
factor HacA, F

Vesicle coat complex COPII,
subunit Sec24 family
protein, putative, F

Ion channel, F MFS monosaccharide transporter,
putative, F

Polyketide synthase,
putative, F

U5 snRNP
component,
putative, F

Ion channel, F

Up = up-regulated genes, down = down-regulated genes, A = algal sequence, F = fungal sequence.
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Figure 3 Hierarchical clustering of the expression values. Hierarchical clustering of the top 20 well-annotated genes from each comparison.
Blue colour represents low expression values, red colour high expression values.
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enrichment analysis of KEGG pathways was also per-
formed, but an insufficient number of genes could be
assigned to pathways to enable an interpretable analysis.

Discussion
Lichens are resilient organisms and can endure desicca-
tion for long periods at a time. Even after a long period of
desiccation they can resume photosynthesis rapidly, typi-
cally within minutes, upon rehydration. Lichen desiccation
tolerance has been studied at the biochemical level [6,7,9],
but little is known about the molecular mechanisms be-
hind this interesting phenomenon and ability to survive in
harsh environments. We have studied the changes in gene
expression of Cladonia rangiferina during drying and wet-
ting by designing a custom microarray. The objective of
our research was to obtain a better insight into the desic-
cation tolerance of C. rangiferina and identify the genes
most differentially expressed during drying and wetting.
The reindeer lichen is a symbiotic organism containing

a mycobiont (C. rangiferina) and an algal photobiont
(Asterochloris sp.). The expressed transcripts in the
lichen thallus may be derived from either of these
genomes. Since we specifically intended to study desic-
cation- and rehydration-induced gene expression of the
whole symbiotic lichen, which has been shown to tole-
rate desiccation better than either of its isolated partners
[3], the microarray design was based on sequences pre-
pared from whole lichen tissue. The genome of origin
for these poly-adenylated cDNA-based EST sequences
have been classified as fungal or algal sequences on the
basis of discriminative models derived using available
axenically cultured sequences [13] to obtain an estimate
of the ratio of algal and fungal genes in the lichen.
Similarly also the RNA samples, which were hybri-

dized to the microarray, contain RNA molecules from
both of the symbionts. Lichens are also known to con-
tain internal bacterial communities [27] and bacterial
contamination is a possibility with sample material col-
lected from the wild, but the bacterial RNA molecules
possibly present in the samples should not hybridize to
lichen based microarray probes.
Samples were collected at different time points during

rehydration and desiccation and the RWC was mea-
sured from each time point studied. 24 hours was
selected as the final sample time-point because beyond
this point no changes in lichen tissue weight were ob-
served. The starting lichen material was dried only in
room temperature under normal laboratory conditions
and therefore the RWC of the starting material can be
higher than measured. The D6h and Dry samples could
have obtained moisture from air humidity during the
drying process thus explaining why we were able to de-
tect transcriptomic effects in these samples although
the RWC values were so low.
The correlation values between the samples show va-
riability, but the within group correlation values are high
(Additional file 1) indicating heterogeneous sample groups
and homogenous replicates within sample groups. The
metabolic processes taking place during wetting and desic-
cation were hypothesized to be large, systemic changes,
which is reflected with the lower between sample cor-
relation values and the high number of differentially
expressed transcripts despite the strict filtering thresholds
(Table 2).
Within the DE transcript lists (Additional files 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, 14, 15), the percentage of unan-
notated genes is enriched when compared to the whole
data. In many of the comparisons the percentage of un-
annotated DE transcripts is close to 50% and the highest
percentage is 66.3% within the Wet vs. Dry comparison.
This enrichment of unannotated transcripts within the
strictly filtered lists could suggest that these may be
lichen-specific or -adapted genes. It would also seem
likely that these lichen-specific transcripts would be dif-
ferentially expressed especially during the early stages of
wetting and drying. When using more permissive thresh-
olds for filtering the distribution of unannotated tran-
scripts appears similar to the whole data (results not
shown) illustrating that these putative lichen-specific
transcripts really are key players in the molecular me-
chanisms underpinning anhydrobiosis. The most abun-
dantly represented transcripts in the rehydrated Tortula
ruralis, a desiccation-tolerant bryophyte, also did not
have any matches to known sequences [28].
Our results suggest that the molecular responses hap-

pening in the beginning of rehydration are different from
the later stages of wetting and also from drying. This can
be seen at the level of the whole data (Additional file 1), as
the difference of the expression profile of the top DE
genes in W15m sample (Figure 3) and also as the unique-
ness of the top up- and down-regulated genes in the
W15m comparisons (Table 3). The enriched up-regulated
GO terms in W15m sample suggest that cellular re-
sponses involved in molecule transport and localization
(Additional file 20) are active in the early stages of
rehydration.
The differential expression of some genes, like short

chain dehydrogenase and alcohol dehydrogenase (Table 3),
and the enrichment of certain GO terms continues past
the initial rehydration. Alcohol dehydrogenases take part
in detoxification reactions [29], and therefore their up-
regulation could reflect the detoxification of ROS and
other harmful metabolites accumulated during desic-
cation. Alcohol dehydrogenase deficient plants have been
shown to be more susceptible to osmotic stress in tomato
[30] and Arabidopsis thaliana [31], and as alcohol de-
hydrogenase family proteins function in the polyol syn-
thesis pathway, their activity could contribute towards
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protection against water deficiency [32]. Transcripts are
known to accumulate during drying in desiccation-tole-
rant plants [33] minimizing the time needed to restart
growth upon rehydration. Several GO terms involved in
molecule transport are enriched in the W15m sample as
well as in the W30m sample, and could potentially reflect
this activation of pools of transcripts available in the
lichen tissue.
As the rehydration continues, biosynthetic and meta-

bolic processes become more active in C. rangiferina as
suggested by the enriched GO terms in the W30m sample
(Additional file 20). These processes are active also in the
W1h sample (Additional file 20) and it would seem logical
that processes involved in the synthesis of proteins and
other molecules are activated in the rehydrated lichen.
However, it seems that these biosynthetic and metabolic
processes are less active in the Wet sample than in the
W30m and W1h samples. The cellular responses that
encompass the entire rehydration process are all related to
the binding of nucleic acids.
The up-regulation of the heat shock protein HSP98

(Table 3) and the enrichment of response to stress term
(Additional file 20) in the Wet sample indicate that
already three hours’ full hydration is a source of stress for
C. rangiferina. Heat shock proteins are induced in various
environmental stress responses [34], and it has previously
been found that desiccation-tolerant lichens find 48 hours
storage in moist mildly stressful [8]. Desiccation-tolerant
lichens are in general more adapted to short bursts of
hydration with long intervals of desiccation and therefore
long periods of full rehydration may potentially be a
stressful situation for them.
When the lichen starts to dry, the gene expression

profiles are similar to those observed during rehydration
(Figure 3). After three to six hours of dehydration se-
veral biosynthetic and metabolic processes are still active
in the lichen (Additional file 20), but the expression pro-
file has changed (Figure 3). The acyl-transferase acti-
vities increase during these later stages of dehydration
(Additional file 20) and the up-regulation of U5 snRNP
component gene was detected during the whole drying
process (Table 3). A U5 snRNP-associated protein is up-
regulated by cold stress in Arabidopsis [35] and smallRNAs
as well as ribosome binding proteins are involved in regu-
lating plant responses to abiotic stresses [36,37].
According to our results, ion channel is up-regulated

in the Dry sample (Table 3). Damage to the plasma
membrane may be the main cause of death during desic-
cation [38], and resurrection plants have been shown to
utilize cell wall modification to enhance desiccation tole-
rance [39]. This observed up-regulation of a transcript
coding for an ion channel protein could potentially
reflect the protection of cellular integrity that is found
integral for desiccation tolerance in plants [37].
Our findings suggest that some genes are involved in
both the rehydration and dehydration process. Nuclear
pore complex subunit Nup192, Swr1p complex compo-
nent and cytochrome P450 family protein genes are differ-
entially expressed in most drying and wetting samples
(Table 3). Nup192 is an evolutionarily conserved nucleo-
porin with a preferential location at the inner site of the
nuclear membrane [40], and nucleoporins have been
shown to play critical roles in gene regulation [41]. In
plants nucleoporins have been found necessary to survive
cold stress [42], and essential for the symbiosis with
mycorrhizal fungi [43]. Swr1p is a member of the Swi2/
SNF2 family of ATP-dependent chromatin remodelling
enzymes [44], and it regulates the deposition of histone at
repressed promoters and allows for the rapid activation of
transcription in yeast [45]. A gene encoding a SNF2
domain-containing protein was identified as dehydration-
upregulated in the resurrection plant Xerophyta humilis
[32]. Cytochrome P450 proteins on the other hand have
been shown to catalyse a wide variety of reactions in plant
[46,47] and fungal [48,49] primary and secondary metab-
olism and the production of secondary metabolites often
depends on many species-specific P450s [50]. A cyto-
chrome P450 enzyme transcript has been shown to be sig-
nificantly accumulated in rapidly dried and subsequently
rehydrated Tortula ruralis [17].
While we have demonstrated the differential expression

of hundreds of genes in the drying and wetting lichen,
these changes all occur within hours of profound changes
to water content. In field conditions there will likely be
finer changes as atmospheric moisture partially rewets the
lichen. This study does not address the anhydrobiosis phe-
nomena where tissues can remain viable for months under
the dried conditions – this is likely controlled well beyond
the 24 hour point to which we characterized the drying
process. This study does however provide insight into the
molecular activities associated with the beginning dehy-
dration and has identified many apparently novel genes
that will be of value in subsequent studies.

Conclusions
We have studied the changes in gene expression of Clado-
nia rangiferina during rehydration after desiccation and
dehydration after full hydration. Our data suggests that
these events affect the expression levels of hundreds of
genes at a statistically significant level. The wetting and
drying events differ from each other at the molecular level,
but the largest changes to gene expression are observed
minutes after rehydration. These changes are unique to
the early stages of rehydration and are not shared with the
later stages of wetting or with drying. Due to lack of anno-
tation for lichen sequences, most of the differentially
expressed transcripts are currently novel showing no
sequence similarity to known genes. These candidate
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lichen-specific genes may contribute to the molecular
mechanisms required by the organism to tolerate long
periods of desiccation. Several of the identified genes are
similar to genes identified in other studies analysing the
desiccation mechanisms of desiccation-tolerant orga-
nisms. An analysis of the functional annotation of differ-
entially expressed genes was also performed and it gives
an illustrative view of the different biological responses
displayed in the lichen thallus during rehydration and des-
iccation. We have presented here the first microarray
experiment for any lichen species and have for the
first time studied the genetic mechanisms behind lichen
desiccation-tolerance at the whole transcriptome level.

Methods
Sample preparation and RNA extraction
Lichen was collected from the island of Kuusisto in
Kaarina, Finland on 2nd of May, 2009 and after removal
of other plant material and small invertebrates stored
at −20°C in desiccated state. Rewetting of the lichen
material was performed following the overnight thawing
of the frozen samples at room temperature. The lichen
tissue was rewetted by spraying with tap water, and
placing the material on a wet dishcloth under standard
laboratory conditions. Samples for the microarray experi-
ment were collected at 15 minutes, 30 minutes, one hour
and three hours after rewetting. After three hours of wet-
ting the lichen tissue was left to dry at room temperature
on a dry cloth and samples were collected at one, three,
six and 24 hours of drying. The RWC of the samples was
measured by weighing the samples. Three replicates of
each sample were collected.
The lichen tissue samples were placed in liquid nitrogen

immediately following collection and the tissue was finely
ground using a mortar and pestle. RNA was extracted
with the Spectrum Plant kit (Sigma Aldrich, Germany)
according to the manufacturer’s instructions. The concen-
tration and quality of the isolated nucleic acids was mea-
sured using the NanoDrop ND-1000 (NanoDrop, USA)
and RNAs were stored at −80°C.
The culturing of the axenically grown symbiotic part-

ners and the generation of EST sequences from both
fungal and algal partners was performed as previously
described [13].

Microarray design
Our lichen custom microarray was manufactured accord-
ing to the Agilent 4x44K array format and oligonucleotide
probes were designed and optimised using the manu-
facturer’s eArray tool (https://earray.chem.agilent.com/
earray/). Previously published Roche GS FLX deep se-
quencing reads and EST sequences obtained by traditional
Sanger sequencing [13] were used as substrate for the
array design process. The Roche GS FLX reads were
assembled with MIRA2 [51] and the Sanger sequences
base called using phred [52] and compared against a
modified NCBI UniVec database using cross_match to
identify vector and polylinker sequence substrings. These
lichen transcriptome sequences were split into two groups
according to the nucleotide length of the sequence, se-
quence contigs of less than 450 nt in length were classified
as short sequences while sequences longer than or equal
to 450 nt in length were classified as long. For the 20,779
short contigs a single 60 nt probe per target sequence was
designed while for the 10,676 long sequences two 60 nt
probes per target sequence were designed. This resulted
in 20,663 probes for the short sequences and 20,071
probes for the long sequences. In addition a replicate
probe group of 19 probes was created as recommended by
Agilent. These probes were each replicated ten times on
the array. Agilent control probes were additionally in-
cluded into the array design.

Microarray hybridization
Prior to microarray analysis, the quality of the starting
total RNA was validated using 2100 Bioanalyzer (Agilent,
USA) capillary electrophoresis instrument. All of the
samples had a RNA Integrity Number (RIN) [53] value
above 9. The RNA sample labelling and hybridization was
performed using the manufacturer’s One-Color Micro-
array-Based Gene Expression Analysis protocol (Agilent,
USA, Version 5.7).
600 ng of total RNA was amplified and labelled with

Cy3 using the Quick Amp Labeling kit (Agilent USA).
The samples were processed with an exogenous control
sample provided through an RNA Spike-in kit (Agilent,
USA). 1.65 μg of Cy3-labelled sample was hybridized to
the 4x44K custom array in 65°C overnight using the
provided Gene Expression Hybridization kit. The arrays
were washed using the Gene Expression Wash Pack and
Stabilization and Drying solutions also provided in the
custom DNA microarray gene expression profiling kit.
The DNA microarrays were scanned using an Agilent

Technologies’ Scanner model G2565CA. The expression
data was derived from the image files using Agilent’s
Feature Extraction software, version 10.5.1.1, using grid
024161_D_F_20090605, protocol GE1_105_Dec08 and
QC metric set GE1_QCMT_Dec08. These microarray
data have been deposited in NCBI’s Gene Expression
Omnibus [54] and are accessible through GEO Series
accession number GSE47624 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE47624).

Quantitative real-time RT-PCR validations
Eleven transcripts were selected for qRT-PCR validation.
The primers were designed using Roche’s Universal Probe
Library with the Probe Finder software version 2.45 (http://
qpcr.probefinder.com/organism.jsp). An optimal real-time

https://earray.chem.agilent.com/earray/
https://earray.chem.agilent.com/earray/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47624
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47624
http://qpcr.probefinder.com/organism.jsp
http://qpcr.probefinder.com/organism.jsp
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PCR assay was successfully designed for all of the selec-
ted transcripts and the primers were manufactured by
Oligomer Ltd (Helsinki, Finland). The primer sequences
are provided as Additional file 21.
1 μg of RNA was reverse transcribed into cDNA using

Dynazyme reverse transcriptase (Finnzymes, Finland).
qRT-PCR reactions were performed for each sample in
four replicates using KAPA qPCR Master Mix (Kapa
Biosystems, USA) with the following amplification proto-
col: 10 minutes at 95°C, 40 cycles of 15 s at 95°C and
1 min at 60°C, 10 s at 8°C. The transcript identified as
cr_lrc491 was used as an endogenous control and fold
change values compared to the Dry sample were calculated
using the RQ Manager v.1.2 software (Life Technologies,
USA).

Data analysis
The oligonucleotide probe identifiers and signal intensities
from the scanned microarray image files were determined
using software running on the microarray scanner (Feature
Extraction, v 10.5.1.1, Agilent). These raw data were ana-
lysed using R and Bioconductor [55,56]. The data were
quantile normalized to reduce technical noise using
Limma package [57]. Each time point during dehydration
and rehydration was compared to both the Wet and Dry
sample to identify the differentially expressed genes in
each of these comparisons. The Limma package, which
applies linear modelling with a modified t-test, was used
for the statistical testing and the thresholds for the up-
and down-regulated genes were chosen individually for
each comparison (Table 2, Additional files 17 and 18).
Eclat classification of the lichen EST sequences used for

the microarray probe design was performed as previously
described [13]. BLASTX [58] was used to compare the
lichen sequences to a non-redundant (nr) protein se-
quence database from the NCBI GenBank database [59]
using an arbitrary cut-off of 1e-3.
The Blast2GO [60] tool was used to analyse the

BLASTX sequence results. This analysis was used to
assign candidate GO [61] and enzyme code (EC) [62]
annotations, to perform Interpro scans [63] and to iden-
tify candidate protein sequence domains and to map
sequences onto KEGG pathways. Each sample group com-
parison was tested for enrichment of GO terms using the
Fisher’s Exact Test method as implemented in Blast2GO.
A fold-change threshold of > |1.5| and a p-value threshold
of 0.01 was assigned for determination of sensitivity for
the Fisher’s Exact Test. A non-two-tailed test with p-value
threshold of 0.05 was used to distinguish the over-
represented GO terms in each sample group comparison.
The clustering of the transcript expression values and

the plotting of their heat maps was performed using
the GENE-E tool (http://www.broadinstitute.org/cancer/
software/GENE-E/index.html). Euclidean clustering was
selected for the clustering method and average linkage as
the linkage method. Logarithmic expression values were
used in the input data.

Availability of supporting data
The data set supporting the results of this article is avai-
lable in the Gene Expression Omnibus repository, GEO
Series accession number GSE47624, http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE47624.
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