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Abstract

Backgound: High throughput sequencing is beginning to make a transformative impact in the area of viral
evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high
resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The
challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations,
particularly those that exist at low frequencies, from sequencing errors.

Results: We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing
libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant
detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able
to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels
(<0.05%).

Conclusions: Our rare variant detection strategies have important implications beyond viral evolution and can be
applied to any basic and clinical research area that requires the identification of rare mutations.

Keywords: Quasispecies, Viral evolution, DNA mutational analysis, High-throughput sequencing, Diagnostics,
Biomarker, Rare mutations, Sequencing error correction, Overlapping read pairs
Background
Viruses with RNA genomes replicate with extremely
high mutation rates because their RNA polymerases lack
the proofreading ability of DNA polymerases. With a
mutation rate of ~1 error per 10,000 nucleotides copied,
a point mutation is introduced nearly every time a single
RNA virus replicates [1]. Any given viral sample extracted
from a host contains a spectrum of related genotypes,
referred to as a quasispecies, whose ability to rapidly
evolve underlies viral virulence, vaccine resistance and
host-jumping [2]. Understanding the mutational dynamics
of RNA viruses is key to our understanding of viral disease
progression, transmission and the development of antiviral
therapeutics.
Considerable progress has been made recently using

deep sequencing to characterize the mutant spectra in
several human RNA viral pathogens: human immuno-
deficiency virus (HIV) [3-6], hepatitis C virus (HCV)
[7-9] and influenza [10,11]. In particular, deep
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sequencing has been used to identify medically relevant
drug-resistant rare variants that impact anti-retroviral
drug treatment outcomes [11-15]. Many of the earliest
efforts have targeted specific hyper variable genomic
regions using 454 sequencing; more recently published
studies have begun to target more of the genome with
high depths using the greater sequencing output of Illu-
mina technologies [16,17]. Recently, the software tool
for managing deep sequencing data, Segminator II, was
introduced and used to compare performance of Illu-
mina and 454 deep sequencing of influenza [18]. How-
ever, less emphasis was given to evaluating a general
subconsensus base calling procedure and the impact of
PCR amplification was not considered. Two other avail-
able packages that address PCR errors and known
sequencing error modes, AmpliconNoise [19] and
RC454 [20], are designed specifically for 454 pyrose-
quencing data. In a recent Illumina deep sequencing
study of foot-and-mouth disease virus samples, Wright
et al. [21] counted evidence for between 1,434 and
2,622 rare variants present in their samples. Their
approach relied on an estimated error rate from the
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Figure 1 Example of an 82-base overlapping read pair (in red).
Read length is 112 and the insert fragment length is 142. Black lines
denote the double stranded DNA insert fragment, numbers
between the black lines denote positions in the sequence (from 1
to 142).
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sequencer without the use of sequencing controls and
included sequencing each sample twice to correct for
sequencing error, which would present practical pro-
blems for sequencing larger numbers of samples col-
lected from an outbreak. Moreover, recent work has
indicated the presence of non-uniform error rates in
Illumina sequence data in particular, and highlights the
ongoing challenge of correctly separating the true mu-
tant spectra from sequencing related errors [15,22-24].
To date, few investigations have applied high through-

put sequencing on viruses that naturally circulate in ani-
mal hosts. Given the potential for RNA viruses that
circulate in a non-human host reservoir to infect new
host types, including humans [25], it is important to
study viral evolution at the highest resolution for meas-
uring genetic change. Characterizing these viruses pose a
particular challenge since the starting material can be
too small (or rare) to directly sequence without PCR
amplification or growth in cell culture, which can intro-
duce new errors to the measurement process [26]. As a
pilot study for a series of viral evolution studies, three
viral samples collected from naturally infected hosts--two
fox rabies brain tissue samples and one bovine coronavirus
(BCV) nasal sample–were sequenced using Illumina
paired-end read technology at ultra-deep coverage
(> 300,000x raw reads). Two plasmid clones containing
1 kb region of the rabies and BCV genomes served as
error controls in the study. Error rates seen in plasmids
provided a best estimate of the combined PCR and
sequencing error rate for the natural samples [27].
Overlapping paired-end reads, generated using short

sequencing fragment libraries combined with long read
lengths, have been recently used to improve Illumina
paired-end read assemblies in software packages such as
FLASH [28] and PANDAseq [29], in which overlapping
regions of the read pairs serve to extend read lengths
and reduce sequencing errors. Overlapping read pairs
have not been previously applied to mutant spectra pro-
filing to improve the sensitivity of variant detection. We
demonstrate the novel use of mismatch rates in the
overlapping read pairs (ORP) to provide an unbiased as-
sessment of the sequencer-derived quality scores when
selecting a read filtering threshold, as well as to estimate
position-dependent sequencing errors without relying on
a clonal control. Our methods identified a high variation
in error rates between sequencers and indicated the dif-
ficulty of relying on traditional sequencing approaches
for rare variant characterization. Moreover, we demon-
strate that PCR amplification can become the dominant
source of error over the sequencer’s error even when
using a high fidelity polymerase. Among the three nat-
ural viral samples we sequenced, we identified up to
2,133 rare variants within a single sample with an in-
host population frequency as rare as 0.0096%. Given the
majority of the variants we discovered occurred at the
ultra-rare level (< 0.1%), we show that careful error con-
trol and estimation using ORP can reveal a deep and
rich mutant spectrum. Our results demonstrate a prac-
tical sequencing and computational analytic approach to
studying viral evolution with an unprecedented level of
genetic resolution.

Results and discussion
ORPs reduce error rates and provide benchmarks for
quality scores
For all five samples, 3 natural viral and 2 plasmid con-
trols, Illumina paired-end sequencing was carried out
using relatively short sequencing fragment libraries com-
bined with relatively long reads (112 bp) to generate
overlapping read pairs (ORP). The target DNA fragment
in the library preparation was 142 bp. The resulting
paired-end reads had an average overlap of 88 bp. Figure 1
illustrates the typical overlap of two paired-end reads.
Table 1 and Additional file 1: Table S1 summarize the
sequencing output and coverage levels for each read
type – raw, ORP and singleton ends -- for each sample.
The long overlapping regions in the read pairs offered

several important practical benefits to improving the
quality of the reads. First, they served as a mechanism of
error checking, as each read pair came from the same
template and should therefore be perfectly complemen-
tary. Base calls that do not match in the forward and re-
verse strands are automatically identified as sequencing
errors. Second, although the mismatched bases were
excluded from data analysis, they provided an empirical
estimate for single-read sequencing error rates. Third, it
identified “problematic loci” on the genome where large
fractions of the ORPs are mismatched. A high fraction
of ORP mismatches at a particular locus would indicate
that the locus was a site with high probability of errone-
ous nucleotide incorporation and hence suggest that a
more stringent criterion should be considered when
making variant calls at the locus.
The relationship between quality score – Phred like

scores assigned by Illumina sequencers -- and the ORP



Table 1 Sequence coverage for the three natural RNA viral samples and the two plasmid control samples

Rabies Fox1 Rabies Fox2 BCV BCV-Control Rabies-Control

No. bases sequenced 10,905 bp 11,183 bp 13,434 bp 1,012 bp 1,128 bp

Raw/single read coverage 518,930 522,347 356,027 732,294 4,306,793

ORP (Q≥30) coverage 80,546 96,198 79,037 128,943 773,021

Singleton ends coverage 139,599 114,217 69,584 176,087 1,098,167

Mean coverage per base is shown for raw reads (single, unpaired reads), overlapped regions of read pairs and singleton ends portions of the read pairs. Coverage
for overlapping read pairs (ORP Q≥30) are reported in the unit of pairs in this table, to reflect that the two strands in the pair report redundant information on
one insert fragment.
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mismatch frequency is illustrated in Figure 2 for the
BCV control data. The fraction of mismatched read pairs
at each base dramatically decreased with increasing Q-
score. The number of positions in the 1 kb genome
where no mismatches occurred jumped from 4 at Q10
to 828 at Q30 (Figure 2 left panel). The probability of a
mismatched read pair occurring anywhere during the
Illumina paired-end sequencing process was estimated
from the ratio of number of mismatched ORPs over the
total number of ORPs. These average ORP mismatch
rates are shown in Table 2. While mismatches occurred
at the approximate rate of ~7 per 1000 unfiltered base
pairs; with Q30 filtering, the mismatch rate dropped
three orders of magnitude to ~4 per 1 million base pairs
(averaged over 5 samples). Hence the probability of two
sequencing errors occurring at the same read pair is
extremely small.
The Q-score associated with each base-call is derived

based on an aggregate of sequencer metrics and sample
Figure 2 Histogram of ORP mismatch rate (per base) in the BCV cont
populations: raw, unfiltered ORP reads (black), ORP reads with Q≥10, Q≥20
the number of bases where mismatch frequency is zero for the four read p
mismatch frequency is zero (black and blue dots on the left panel overlap)
characteristics measured during each sequencing run.
Q-scores of 10, 20, 30 and 35 correspond to error rates
of 0.1, 0.01, 0.001, 0.0003, respectively. The mean mis-
match rates among the raw, Q10, Q20, Q30 and Q35
ORPs were 6.7×10-3, 8.8×10-4, 1.2×10-4, 4.0×10-6,
2.5×10-7, respectively (Table 2, average of 5 samples), far
lower than what their Illumina Q-scores suggest. How-
ever, when the rabies control plasmid was sequenced a
second time, the resulting ORP mismatch rate profile
was quite different. Though the mismatch rates were
comparable to the first run in the raw, unfiltered ORP
reads, they were significantly higher in the second run
when comparing the same Q thresholds (Table 2). At
Q30, ORP mismatch rates in the first run were two
orders of magnitude lower than the rabies control repeat
run. Given the same model of Next Generation Sequen-
cing instrument (Illumina GA IIx) was used in both
sequencing runs, the most parsimoneous explanation for
the difference in ORP mismatch rates is the difference in
rol sample. Histograms are compiled for four different read
and Q≥30 shown in blue, green and red, respectively. Left plot shows
opulations. Both the raw and Q10 read pools had 4 bases where the
. Both left and right plots have number of bases as the ordinate.



Table 2 Overall mismatch rates in overlapping paired-end reads for raw read pairs, read pairs that have quality scores
Q10, Q≥20, Q≥30 and Q≥35

Sample Raw Q10 (1×10-1) Q20 (1×10-2) Q30 (1×10-3) Q35 (3×10-4)

BCV control 5.55×10-3 7.82×10-4 9.56×10-5 1.94×10-6 4.26×10-8

Rabies control 7.33×10-3 9.64×10-4 1.12×10-4 2.59×10-6 1.31×10-7

BCV 4.91×10-3 7.87×10-4 1.06×10-4 2.55×10-6 1.51×10-7

Fox1 8.92×10-3 1.01×10-3 1.73×10-4 8.82×10-6 6.92×10-7

Fox2 6.69×10-3 8.33×10-4 1.22×10-4 4.16×10-6 2.28×10-7

Average of 5 samples 6.68×10-3 8.75×10-4 1.22×10-4 4.01×10-6 2.49×10-7

Rabies control –repeat run 5.99×10-3 2.90×10-3 1.04×10-3 2.67×10-4 8.00×10-5

The rabies control plasmid was sequenced a second time using a separate protocol at a different service provider and listed here for comparison. Mismatch rates
are ‘per base pair’ so that they can be compared directly across samples and platforms. Phred error rates for the Q scores are shown in the heading.
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the Q-score calibration of the two instruments. This
underscores the utility of using ORP to recover an
empirical sequencing error rate and minimize technical
artifacts introduced by the sequencer.
The trade-off for enhanced accuracy is the reduction

in coverage. Since the two overlapping reads represent
redundant information from the same amplicon, the true
depth of coverage is the number of read pairs instead of
number of single reads. For example, in the BCV control
sample, the Q-score filtering process removes roughly
11%, 22% and 55% of the raw matching ORPs at each
base at Q10, Q20 and Q30, respectively (see Additional
file 1: Figure S1).

ORPs help distinguish PCR error rates from sequencing
error rates
Figure 3 shows the Q-score distributions for all match-
ing ORPs (blue), mismatched ORPs (red) and those
Figure 3 Q-score distributions for all matching (blue), mismatched (re
BCV control sample. Note, the Q-score of 2 is a ‘read segment control ind
as unreliable and unfit for downstream analyses [41]. That Q=2 reads comp
is consistent with the fact that mismatched ORPs result from error during s
matching ORPs that were erroneous (green) in the BCV
control data (representative sample). Matching read
pairs were labeled erroneous when they disagreed with
the consensus nucleotides in the control plasmid. Con-
sistent with Figure 2, the number of mismatched ORPs
decreased with Q-scores while the number of matching
ORPs increased with Q-scores. In contrast, the number
of erroneous matching ORPs was relatively constant
with respect to Q-scores, which suggests that they were
dominated by PCR errors and not sequencing errors.
Furthermore, Figure 3 shows that at Q ≥ 30, the number
of mismatched ORPs (sequencing error) became dramat-
ically lower than the number of erroneous matching
ORP (PCR error). This provided an empirical guideline
for the selection of Q-score threshold, above which PCR
error rate clearly exceeds the sequencing error rate.
The two plasmid clones were sequenced at ultra-deep

coverage to serve as controls in the study. At a given
d) and erroneous matching (green) overlapping read pairs in the
ictor’ in the FASTQ format that tags specific final portion of the read
rised a disproportionally large fraction of mismatched read pairs (red)
equencing.
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locus, any polymorphisms in the ORPs that deviated
from the known consensus nucleotide are taken as
errors introduced either through PCR amplification or
sequencing. (Since only matching ORPs are considered
here, these polymorphisms are erroneous matching read
pairs.) The mean probability of such an error was esti-
mated from the fraction of erroneous calls among all
calls made across the control plasmid, which later served
as the baseline error rate in our variant detection model.
Another useful statistic is the maximum per base-call
error rate – frequency of the erroneous base-call with
the highest frequency in the control plasmid -- which
provided an upper bound on the combined PCR and se-
quencing error that occurred at a single locus. Table 3
summarizes these error rates in the control plasmids at
Q10 and Q30 for ORP and the two single reads that
make up the read pairs. Notably, the maximum per
base-call ORP error at Q10 and Q30 were comparable,
which suggests this error was fairly stable and did not
improve with Q-score. This result paralleled the finding
that the frequency of erroneous matching ORP was rela-
tively constant with Q-scores (Figure 3). Together, they
suggest that the maximum per base-call errors observed
in matching ORPs was likely produced by PCR.
As expected, matching ORPs have reduced error rates

compared to the two single reads that make up each
read pair. At Q10, this reduction is 3 fold in the mean
error rate and one to two orders of magnitude in the
maximum error rate (Table 3). Figure 4 shows the cu-
mulative distribution of per base-call errors in the
matching ORP and single reads thresholded at Q = 10,
20 and 30. The read accuracy improvement of using
ORP over single reads, revealed as a gap between their
respective error profiles, was most prominent at Q10
and diminished with higher Q-score filtering; the advan-
tage at Q30 was small yet still highly significant (two-
sample Kolmogorov-Smirnov test p = 5×10-36 and 2×10-11

for rabies and BCV control, respectively), as any reduction
in error rate can be used to detect viral variants with greater
sensitivity. In our data, error rates in Q30 single reads were
equivalent with Q20 ORP reads. This equivalence, however,
may not be generalizable to other data sets due to variations
in Q-score metrics shown earlier (Table 2).
Table 3 Summary of per base-call error rates in the two contr

Read type Control sample Q10 mean error rate Q10

ORP BCV 1.37×10-4

Rabies 1.43×10-4

Forward reads BCV 4.78×10-4

Rabies 6.13×10-4

Reverse reads BCV 4.95×10-4

Rabies 6.70×10-4

Mean and maximum error rates at Q10 and Q30 are listed for matching ORP as we
Our variant detection model uses a position-dependent
error rate that takes the mismatch rate found at each
base into consideration (Methods). Before applying this
model on the natural samples, we applied it to the con-
trol data and determined that the false positive rates
associated with 3 error rates, 5×10-5, 1×10-4 and 5×10-4

were 2.45%, 0.75% and 0%, respectively (Additional file 1:
Table S2). This suggests that the mean Q30 ORP error
rate of ~5×10-5 estimated from the control data (Table 3)
was not conservative enough to eliminate all false positive
variant calls, possibly due to PCR errors. Based on these
observations, we made variant calls in the three natural
viral samples using both 5×10-5 and a more conservative
error rate of 5×10-4, where the former represented the
mean overall error rate and the latter approximated the
PCR error rate.

Rare variants found at 10-13% of the genomes in the
natural viral samples
Our variant detection model predicted 2133, 1354 and
1596 sub-consensus variants for the BCV, Fox1 and
Fox2 natural viral samples, respectively (Table 4) using
the error rate 5×10-5, and 152, 70 and 88 variants for
BCV, Fox1 and Fox2 at the higher error rate of 5×10-4.
The coverage-adjusted false positive rates for the error
rates 5×10-4 and 5×10-5 are estimated to be 0% and < 2%
(derived from running the model on the plasmid con-
trols, Additional file 1: Table S2). Assuming a conserva-
tive false positive rate of 2%, then between 300 to 400 of
the variants called at 5×10-5 are false positives, leaving a
possibly true viral variant pool of 1724, 1063, 1187
variants for the BCV, Fox1 and Fox2 natural viral sam-
ples, respectively. These pools are over one order of
magnitude larger than those predicted at the higher
error rate of 5×10-4 and represent point mutations in
10-13% of the genomes.
The distributions of the rare variant frequencies pro-

vide additional insight to the dramatic difference in the
number of variants called at these two error rates.
Figure 5A shows that most of the variants detected at
5×10-5 were far more rare than the least frequent var-
iants detected at 5×10-4. This means, the higher error
rate of 5×10-4 was not sensitive enough to detect the
ol sequences

max error rate Q30 mean error rate Q30 max error rate

5.84×10-4 6.62×10-5 6.21×10-4

3.60×10-4 7.40×10-5 3.60×10-4

2.58×10-2 8.74×10-5 6.05×10-4

1.11×10-2 9.76×10-5 7.33×10-4

9.32×10-3 9.44×10-5 5.88×10-4

5.00×10-3 1.06×10-4 1.48×10-3

ll as the forward and reverse reads that make up the read pairs.



Figure 4 Cumulative distributions of error rates in the two control data sets. A. BCV control data. B. Rabies control data. Lines: single reads
from reverse reads. Dotted lines: ORP reads.
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majority of the mutations detected at the lower error
rate of 5×10-5, which existed at frequencies below 0.05%.
Recovering the bulk of these ‘ultra-rare’ viral muta-

tions, however, requires considerable extra effort – either
through reduced error rate or increased coverage. Since
for most viral evolution study designs it may not be
Table 4 Summary of coverage, total number of candidate var
the variant detection model in Q30 ORP for the 3 natural vira

Natural
sample

Mean ORP
coverage

# candidate variant
calls at Q≥30

# variants called
error rate 5×10-

BCV 79,037x 20413 2133

Fox1 80,546x 14472 1354

Fox2 96,198x 20417 1596

The number of candidate variants served as the Bonferroni correction factors in the
error rate 5×10-5 is estimated by taking 2% (coverage adjusted false positive rate d
candidate variants. The false discovery rate (FDR) is the proportion of false discover
and 2133, i.e.19%. FDR at 5×10-4 is 0% for all samples since the estimated false pos
practical or necessary to sequence viral samples at the
coverage level used in this paper, we estimated the theor-
etical coverage required to achieve specific variant detec-
tion sensitivity under three error rates: 5×10-5, 1×10-4, and
5×10-4. Predictions are based on a binomial error model
with a fixed Bonferroni correction factor (assuming
iants (all polymorphisms) and number variants called by
l samples

at
5

# variants called at
error rate 5×10-4

FDR for error
rate 5×10-5

FDR for error
rate 5×10-4

152 19% 0%

70 21% 0%

88 26% 0%

variant detection model. The number of false discoveries in each sample at
erived from control plasmids, Additional file 1: Table S2, ) of the number of
ies among variants discovered, e.g. for BCV, it’s the ratio between 2% of 20413
itive rate at this error rate is 0% (Additional file 1: Table S2).



Figure 5 Sensitivity of rare variant detection using ORP. A. Distributions of rare variant frequencies detected in the three natural samples
using two different error rates -- 5×10-5 (solid lines) and 5×10-4 (dotted lines) in the binomial variant detection model. B. Theoretical maximum
variant detection sensitivity at given coverage level for three different error rates. Coverage level is for usable reads that exhibit the error rate
under consideration.
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11,000 candidate variants detected in every case) and
shown in Figure 5B. For instance, at 20,000x coverage
(matching ORP), the maximum sensitivity, or the rarest
variants that can be detected at these three error rates
have population frequencies of 0.05%, 0.065% and 0.145%,
respectively, with the lowest error rate (5×10-5) being the
most sensitive and the highest error rate (5×10-4) being
the least sensitive.
As shown in Figure 4, accuracy of Q30 single reads is

comparable to that of Q20 ORPs. In the scenario of
20,000x ORP coverage, if non-overlapping read pairs had
been generated during sequencing, in theory, the number
of Q30 single reads could potentially double the coverage
to 40,000x. At the error rate of 5×10-5, the maximum sen-
sitivity for variant detection in these Q30 single reads
would be 0.03% instead of 0.05%. The cost of this
increased coverage by generating non-overlapping read
pairs is losing the benefit of context-specific error
estimation and correction afforded by the overlapping
read pairs. The accuracy comparison between Q20 ORPs
and Q30 single reads observed in our data set was only
established because ORPs were used. Any accuracy
equivalence between single reads and ORP has to be care-
fully re-established for the specific sequencer being used.
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Conclusions
In order to effectively use ultra-deep sequencing to study
rare members of a viral population, it is critical to accur-
ately model errors in the sequencing data. We have
developed a protocol to evaluate and control sequencing
error in multiple ways. First, plasmid clones were
sequenced along with viral samples of interest so that
error rates in the PCR and sequencing process could be
empirically derived. Second, taking advantage of the Illu-
mina paired-end technology, overlapping paired-end
reads were generated to improve read accuracy. Third,
mismatch rates in the ORP and error rates in the control
plasmids were examined in association with quality
scores from the sequencers so an optimal Q-score
threshold could be selected for read filtering. Mismatch
rates were also incorporated in the variant detection
model to dynamically adjust error rates based on local
sequencing errors. Applying this model on the plasmid
control data before the natural samples further gave em-
pirical assessment of false positive rates in the data for a
given error rate.
Sequencing errors were directly estimated from mis-

match rates in the ORP. We found that these Q-score
filtered ORPs had sequencing errors far below what their
Q-scores suggested. Using mismatch rates in the ORP,
we demonstrated considerable variability of quality
metrics on two Illumina GA IIx sequencers (Table 2).
This variability may stem from differences in the Q-
score calibration process on the sequencers. Together,
these findings suggest that Q-scores by themselves are
not reliable measures of sequencing accuracy. Mismatch
rates in ORPs, however, provide unbiased estimates on
sequencing error and can be used to select Q-scores for
read filtering.
Among the challenges of correctly separating the true

mutations from sequencing related errors is the presence
of the non-uniform error rates in the sequencing data
[15,20-22]. We have shown that even at Q30, ORP mis-
match rates have a small but significant distribution
(Figure 2). Mismatch rates in the ORPs offer locus-
specific information on error rates and thus can improve
variant call accuracy. Besides the Illumina paired-end
technology, repeated measurements on the same read
fragments can also be generated using other sequencing
platforms such as the PacBio RS from PacificBiosciences
[30]. As with techniques developed in this work, future
new data generation methods that support high-
throughput repeated interrogation of the same insert
fragment and informatics techniques that exploit this
feature can also be used in combination to substantially
reduce the possibility of error.
ORP has potentially greater benefits in the application

of direct sequencing without PCR. Our results show that
with careful quality control, the accuracy of PCR-
amplicon sequencing will be limited by PCR rather than
sequencing errors. While it is often necessary to use RT-
PCR to amplify viral RNA from host material, the expo-
nential nature of the PCR reaction combined with issues
such as primer bias can skew the variant frequencies (e.g.
toward laboratory-derived reference strains) and even gen-
erate incorrect consensus sequences in some regions of
the genome. This highlights the importance of pursuing
alternative, direct sequencing technologies. Until recently,
it has not been practical to sequence viral samples such as
ours without PCR amplification. As the technology of dir-
ect sequencing improves and becomes available, methods
that can reduce sequencing error, such as the use of ORP,
will play a greater role in quality control.
The tradeoff for enhanced accuracy by using ORP and

Q-score filtering is the reduction in coverage. Choosing
to generate overlapping read pairs instead of non-
overlapping read pairs can reduce the effective coverage
by half. Another limitation of ORPs is the effective
shortening of read length, which limits downstream ana-
lysis such as linking multiple sub-consensus mutations
to a single haplotype. Nevertheless, currently the longest
length of non-overlapping read pairs is still too short to
span an entire gene or genome for the purpose of recon-
structing subconsensus haplotypes.
Several alternative ultra-sensitive mutation detection

approaches have been proposed recently for next gener-
ation sequencing [15,31,32], but they require significant
sample preparation and may not be practical beyond
targeting limited regions of a genome. Both Duplex
Sequencing [32] and Safe-SeqS [31] require labeling the
DNA fragment libraries with unique sequence tags (UID)
prior to PCR amplification. Post-sequencing, mutations
that occur in the majority of their uniquely tagged read
families are identified as true variants. These methods suc-
cessfully address the errors introduced during PCR and
sequencing but are subject to the efficiency of the UID as-
signment. A significant fraction of the starting material is
generally lost in the library prep procedures for Illumina
sequencing due to poor adapter ligation efficiency and the
requirement of multiple clean-up cycles. If a sample con-
tains limited starting material for sequencing, as is often
the case in viral or clinical samples, performing adapter
ligation prior to PCR amplification will likely lead to poor
representation of the sample. Furthermore, the additional
UID assignment process adds to the complexity and cost
of sample preparation. Thus while these methods present
a possible approach for the future, their scalability to
whole genome sequencing has not yet been demonstrated.
Flaherty et al. [15] proposed an ultrasensitive mutation
detection method for targeted resequencing using a
position-specific error profile. They derive the position-
specific error profile of a 700 bp region of the NA gene
in H1N1 using a clone of the sample of interest. This
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approach while highly specific, also does not scale to
whole genome analysis. In contrast to these methods,
we suggest that the use of ORPs to derive error profiles
is easily extendible to a genome of any size without the
use of a cloned sample. Comparable fragment length and
read length is the only requirement to generate ORPs.
This study for the first time provides a detailed ana-

lysis of the current standard single read approach versus
overlapping read pairs in the application of mutant spec-
tra profiling of viral samples. The results show there are
compelling benefits to using overlapping read pairs,
which lead us to favor their use whenever feasible. Yet
the results also show that with careful filtering, single
reads provide a viable option when PCR amplification is
used in the sample preparation stage, and enough
experience with the specific sequencer is available to
eliminate the impact of unexpected changes in calibrated
quality scores or other technical configuration changes.
The advantage of ORPs is the dynamic context specific
error estimation and error correction, which significantly
reduces sequencing error and is more robust in the face
of configuration changes across sequencing machines.
Sensitivity of viral variant detection is a function of

error rate and coverage. We provided theoretical max-
imum sensitivity for a given coverage at three different
error rates (Figure 5B). Consistent with these predic-
tions, the majority of the variants detected in our data
occurred at the frequencies of 0.01% to 0.1% for the
error rate of 5×10-5. For our samples, the ‘ultra-rare’
mutants make up a majority of the sub-consensus popu-
lation (Figure 5A). These ultra-rare mutants greatly in-
crease the genetic diversity in the quasispecies and may
play important roles in acute viral infectious diseases.
While it remains an open question as to their ultimate
importance for downstream applications, our results
illustrate the significance of reduced error and increased
coverage in recovering these rare mutations. Reliable
rare variant detection and sequence error reduction is
important for many research areas beyond virology. Our
methods have applications in clinical diagnostics [15,31],
forensics [33] and DNA-based information storage
system [34]. Although high-throughput sequencing tech-
nologies have been limited in some applications due to
their high error rates, repeated template sequencing pre-
sents a powerful approach for increasing the sequencing
fidelity to a level that can generate highly sensitive de-
tection assays.

Methods
This study was approved by the Institutional Animal Care
and Use Committee at Lawrence Livermore National
Laboratory (Protocol Number 2009–207). The rabies posi-
tive brain samples included in this study were not covered
by IACUC 2009–207 as they were taken from residual
archived diagnostic samples offered by the California
Department of Public Health Laboratory, Richmond, CA
and were originally collected and tested to inform public
health decisions on administering anti-rabies vaccination.
The data described in this paper is available via an-

onymous ftp as reads, BAM format alignments, consen-
sus sequence, nucleotide frequency profiles at: ftp://
gdo144.ucllnl.org/pub/orpdat/.

Virus samples
Rabies: Two brain tissue samples obtained from grey
foxes (Urocyon cinereoargenteus) displaying symptoms of
rabies were collected in Humboldt County, CA in March
2009 and December 2009 and tested for rabies virus via
RT-PCR [35] using a modified protocol that amplifies a
portion of the N gene. Approximately 1 gram of tissue
from each brain was sent to LLNL for analysis. RNA was
extracted from the tissue sample using TRIzolW LS
Reagent (Invitrogen, Carlsbad, CA) following the man-
ufacturer’s protocol.
Bovine coronavirus (BCV): Nasal samples were collected

from approximately 100 asymptomatic calves. Samples
were collected using sterile polyester swabs, placed in 2-
3 mL of Eagle’s Minimum Essential Medium (Gibco) and
transported on ice back to the laboratory. Collected nasal
swabs were vortexed in Eagle’s Minimum Essential
Medium supplemented with 1% antibiotic-antimycotic so-
lution (Gibco). The sample suspensions were clarified by
centrifugation at 2000 x g for 30 minutes, filtered through
a 0.22 μm filter and aliquots of about 500–1000 μl were
stored at −80°C. RNA was extracted using TRIzolW LS
Reagent following the manufacturer’s protocol. Samples
containing BCV RNA were identified as described in
Cho et al. [36].

Genome amplification
Approximately 11 kb of the rabies virus genome and 12
kb of the BCV genome were amplified using reverse
transcriptase (RT) PCR. PCR primer candidates were
selected based on the combined results of the multiple
sequence alignment and sequence searches. This tech-
nique is a modified version of the approach outlined in
Slezak et al. [37]. Three sets of degenerate PCR primers
were tested for the amplification of each overlapping re-
gion of the rabies virus and BCV genomes using incre-
ments of 1.5-2.5 kb. For each region, the two primer sets
that performed best were used to amplify cDNA
obtained from the two fox rabies samples and one BCV
sample. All primers used for amplification are given in
Additional file 1.

RT-PCR and cloning
The rabies and BCV genomes were amplified using two-
step RT-PCR using Superscript III RT reverse transcriptase
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kit and Platinum Pfx polymerase (Invitrogen), following
manufacturer's instructions. Reverse transcription was
performed using random hexamers the PCR conditions
consisted of 94°C for 5 min, followed by 35 cycles of 94°C
for 15 s, 54-60°C for 30 s, and 68°C for 2.5 min.
A 1 kb region of the rabies virus and BCV genome

were amplified and each cloned into a plasmid vector.
The inserts were generated by RT-PCR as described
above using rabies and BCV polymerase primers: RVpo-
lyF1 5’ CCCCTGACTCCTTATATCAAAACC, RVpolyR1
5’ GCGAGGTTGACTATTTGGTC, BCVpolyF2 5’ TTT
GCAGACAAATTGGTGGA, and BCVpolyR2 5’GGCGT
AAATTTCATCCTGCT. Poly 3’ A overhangs were added
to the PCR products by incubating the products with Taq
polymerase at 72°C for 10 min. TOPO TA Cloning Kit for
Sequencing (Illumina) was used to clone the PCR pro-
ducts into One ShotW TOP10 cells (Invitrogen) as per
manufacturer’s instructions. Sanger sequencing of the
cloned controls was carried out by ELIM Biopharmaceuti-
cals, Inc., Hayward CA. PCR products were prepared for
Illumina sequencing using the QIAquick PCR Purification
kit (Qiagen).

Illumina sequencing
Sequencing of the three natural samples and the two
control plasmids was carried out by Eureka Genomics
(Hercules, CA) using an Illumina Genome Analyzer IIx.
Each natural viral sample was sequenced in a separate
lane of a single flow cell using paired-end reads on short
genomic fragment inserts using read lengths of 112
bases. The clonal controls were mixed in a single sample
with an approximate concentration ratio of 10:1 (rabies:
BCV) and sequenced on a separate lane. Since the PCR
primers could potentially introduce false mutations into
the amplicon pool due to non-specific binding, primer
regions were masked out for the downstream analysis.
Table 1 summarizes the output generated in the sequen-
cing runs.
To compare error rates between different sequencers,

rabies control plasmid was sequenced a second time at
Elim Biopharm (Hayward, CA) using Illumina Genome
Analyzer IIx. A shorter fragment length was chosen with
more complete overlap of the read pairs. The same
amplicon pool was used for both sequencing runs.

Read mapping to reference
The open source software SHRiMP2 was used for read
mapping. The tool was chosen for its high read mapping
sensitivity [38] and its ability to map as many reads as
possible in the face of individual errors within each
read [39].
A consensus sequence was generated for each sample

following an iterative comparative assembly procedure
suggested by Willerth et al. [16]. In this approach, an
initial reference sequence was chosen, reads were mapped
to the reference, then a new consensus sequence was gen-
erated and the reads were mapped to the new consensus
again. The procedure continued until the consensus
converged on a single sequence.
All rabies reads were initially mapped to GenBank

rabies reference sequence GI:260063801. This reference
sequence was used as the common coordinate system
for comparing samples and identifying coding frames.
Similarly, GenBank bovine coronavirus GI:15081544 was
used as the reference sequence for the BCV samples.
Based on a later observation that our sequenced rabies

virus genome differed by approximately 9% relative to
the pre-selected reference fox rabies genome, we
checked to see if observed error rate (defined below)
would increase by introducing random mutations at 9%
of the plasmid control reference sequences generated
from Sanger sequencing. Increased divergence between
the sample and the randomly mutated reference sequence
could confound the read mapping program and introduce
additional alignment errors, however, no noticeable
increase in error rates were observed, suggesting that the
read mapping parameters were able to tolerate this rate of
divergence.

Estimation of error rate from control plasmids
The two plasmid controls were used to empirically model
combined PCR and sequencing errors as well as to evalu-
ate our algorithm for making genetic variant calls. The
clone control samples were amplified using the same PCR
amplification protocol as was used for sequencing natural
samples. A control reference sequence was generated
from a separate Sanger sequencing run. Any polymorph-
isms that deviated from the consensus sequence were
taken to be examples of error introduced either through
PCR amplification or sequencing.
At every base, any nucleotide called by a read is

referred to as a “candidate base call”. Error rates were
calculated as a ratio between the total number of candi-
date base calls differing from the consensus nucleotides
summed across the genome and the total number of base
calls made across the genome.

Quality control of the sequencing data
The following rules were implemented to maximize the
quality of the reads. Quality scores (Q-score) from the
sequencer were used to compile nucleotide frequency
distribution for every base sequenced. These nucleotide
frequency distributions were generated at four quality
thresholds for comparative analyses: raw (all reads),
Q≥10, Q≥20 and Q≥30. At a given base, a read covering
the base contributes to a candidate base call only when
the minimum Q-score over an 11-nucleotide window
(±5bp) centered on the query base surpasses the quality-
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score threshold being considered (e.g. the Q30 nucleo-
tide frequency profile). In addition to Q-score filtering, a
misalignment filter required that the 11-nt window con-
tained no indels and that the query position must be at
least five bases away from the end of the read to avoid
misalignment for single reads. To avoid the potential of
higher error rates at the 3-prime ends of single reads,
only the first 80 bases were used in single read analyses.
Furthermore, when calculating error rates and making
variant calls, only those bases where greater than 10% of
the reads that survive the quality filters are considered for
analysis at that quality score. This is to avoid inclusion of
non-representative features for select bases in the genome.

Sequencing error analysis
At every base, all overlapping read pairs were separated
into two categories: matching and non-matching base
pairs. Matching base pairs have two complementary
nucleotides and non-matching base pairs have two in-
congruent nucleotides. Mismatched read pairs were only
used to calculate mismatch rates and examine the rela-
tionship between mismatch rates and quality scores.
Other than that, mismatched read pairs were excluded
from all error and variant analyses.
Mismatch rates were calculated two ways, ‘per pos-

ition’ and ‘per base pair’. Per-position mismatch rate is
the fraction of overlapping read pairs that are mis-
matched at any given location in the genome. Per base
pair mismatch rate is the total number of mismatched
read pairs summed across all bases in the genome
divided by the total number of read pairs.
To generate quality score distributions for the match-

ing and mismatched read pairs, Q-scores for every base
pair were compiled as follows. For a matching base pair,
the average quality score was used. For a non-matching
base pair, the minimum quality score was used. The
resulting Q-score distributions were compared and used
to generate Q-score receiver-operator characteristic (ROC)
and ‘false discovery rate’ curves.
Sequencing errors can occur in two forms in overlap-

ping read pairs. Non-complementarity between the for-
ward and reverse strands at a given base indicates that at
least one of the two nucleotides is erroneously incorpo-
rated. This type of error is straightforward to exclude --
all non-matching read pairs are excluded from analysis
except in the analyses for quality control. A second,
more rare but ‘hidden’ form of error is where two com-
plementary errors occur on both the forward and the
reverse strands such that the resulting read pair remains
complementary.

Making variant calls
Variant calls were made based on the binomial error
model used by Eriksson et al. [40], with modifications to
address the non-uniformity in sequencing error rate
measured with ORP mismatch rates. Specifically, the
probability of observing x or more mutations in N
matching read pairs covering the base is given by the
survival function of the binomial distribution B (N, p)

PP X ≥ xð Þ ¼
XN
k¼x

N
k

� �
pk 1� pð ÞN�k

The error rate, p, is the combined PCR and sequencing
error, ε, adjusted by a function of the ORP mismatch rate,
δ, at the base in question.
The read-pair mismatch rate, δ, is the position-

dependent rate at which a nucleotide is mis-incorporated
into a single strand. For simplicity, we modeled the prob-
ability where two complementary nucleotides are mis-
incorporated simultaneously on forward and reverse
strands at the same base as δ2. We used the maximum of
the clonal control derived error and the square of the
ORP mismatch rate at a particular base as the adjusted
position-dependent error rate for binomial error model

p ¼ max ε; δ2
� �

P-value = 0.01 with Bonferroni correction was used as
the significance threshold for each hypothesis test.
Scripts for the variant detection model were written in

Python and R and are available upon request.

Additional file

Additional file 1: Figure S1, Table S1, Table S2, Table S3, Table S4.
Figure S1 is on the effect of quality filtering on coverage. Table S1
summarizes the sequencing output. Table S2 lists the false positive rates
among ORP reads after applying the variant detection model to the
control sequences at their coverage level and two other hypothetical
coverage levels. Table S3 and table S4 list the primers used to amplify
regions of the BCV and rabies genomes, respectively. Additional
discussion on the relative contribution of sequencing and PCR error rates
is also included.
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