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Abstract

approached in woody species such as grapevine.

validated by gPCR and geNorm analyses.

developmental stages and physiological conditions.

Background: Data normalization is a key step in gene expression analysis by gPCR. Endogenous control genes are
used to estimate variations and experimental errors occurring during sample preparation and expression
measurements. However, the transcription level of the most commonly used reference genes can vary considerably
in samples obtained from different individuals, tissues, developmental stages and under variable physiological
conditions, resulting in a misinterpretation of the performance of the target gene(s). This issue has been scarcely

Results: A statistical criterion was applied to select a sub-set of 19 candidate reference genes from a total of 242
non-differentially expressed (NDE) genes derived from a RNA-Seq experiment comprising ca. 500 million reads
obtained from 14 table-grape genotypes sampled at four phenological stages. From the 19 candidate reference
genes, WAIGT (AvrRpt2-induced gene) and WICPB (T-complex 1 beta-like protein) were found to be the most stable
ones after comparing the complete set of genotypes and phenological stages studied. This result was further

Conclusions: Based on the evidence presented in this work, we propose to use the grapevine genes WAIGT or
WTCPB or both as a reference tool to normalize RNA expression in gPCR assays or other quantitative method
intended to measure gene expression in berries and other tissues of this fruit crop, sampled at different

Background

Quantitative real-time PCR (qPCR) is generally used for
measuring transcripts abundance due to its high sensi-
tivity, specificity and broad quantification range for high
throughput and accurate expression profiling of selected
genes [1]. Also, qPCR analysis has become the most com-
mon method for verification of microarrays and RNA-Seq
results [2-4]. Besides being a powerful technique, qPCR has
certain disadvantages such as the difficulties associated
to the inappropriate data normalization, one of the most
important aspects to solve [5] in order to fit this technique
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for the study of a new organism, organ or tissue. The data
normalization is a key stage to control the artifacts and ex-
perimental error occurring during sample preparation and
the following experimental steps, ending with the data
analysis. It has been shown that qPCR results are highly
dependent on the reference genes chosen [6], which explain
the considerable effort applied into the validation of the
gene(s) selected for the normalization stage, prior to exten-
sive experimentation [7]. These housekeeping genes should
not vary in their expression level considering the different
tissues or cells under investigation, nor in response to any
experimental treatment [8].

Regardless of the experimental technique employed, ap-
propriate normalization is essential for obtaining accurate
and reliable quantifications of gene expression levels,
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especially when measuring small expression differences or
when working with tissues of different histological origin
[9]. The purpose of normalization is to correct variability
associated with the various steps of the experimental
procedure, such as differences in initial sample amount,
RNA extraction recovery and integrity, efficiency on cDNA
synthesis and differences in the overall transcriptional activ-
ity of the tissues or cells analyzed [10]. Among the numer-
ous normalization approaches that have been proposed
[11,12] the use of internal controls or reference genes has
become the method of preference [13,14], because they
potentially account for all of the sources of variability
mentioned above. However, numerous studies have reported
that the transcript quantity of the most commonly used
reference genes can vary considerably under different de-
velopmental, physiological and experimental conditions
[11,15-23]. Several reference genes are commonly used,
such as elongation factor [24,25], actin [26,27], ubiquitin
[28,29], and ribosomal units (18S or 28S rRNA) [30-32].
However, several reports have demonstrated that transcript
levels of these genes also vary considerably under dif-
ferent experimental conditions and consequently their
suitability for gene expression studies must be evaluated
case by case [22,33,34]. This implies that a reference
gene with stable expression in one organism may not be
suitable for normalization of gene expression in another
organism [35,36], or even in different experiments for
the same species.

Many works have been carried out on animal models
and in relation to human health [37,38], fields in which
multiple reference genes for normalization of qPCR data
have been described. However, similar reports are less
abundant in plants [10,35,39]. Czechowski et al. [22]
employed a new strategy for the identification of reference
genes in Arabidopsis thaliana, based on the microarray
data of Affymetrix (ATH1), and several new reference genes
were revealed [40]. This list of Arabidopsis reference genes
was successfully employed to search for reference genes
by sequence homology in unrelated species such as Vitis
vinifera [7]. This approach resulted in a strategy that is
based on the parallel use of a series of control genes and
calculation of normalization factors using statistical algo-
rithms [8,11,41]. It is necessary to validate the expression
stability of a candidate control gene in each experimental
system prior to its use for normalization. In this regard,
several free software applications such as geNorm [8],
NormFinder [42] or qBase [43] are used in order to iden-
tify the best internal controls from a group of candidate
normalization genes in a given set of biological samples.

To our knowledge, no investigations have been yet car-
ried out for the identification of reference genes in table
grape, one of the most important template fruit crops. In
this work we used a data set obtained from a large RNA-
Seq experiment of table grape segregants phenotypically
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and genetically diverse, belonging to a ‘Ruby Seedless’ x
‘Sultanina’ crossing, sampled at three phenotypic stages,
anthesis, fruit-setting and berries of 6-8 mm diameter
(the last one from plants treated or not with gibberellic acid).
We focused the search of control genes evaluating the
variability (or stability) in the expression of 19 genes
selected from an initial set of 242 genes that showed a
threshold stability level, comparing the four different
developmental and physiological conditions. Two new
reference genes, VVAIG1 (AvrRpt2-induced gene) and
WTCPB (T-complex 1 beta-like protein) were validated
by qPCR and geNorm techniques and are presented as
new housekeeping genes for table grape.

Results and discussion

Identification of putative reference genes

Usually the search for reference genes in any plant species
is based on the identification of orthologs of genes sta-
bly expressed in model plants, mainly from Arabidopsis
thaliana [44,45]. In this case, we used our own information
obtained from a massive sequencing assay done with 47
samples of the same species of interest, i.e., table grape
(Vitis vinifera L.). This set of samples corresponds to 14
genotypes from which RNA was collected, combining
different flower and berry developmental stages and
treatments (see Methods section). Even when the main
outcome of an RNA-Seq exercise is the identification of
differentially expressed genes, in this case the same data
set was used to search for putative reference genes, con-
sidered as that any gene that has a minimal expression
level variation in every sample analyzed. Based on these
criteria, a total of 242 candidate housekeeping genes were
identified, using the bioinformatics workflow presented in
Figure 1. These genes are involved in different biological
processes (data not shown), such as synthesis, degrada-
tion, folding, defense, stress and catabolism of proteins
and metabolites. As this number of genes is too large to
evaluate each one respect of their transcriptional stability,
we selected a subset according to statistical criteria de-
scribed in the next section. With this purpose in mind, we
ranked the list of 242 genes according to their coefficient
of variation (CV), even when it was not observed a direct
relation between CV and total reads (Additional file 1:
Table S1).

Selection of a sub-set of 19 candidate reference genes

Different approaches, such as Poisson distribution, quasi-
Poisson distribution and negative binomial distribution,
have been used to represent the statistical distribution of
sequence data [46-48]. Under these three kinds of distribu-
tion, the mean of count reads is highly related to variance
[47,48]. A summary of the three statistical parameters used
in this work to characterize the NDE genes is shown
in Table 1. The mean and the variance were high and



Gonzélez-Agliero et al. BMC Genomics 2013, 14:878
http://www.biomedcentral.com/1471-2164/14/878

Page 3 of 12

T0GB

1 I1 111
/ RNA-Seq Alignment to Mapping
Raw data | rilter #1 | reéference genome | Filter #2 seqs

26,681 genes

Search of
differentially
expressed genes (DE)

Filter #3

50 bp (448 million of reads).
Il Alignment to Vitis genome 12X.
III Genes with more than 100 mapped reads.

LightCycler Real-Time PCR System (Roche).
Filter #1: Q > 15 and reads > 20 bp.

mismatch in 10 bp.

I Six full INlumina runs from RNA-Seq (Genome analyzer 1Ix) of

IV DE genes in at least 1 of the possible comparisons.
V' Gene expression analysis for selected putative housekeeping
genes by quantitative real-time PCR (gPCR) assays using the

Filter #2: Match max. 10 times en different regions and max. 10 l

Filter #3: Fisher’s exact test (p-values=0.01 and FDR = 0.05).
Filter #4:Using mean and coefficient of variation how criteria of

242 genes

putative
K genes,
l Filter #4
eference
enes

19 genes

v
DE
enes

v qPCR
validatiol

thion for reference genes identified.

_/

sequencing of cDNA (RNA-Seq).

Figure 1 Bioinformatics pipeline used for the identification of the putative reference genes obtained through a high-throughput

positively related, while the average was not related to the
CV (Table 2). Therefore, this last parameter, together with
the mean, was used to select those NDE genes that behaved
as housekeeping and had both a low variation coefficient
and a high abundance along the 47 samples analyzed. The
data (Table 1) showed a high estimated coefficient of
variation (CV > 40%, with a range of ~25%). This variation
probably could be given by an intrinsic variation within
the biological sample (phenotype, phenological stages and
gibberellic acid treatment) or by sampling error, because
the sources of variation are considered during the selection
of genes as differentially expressed by edgeR package [46].
Only a few genes (~8% of total NDE genes) had mean
and CV values large enough to rule out sampling errors.
This among-samples variation could be explained because
the genotypic effect was not taken into account for the
selection of NDE genes. In this study, each one of the
14 genotypes used could be differentially interacting with
the other factors or conditions (phenotype, phenological
stages and gibberellic acid treatment).

Because of the difficulties to find genes that possess sim-
ultaneously both a high expression level (number of reads)
and a low CV] we used the coefficient of variation, which is
not related to the mean and it is easier to interpret (Table 2).

Table 1 Descriptive statistics of mean (p), variance
(6?) and coefficient of variation (CV) of the 242
non-differentially expressed genes

Min. q, Median qs Max.
u 3317 680.2 820.7 1129 3682
o 41300 120000 189400 326900 3636000
cv 0444 0492 0515 0.544 0.648

Min.: minimum value; q1: first quartile; g3: third quartile; Max.: maximum value.

This parameter has been previously used in other experi-
ments [49,50]. The threshold estimated by the simulation
for CVand p are listed in Table 3. According to this, as the
threshold became more stringent, fewer genes were found
that satisfied both criteria of selection: CV < percentile
threshold and y > percentile threshold (Table 3). Only 19 of
the 242 NDE genes satisfied both criteria at 97.5% and 2.5%
for u and CV, respectively (Table 4).

Primers design and analysis of the variability from
threshold cycles value

Primer pairs for qPCR were designed and subsequently
evaluated on table grape cDNA. For 17 out of the 19
primer pairs designed, a single amplicon was observed
by electrophoretic separation; each amplicon was sequenced
to confirm the primer specificity. The primers for VWVADH7
and VWSLP had to be excluded from the study as they pro-
duced two amplicons under the tested PCR conditions. All
primers were designed with the following criteria: 20—24 bp
length, GC content between 50% and 65%, product size in
the range of 91-268 bp and melting temperature between
60-64°C (Table 5). Melting curve analyses of the 17
genes showed a single peak in each case, confirming that
the primers amplified a single product (data not shown).
Except for VWUNP3 (129%) and VVADF2 (114%), all PCRs

Table 2 Relationship among statistical parameters of
read counts of non-differentially expressed genes
(Pearson’s correlation coefficient)

u o’
o 0.951%**
v 0.029 ns. 0.126%**

Significance codes: p value <0.001 ***0.001-0.01 **'0.01-0.05 *’> 0.05 n.s.
(non-significant); u mean; 02 variance; CV coefficient of variation.
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Table 3 Threshold used as criteria of selection based on
the distribution of coefficient of variation (CV) and of
mean (p) of the 10,000 simulated genes

Percentile Threshold n
CV 5% 0.536 34
U 95% 11613

CV 2.5% 0513 19
u 97.5% 1208.2
V1% 0487 4
U 99% 1260.5
CV0.1% 043 0
U 99.9% 1369.3

n: Number of NDE genes that satisfied both criteria of selection: CV <
percentile threshold and p > percentile threshold.

displayed amplification efficiencies between 83% and 110%
(Additional file 2: Table S2).

As a first approach we compared the different expression
levels of the reference genes over all the 47 samples using
the absolute Ct value. Analysis of the raw expression levels
across all samples detected some variation among reference
genes. The results (Additional file 2: Table S2 and Figure 2)
revealed that all genes presented median ct values be-
tween 18.5 and 24.8 and the CV was < 7% for all the
reference genes (Additional file 2: Table S2), among which

Page 4 of 12

WAIGI and VWTCPB presented the lowest CVs, 3.6 and
3.9 respectively.

Expression analysis of reference genes for qPCR

Using quantitative Real-Time PCR we studied the expres-
sion of 12 out of 19 candidate reference genes in cDNA
samples of table grape genotypes from different pheno-
logical stages. Most of the genes showed a similar expres-
sion pattern considering the different samples under study,
e.g., lower expression at anthesis and fruit-setting stages
and slightly higher expression in the 6—8 mm berry size
stage (Figure 3, C-L). Other genes such as VvAIGI and
WTCPB did not show significant differences in their ex-
pression along the different phenological stages and in the
different samples (segregants) studied (Figure 3, A and B).
As a control, we included three genes studied by Reid et al.
[7], WlUBQ10, VvPIP2B and VVEFI1-a, which presented an
expression profile similar to the set of putative reference
genes, with appreciable differences between phenological
stages (Figure 3, M-O). Interestingly, this set of three con-
trol genes, commonly used in gene expression studies in
grapevine exhibited very “unstable”, non-uniform or too-
low expression levels, and so they were not included in
the list of 242 genes initially selected, and consequently
they are not recommendable to be used as reference genes
in table grapes.

Table 4 Candidate reference gene ranking according to their CV

Genoscope ID Total reads Mean* sD o’ CHR Product
GSVIVG01036166001* 80103 1704 791 046 chr6 Vacuolar protein sorting-associated protein 4
GSVIVG01013003001* 57177 1217 571 047 chr2 26S proteasome non-ATPase regulatory subunit 13
GSVIVG01027659001* 63133 1343 635 047 chr15 Unkown protein function
GSVIVG01025947001% 64396 1370 657 048 chr18 Protein AIG1
GSVIVG01035814001* 79018 1681 818 0,49 chr4 Unkown protein function
GSVIVG01038268001* 162669 3461 1689 0,49 chrs Rab GDP dissociation inhibitor alpha
GSVIVG01008708001* 90480 1925 941 049 chr18 T-complex protein 1 subunit beta
GSVIVG01028520001* 96994 2064 1009 049 chr7 26S protease regulatory subunit 4 homolog
GSVIVG01012792001* 56443 1201 588 049 chr18 Putative peptidase
GSVIVG01031067001 67287 1432 705 049 chri4 T-complex protein 1 subunit zeta
GSVIVG01033771001 83853 1784 883 0,49 chr8 Splicing factor U2af small subunit A
GSVIVG01033172001 78058 1661 822 0,50 chr4 Serine/Arginine-rich splicing factor 7
GSVIVG01016731001 69545 1480 734 0,50 chr9 Proteasome subunit alpha type-6
GSVIVG01028854001 82587 1757 875 0,50 chr16 40S ribosomal protein S10-1
GSVIVG01033442001* 63350 1348 673 0,50 chr8 Carbon catabolite repressor protein 4 homolog 2
GSVIVG01037814001* 70685 1504 754 0,50 chr3 Unkown protein function
GSVIVG01015062001* 59049 1256 637 0,51 chr1 Aldehyde dehydrogenase family 7 member A1
GSVIVG01030215001* 155807 3315 1682 0,51 chr8 Proactivator polypeptide-like 1
GSVIVG01016593001* 101022 2149 1091 0,51 chri3 Actin-depolymerizing factor 2

SD standard deviation; CV coefficient of variation; CHR chromosome location for each gene.
*Genes studied in this work; *genes that showed double amplicon.

*Threshold mean 1208.2 (percentile 97.5%).

"Threshold coefficient of variation 0.513 (percentile 2.5%).
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Table 5 List of primers designed for the 19 candidate reference genes considered in this study
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Genoscope ID Gene abbreviation GenBank accession Primer sequence (5'-3') Product size (bp) M (°C)
GSVIVT01038268001 VWRABI XM_002280570 F: GCAAGGCTCAGTGCTGTTTA 217 60
R: TTGGGATTGGGTGGCTCATA
GSVIVT01030215001 VWPP1 XM_002268545 F: GAGCCAGGAATCCACAAAGAC 166 62
R: AGAACCGACCAAACCCAAACT
GSVIVT01016593001 WADF2 XM_002284004 F: GGCCTTTGTCGCTGTTTCCT 268 60
R: AGTGGGCTCACCAACCTTTT
GSVIVT01028520001 WPR26S XM_002263298 F: GAGCAAGTTGAAGCCGCAGGAG 138 62
R: CCCACGGACGACGACACGAT
GSVIVT01008708001 WTCPB XM_002285876 F: AGACAGTGATTGACAGCCGAGTT 238 64
R: ATCCCTGCGTGGCTTTCTTCC
GSVIVT01033771001 WSFU2 XM_002277409 F: CCCCACCCTCCTCCTTTCCAAC 192 64
R: TGGTCAGCCAAATTGTCACAGA
GSVIVT01028854001 WPR40 XM_002273250 F: GATTGTGCCTGCCACCTTGA 257 62
R: AACCTCCACCTCCTCGTCCA
GSVIVT01036166001 VWSAP4 XM_002262726 F: AGCCTAATGTGAAGTGGAGC 179 60
R: AACAGCCTTGGCTAGGTATG
GSVIVT01035814001 WUNP2 XM_002284964 F: AGATACAGAGGCAGGAGAAGT 214 64
R: AGAATTGGGAATCCAGTGAGG
GSVIVT01033172001 WSF7 XM_002272621 F: GAGCGAGAACTTGAAGATGAG 258 62
R: CAAACGGCATTCACGGGCAAA
GSVIVT01037814001 WUNP3 FQ387200 F: ACGCTCCTCAGTACGGTCAG 91 60
R: AGAGCAGCCAAACATCCTTC
GSVIVT01016731001 VWPSA XM_002271893 F: ATGGACCTCGCCTCTTCAAAT 262 62
R: TCCTCGGTGGACAACACTCTG
GSVIVT01031067001 WTCPZ XM_002283474 F: CTTATGAAACAATCAGAACGCTAC 140 62
R: TCAGGCTCATCACCCATTACCA
GSVIVT01025947001 WAIGT XM_002281960 F: GAAGATTATTTGGGCCGTGAG 108 62
R: CTTCTTGGCTTCATCCTTGGT
GSVIVT01033442001 VWCCRP XM_002280954 F: TTGGTTTGAAGTTGGACGCTCTA 173 64
R: AGTGACGAGGAGTAGGTGAGG
GSVIVT01027659001 WUNP XM_002280576 F: TCGGACCTTCGGATTAGCAT 227 60
R: CACTCCAGTGGGTAGCATAG
GSVIVT01015062001 VWADH7 XM_002278057 F: TCCGGCGAATCCTGGATGTTA 104 64
R: CCGTCACCACCGCAATCCTCT
GSVIVT01013003001 VWPRN26S XM_003631440 F: GAAGCTCTGGCACCAACTCACT 158 64
R: ACTGCCTAGAAACTATGACAGCAA
GSVIVT01012792001 WSLP FQ388031 F: GCCGTCCACATCATTTACACT 108 62

R: AGCCTTCTTGGCAGCCTCCTC

F forward primer. R reverse primer. bp base pairs. TM melting temperatura given in °C.

Validation of candidate reference genes

For the validation of VwAIGI and VvTCPB as reference
genes, we studied their expression profile also in more
advanced phenological stages (pre- veraison and post-
veraison), using cv. Sultanina as a model table grape
genotype. Some authors as Gamm et al. [34] and Artico

et al. [23] among others, recommend that the ideal ref-
erence genes should be expressed at a constant level
throughout the plant tissues, developmental stages or
physiological conditions, and not be influenced by exogen-
ous treatments but no one gene has such a stable expres-
sion under every experimental condition, as numerous
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studies reported that expression of housekeeping genes
can also vary considerably under particular experimental
conditions as it is observed in the Figure 4. VWAIGI
and VWT'CPB genes neither presented significant differ-
ences in their expression at the growing stages evaluated
(Figures 5A and 5B, respectively). Similar results for these
two genes were observed in cvs. Red Globe, Crimson
seedless and Muscat of Alexandria, a set of genotypes
representing at some extent the genetic diversity of table
grapes [51]. In addition, we evaluated the performance
of these two reference genes in leaves with similar results
as berries (data not shown).

To complement this, we used geNorm algorithm to
determine the most stable reference genes assuming that
two ideal reference genes should not vary in comparison
with each other in the different tested conditions. This
algorithm calculates the average pair wise variation of a
given candidate reference genes set with all other genes
under evaluation and assigns a measure of its expression
stability (M), based on which a ranking of candidate ref-
erence genes is produced [8]. The geNorm software has
been cited for many authors in relation to the identification
or behavior of reference genes; this is because of its
easiness, robustness, reliability and convenience of use,
and so it is currently included in qRT-PCR analyses in
animals, yeasts, bacteria but rarely in plants [52]. Our
results based on geNorm were consistent with this couple
of genes being very stable regarding gene expression in
the analyzed samples.

For anthesis, the two most stable genes were VVAIG1 and
WCCRP (Figure 4A); in the case of fruit-setting these were
WUNP and VWCCRP (Figure 4B); and for 6-8 mm berries,
the most stable genes were VWUNP and VVAIGI (Figure 4C).
Other genes considered in this work (EF, PP2A and UBQI0)

were studied in other species of plants such as soybean [53]
and Gossypium hirsutum [23], showing a high variability
in their expression profile depending of the physiological
condition, tissues and genotypes.

In summary, the most stable reference genes for all
samples studied (different genotypes evaluated at dif-
ferent phenological stages) were VWTCPB and VWAIGI
(Figure 4D). These results demonstrate that our approach
allowed us to obtain a set of genes that could be used as
reference genes in qPCR experiments; this is similar to
the result obtained by Coito et al. [40], where they proved
the accuracy of choosing a combination of grapevine
reference genes for qPCR, but in that case through a
microarray analysis.

Conclusions

This work is the first study that shows that a data set
derived from a massive RNA sequencing for several indi-
viduals and phenotypic conditions can be used for the
identification of housekeeping genes in a non-model plant
species such as grapevine. The genes V¥TCPB and WAIGI,
never cited before as possible reference genes in this
or other woody species were the most stable genes in
all samples studied. Then, these genes are proposed as
reference genes to be used in qPCR assays in table
grape berries at different developmental stages and
physiological conditions.

Methods

Plant material

Twelve table grape segregants belonging to a ‘Ruby seedless’
x ‘Sultanina’ crossing of contrasting and extreme phenotypes
respect of seed content and berry size plus both parents
were used in the RNA-Seq experiments (Mufioz et al.,
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Figure 3 (See legend on next page.)
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(See figure on previous page.)

Figure 3 qPCR expression values for candidate reference genes in grapevine samples. Two segregants from the Ruby x Sultanina crossing
(112 and 19) in three phenological stages (anthesis, fruit-setting and 6-8 mm berries) treated or not with gibberellic acid (GA3) were used. These
segregants represent extreme phenotypes for berry size. For relative expression the genes were normalized with the lowest expression gene. A,
AIGT (WAIGT); B, T-complex protein 1 subunit beta (WTCPB); C, vacuolar sorting-associated protein 4 (VWSAP4); D, 26S proteasome non-ATPase
regulatory subunit 13 (VWWPRN26S); E, carbon catabolite repressor protein 4 homolog 2 (WCCRP); F, unkown protein function (WUNP2); G, unkown
protein function (WUNP); H, unkown protein function (WUNP3); I, Rab GDP dissociation inhibitor alpha (VWRAB); J, proactivator polypeptide-like 1
(VWPPI); K, acting-depolymerizing factor 2 (WADF2); L, 26S protease regulatory subunit 4 homolog (VwPR26S). Other putative housekeeping genes
reported and used in many works are the following: M, polyubiquitin (VWUBQ10, GenBank acc CB977307); N, plasma membrane intrinsic protein
2B (WPIP2B, GenBank acc EC969993); and O, elongation factor 1-alpha (VWEF1-a, GenBank acc CB977561). Bars in the graphs correspond to
standard error (SE) from three biological samples, assayed in duplicate. Different letters represent significant differences a t P < 0.05 by LSD test.

manuscript in preparation). For RNA-Seq analyses, a
number of whole berries from each condition (for a list
of samples, phenological stages, etc., see Additional file 3:
Table S3) was frozen in liquid nitrogen, homogenized and
their RNA was sequenced after converted to cDNA, obtain-
ing ca. 500 million reads from 47 sequenced samples.

For the qPCR validation of the 19 candidate reference
genes, two genotypes from the same crossing collected
at three phenological stages (anthesis, fruit-setting and
6—-8 mm berries, treated or not with gibberellic acid) were
used. We also included samples of ‘Sultanina’ collected at
more advanced phenological stages (pre-veraison and post-
veraison). The vines, established at La Platina Experimental
Station of the ‘Instituto de Investigaciones Agropecuarias,
located in Santiago, Chile, were maintained under a stand-
ard management program for watering, fertilization, pests

and diseases control and pruning. After harvest, every
sample was immediately frozen in liquid nitrogen and
stored at —80°C until use.

Public data used

The reference grape genome (12X) and the gene annota-
tion were downloaded from the GENOSCOPE database
(http://www.genoscope.cns.fr/externe/ GenomeBrowser/Vitis/).
The reference genome contains a total of 26,346 annotated
transcripts with an average size of 1,137 base pairs.

Identification of candidate reference genes

To build the RNA-Seq data-base, a total of 491 million
reads were generated in a Genome Analyzer II, from
[Mlumina (IGA, Udine, Italy). After the quality trimming,
477 million reads were kept, and 91% of them were located
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in the reference grape genome by TOPHAT [54] program.
The differential expression test on seventy comparisons
was implemented in the edgeR [46] software. Then, using
in-house development scripts, we searched for genes
that were classified as non-differentially expressed, and
presented at least 100 reads in each sample/condition
and a low variation index among conditions. Finally, all
these steps were executed as a bash pipeline (Figure 1).

Derivation of the statistical test for the selection of
reference genes

As a first approximation to identify the reference genes,
it was used as criteria the mean of read counts and the
coefficient of variation (CV = standard deviation/mean)
among the 47 different conditions for each of the 242
non-differentially expressed genes (NDE). The relation-
ship between these two criteria was analyzed by Pearson’s
correlation coefficient () using R 2.15.0 [55]. The CV has
been previously used for this purpose in cereal crops
[49,50]. In order to find those genes having both a high
number of reads and a low variation coefficient among
samples from different phenological stages and conditions,
pseudo data sets were simulated by resampling of the ori-
ginal data. The purpose was that the stability (low CV)
and level of expression (high mean values of read counts)
were due to features of the gene and not to random or
experimental error. The procedure was performed as fol-
lows: for each original gene we calculated the mean and
the CV of the read counts among the different conditions.
Then, a pseudo set of data was simulated representing a
pseudo NDE gene under the 47 conditions. To represent
this gene, 47 read counts were sampled at random from
the original data matrix (247 x 47 observations) and then
both the mean and CV were calculated for this pseudo
NDE gene. Thus, 10,000 pseudo NDE genes were simu-
lated. Then the 10,000 pseudo-values of the mean and CV
were sorted from the lowest to the highest values. The
highest 9,750-th value (percentile: 97.5%) and the lowest

250-th value (percentile: 2.5%) of mean and CV, respec-
tively, were used as thresholds of selection. Finally, only
those genes that had both a mean of read counts above
and a CV below the corresponding thresholds were selec-
ted. This algorithm was programmed using R 2.15.0 [55].

RNA isolation and cDNA synthesis

Total RNA was isolated from 3—4 g of frozen tissue using
the modified hot borate method [56]. The quantity and
quality of the RNA were assessed by measuring the Ajs/250
ratio and by electrophoresis on a 1.2% formaldehyde-agarose
gel. First strands of cDNA were obtained by reverse tran-
scription reactions with 2 ug of total RNA as template, using
MMLV-RT reverse transcriptase (Promega, Madison, W1)
and oligo dT primers according to standard procedures. The
concentration of cDNA was assessed by measuring the ab-
sorbance at 260 nm, finally diluting each ¢cDNA to 50 ng/ul
prior to use in qPCR. Quality and quantity of cDNA was also
determined by using a Bioanalyzer (Agilent Technologies,
Santa Clara, CA), with equivalent results.

Primer design

Gene-specific primers were designed using Primer Premier
5.0 software (Premier Biosoft International, Palo Alto, CA)
and synthesized by Alpha DNA (Montreal, Quebec, Canada).
The nucleotide sequences were obtained from a private
data-base maintained at http://vitisdb.cmm.uchile.cl/. In
addition, three genes encoding a polyubiquitin (UBQ10),
plasma membrane intrinsic protein 2B (PIP2B) and elong-
ation factor 1-alpha (EF-1a) and their respective pairs of
primers were selected from previously published reports
[28] and evaluated as a way of comparison. Accession
numbers, primer sequences, expected size of amplicons
and melting temperature are provided in Table 5.

Quantitative real-time PCR assays (qPCR)
Each transcript abundance was analyzed by real-time
PCR with the LightCycler Real-Time PCR System (Roche
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Diagnostics, Mannheim, Germany), using SYBR Green™ as
a fluorescent dye to measure the amplified DNA products
derived from RNA. Three biological samples in duplicate of
quantitative PCR experiments were performed for each
sample as described in Garcia-Rojas et al. [57]. Briefly,
the amplification reaction was carried out in a total
volume of 20 pl containing 1 pmol of each primer,
5 mM MgCl,, 1 ml LightCycler™ DNA Master SYBR®
Green I (Roche Diagnostics) and 100 ng of each cDNA
analyzed. The thermal cycle conditions were: denaturation
at 95°C for 10 min, followed by 35 three-step cycles of tem-
plate denaturation at 95°C with a 2 s hold, primer annealing
at 60—65°C for 15 s and extension at 72°C for 25 s. Fluores-
cence data was collected after each extension step. Melting
curve analyses were performed and checked for single
peaks, and the amplification product sizes were confirmed
in an agarose gel to ensure the absence of non-specific PCR
products. Fluorescence was analyzed using LightCycler™
Analysis Software (Roche Diagnostics). The crossing point
for each reaction was determined using the Second Deriva-
tive Maximum algorithm and manual baseline adjustment.

Determination of reference gene expression stability
Expression levels of each one of the 19 candidate reference
genes in all samples were determined by assessing the
number of threshold cycles (Ct) needed for the amplifica-
tion related fluorescence to reach a specific threshold level
detection. Ct values were transformed to quantities using a
standard curve which is a requirement for using geNorm.
To manage the large number of calculations generated, we
used a Visual Basic Application (VBA) for Microsoft Excel
that automatically calculates the gene-stability value M for
every control gene in a given set of samples [8].

Statistical analysis for qPCR
Data from qPCR was subjected to statistical analysis of
variance, and means were separated by LSD test at 5% level
of significance using Statgraphics Plus 5 (Manugistics Inc.,
Rockville, MD).

The RNA-Seq data used in this study is available at the
NCBI’s Sequence Read Achieve (http://www.ncbinlm.nih.
gov/sra) with the SRA Study accession number SRX366617.
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