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Abstract

Background: The large-scale sequencing of 5’ cap enriched cDNA promises to reveal the diversity of transcription
initiation across entire genomes. The process of transcription is noisy, and there is often no single, exact start site.
This creates the need for a fast and simple method of identifying transcription start peaks based on this type of
data. Due to both biological and technical noise, many of the peaks seen are not real transcription initiation
events. Classification of the observed peaks is an essential filtering step in the discovery of genuine initiation
locations.

Results: We develop a two-stage approach consisting of a fast and simple algorithm based on a sliding window
with Poisson null distribution for detecting the genomic locations of peaks, followed by a linear support vector
machine classifier to distinguish between peaks which represent the initiation of transcription and peaks that do
not. Comparison of classification performance to the best existing method based on whole genome segmentation
showed comparable precision and improved recall. Internal features, which are intrinsic to the data and require no
further experiments, had high precision and recall rates. Addition of pooled external data or matched RNA
sequencing data resulted in gains of recall with equivalent precision.

Conclusions: The Poisson sliding window model is an effective and fast way of taking the peak neighbourhood
into account, and finding statistically significant peaks over a range of transcript expression values. It is orders of
magnitude faster than doing whole genome segmentation. The support vector classification scheme has better
precision and recall than existing methods. Integrating additional datasets is shown to provide minor gains in
recall, in comparison to using only the cap-sequencing data.

Background
The locations of transcription start sites (TSSs) in the gen-
ome are of biological importance. Transcription factor
binding sites (TFBS) are generally located within close
proximity to annotated TSSs and are thought to regulate
the packing of nucleosomes [1]. There is rarely only
a single TSS for a particular transcript [2]. We refer to
clusters of TSS for a single transcript as TSS regions.
Nucleosome positioning determines the accessibility of the
transcription start region to RNA Pol II. Knowing the
locations of the TSS regions reduces the genomic regions
in which to search for regulatory motifs and generate

hypotheses about the cause of changes in gene expression.
For example, the Prkd2 promoter contains a Gabp binding
site. When there is a loss of Gabp, Prkd2 expression is
much reduced, and can lead to the development of chronic
myelogenous leukemia [3]. Correct usage of alternative
TSSs is also important for healthy development of the
nervous system [4]. This highlights the importance of
transcription start detection to human health.
Cap-analysis gene expression sequencing (CAGE-seq) is

a high throughput sequencing technology that provides
millions of short reads per biological sample, representing
the variety of transcription initiation and recapping
locations in a cell type [5]. Briefly, the RNA is reverse

* Correspondence: jean.yang@sydney.edu.au
School of Mathematics and Statistics, University of Sydney, NSW, Australia

Strbenac et al. BMC Genomics 2013, 14(Suppl 5):S9
http://www.biomedcentral.com/1471-2164/14/S5/S9

© 2013 Strbenac et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:jean.yang@sydney.edu.au
http://creativecommons.org/licenses/by/2.0


transcribed into a single strand of cDNA. Biotin is added
onto both ends of the newly synthesised molecule. Only
the 5’ end biotin label is captured with streptavidin on
magnetic beads. The single stranded cDNA is then
released and sequenced. Due to its cost, CAGE-seq has
been mostly performed by the FANTOM consortium, one
of whom invented the technique [6,7]. CAGE-seq is, how-
ever, becoming more widely used [8].
The CAGE reads typically represent the first thirty bases

next to the 5’ cap site, which is bound to the first RNA
base of a transcript. The sequence of the read is mapped
to a reference genome, to determine its location. Because
CAGE reads are not supposed to be spliced, any general-
purpose short-read mapping algorithm, such as Bowtie
[9], could be used. Once the location is determined, only
the first base is considered in further analyses. Even for
well-characterised transcripts, there is a spread of posi-
tions which have first base signals, and need to be grouped
into units of peaks.
One caveat of CAGE-seq recently discovered is that it

also enriches for recapped RNA, which means that regions
are detected where there is no transcription initiation
[10,11]. The startling overlap between CAGE reads in
exons and small RNA sequencing datasets suggested
cleaving and recapping throughout many RNA molecules
was occurring. Also, some CAGE reads started less than
20 bases from exon boundaries and mapped across them.
In addition, a protein has been discovered that cleaves and
recaps RNA in the cytoplasm [12]. This established the
functional mechanism causing recapping, and provides
support to the earlier interpretation of the overlap of small
RNA and CAGE-seq datasets.
To date, a small number of methods are available to

analyse CAGE-seq data. The general workflow consists of
mapping the reads, creating positional histograms of read
start position counts, finding statistical differences in
read density along a sequence (peaks), and determining
whether the identified peaks are TSS or not (Figure 1).
With the exception of a single method [13], peak classifi-
cation is always ignored [2,6,14-16].
CAGE-seq analysis is currently in its infancy, and algo-

rithms proposed previously do not provide results that
are required by biologists. Our two-stage approach pro-
vides a solution to both critical steps of analysis. Unlike
previous methods, the peak finding algorithm is fast and
provides visually intuitive peaks. Our SVM-based classifi-
cation gives high precision and recall values, and com-
pared to both Segway and the ENCODE HMM method,
is currently the best performing classifier for CAGE-seq
data. Investigation of the benefits of integrating external
data sources into the classification allows us to make
informed recommendations. Pooled external data from
a public database is simple to obtain at no cost, but is
not representative of the cells studied by CAGE-seq.

Generating matched RNA-seq data is time and money
consuming, but is specific to the cell type under study.
Pooled external data was just as beneficial as integrating
matched RNA-seq data, suggesting that the extra effort
of RNA-seq provides no significant benefit.

Previous approaches
Various existing methods are available for the task of call-
ing peaks. The first method for calling peaks in CAGE-seq
data groups reads into clusters if they overlap by at least
one base [14]. This is likely to join positions that are thou-
sands of bases away for highly expressed transcripts. It
also lacks any measure of statistical significance. A more
recent approach using the Maximal Scoring Subsequences
algorithm [2], implemented in the software package
Paraclu, relies on exhaustively using all possible values of a
penalty parameter that is used to define the breakpoints of
peaks. The sheer number of results it returns, many of
which overlap multiple genes, means it requires manual
post-processing to arrive at a sensible number of peaks,
which have biologically meaningful widths. A third
approach is based on looking for adjoining positions with
CAGE reads that have constant relative expression across
multiple samples [15]. However, the recapping signal near
TSS peaks also has constant relative expression at nearby
positions, and this algorithm often generates peaks that
are too wide to be biologically meaningful [P. Balwierz,
pers. comm.].
The results of the peak calling algorithms above depend

on read density, and do not classify peaks as originating
from TSS or otherwise. The only algorithm specifically
designed to classify CAGE peaks is based on modelling
k-mer frequencies surrounding the peaks using an unsu-
pervised hidden Markov model [13], herein called the
ENCODE HMM method. The k-mers used in training are
weighted proportionally to the number of reads in a peak.
In other words, the algorithm biases towards learning the
features of CAGE peaks with high read counts, and against
peaks for lowly expressed genes. Strangely, no validation of
results from the classifier is performed in the original
article, and the results were used as if they were all correct.
The authors also did not consider integrating external data
in their model, which could potentially improve the
algorithm performance. The simplest approach that avoids
peak classification (and peak finding) altogether is to make
small counting windows around annotated TSS [16],
before performing an analysis of the amount of signal. The
drawback is that novel transcription starts, and even novel
genes, are ignored.

Methods
Datasets and preprocessing
Peak finding was performed on publically available CAGE-
seq data. Features used for feature selection and classifier
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development were also obtained online. Classification
results of two existing methods were obtained online.
ENCODE project repository
CAGE data was obtained for six cell lines (GM12878, H1-
hESC, K562, HeLa-S3, HepG2, and HUVEC - the CAGE
cell lines) by downloading the mapped BAM files from the
ENCODE data repository [17] on the UCSC Genome
Browser website. Preprocessing details are found else-
where [13]. The unique Submission IDs are 3946, 2380,
2359, 2363, 2381, and 2376.
Unmapped, total RNA-seq data for two of the six CAGE

cell lines (GM12878 and K562) was downloaded. Total

RNA-seq data is not available for the other four cell lines.
The unique Submission IDs are 1502 and 1503. Quality
control of the downloaded files indicated that they are
likely not from a single end sequencing experiment
(Additional file 1). The dip in quality before the middle of
the horizontal axis and the fact that it was technically
impossible to generate 152 base reads in 2009, suggests
two paired end read files were merged into a single text
file. Data cleaning involved splitting the reads down the
middle, recreating the read IDs with correct pairing infor-
mation, and writing two separate files of reads. Raw reads
were mapped to the human genome assembly hg19 with

Figure 1 Key steps in the bioinformatic workflow for analysing CAGE sequencing data. The reads from the sequencer are aligned to the
genome. Only the first position of each read is used, and the positions are clustered into peaks. Lastly, a classification algorithm needs to be
used to label the peaks as being from transcription initiation or not.
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STAR version 2.3.1c [18]. Non-default options set were
–outFilterMultimapNmax 1 –outFilterMismatchNmax 3
–clip3pNbases 40 –alignIntronMax 100000. Only uniquely
mapping reads and no more than 3 mismatches to the
reference sequence were allowed. 40 bases from the ends
of each pair of reads were ignored. No splice junctions
spanning more than 100000 bases were allowed.
Pooled measurements of transcription factor binding

from 95 cell types of an unspecified number of transcrip-
tion factors stored in the table wgEncodeRegTfbsCluster-
edV2 were downloaded. Pooled DNAse I hypersensitivity
data using 74 cell lines was obtained from the table named
wgEncodeRegDnaseClustered. H3K4me3 data was not
integrated by ENCODE, so seven standardised signal files
were downloaded, with Submission IDs 2806, 2815, 2846,
2878, 2890, 2909, and 2921. Four of the cell lines are
CAGE cell lines.
The peaks classified as TSS by the ENCODE HMM

were downloaded with Submission IDs 5610 and 5147.
Five of the cell lines have the same submission identifier,
although the classification results were all confirmed to be
sample-specific.
UCSC table browser
The phyloP46wayPlacental track of conservation between
46 mammalian genomes was downloaded. Scores indicate
the rate of evolution. Higher scores represent bases that
are evolving faster and less conserved than the null
hypothesis of neutral evolution.
FTP directories
Segway segmentations of the CAGE cell lines [19] were
obtained from an URL provided to us by the authors of
Segway (http://ftp.ebi.ac.uk/pub/databases/ensembl/
encode/awgHub/byDataType/segmentations/jan2011/).
GENCODE genes
The file gencode.v15.annotation.gtf.gz containing the latest
transcript annotation of the human genome, version 15,
was downloaded from the GENCODE data portal [20].

Peak finding
For a method to work generally for both high and low
peaks, the null distribution of the statistical test should be
different for each candidate region. Our method is similar
in spirit to the popular ChIP-seq peak finding method
MACS [21], but tailored to the particular characteristics of
CAGE-seq data. CAGE reads with mapping quality of less
than 20 are discarded. The definition of short read map-
ping quality is described elsewhere [22]. Only the first
position of a CAGE read is used in the analyses due to the
fact that it is potentially representative of the site where
transcription started. A candidate window of width w is
moved along each strand of each chromosome in incre-
ments of w/2. Based on biological intuition about the
range of widths of peaks overlapping known transcription
starts, w = 50 is used. Also, flanks on either side of the

candidate window are made. The width of both of these
windows was chosen to be 200. For each candidate
window, and its two flanking windows, counts of CAGE
read starts are made. Any candidate window with less
than 10 reads is immediately discarded. The counts in the
flanks are scaled for their window sizes relative to the can-
didate window; in this case, dividing by 4, and rounded to
the nearest integer. The counts are assumed to be Poisson
distributed, and the probability of observing a count as
high, or higher than the candidate region is calculated
twice, with λ equal to one of the scaled flank counts each
time. If in either statistical test the probability is below
10−20, then the candidate window is added to a list of peak
windows. The ends of peak windows are trimmed for
outermost, contiguous positions that contain zero counts.
Finally, any peak windows separated by less than 30 base
pairs are merged into a single peak.

Feature construction
In total, eight features were constructed, as described
below.
Kurtosis
Pearson’s kurtosis, based on the fourth standardised
moment, is used. This feature is included to examine if
any differences in peak shape would be discriminatory.
Read density
The number of CAGE reads inside the boundaries of a
peak, divided by the width of a peak.
Mammalian conservation
Considered for its potential correlation with regulatory
regions, such as promoters, scores inside the peaks were
used. For each peak, the single base conservation values
were averaged. A small fraction of peaks did not overlap
with any bases with conservation scores, because the
genomic sequence was not able to be multiply aligned to
the other genomes. For these peaks, we used an imputed
value equal to the minimum value of peaks that had
conservation scores.
TFBS
Often enriched near locations where transcription starts.
For each peak, the maximum score for each feature in a
window extending 100 base pairs from the peak ends was
assigned to the peak. The measured maximum is used so
as to be permissive, rather than exclude cell type specific
signals.
DNAse I hypersensitivity
Considered as TSSs typically occur in open chromatin.
Similar to TFBS, the maximum count within 100 base
pairs from selected peaks are determined.
H3K4me3
This histone modification is known to be found on the
nucleosomes surrounding active TSSs. Again, we used the
maximum score within 100 base pairs, as for TFBS, and
DNAse I hypersensitivity.
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4-mers counts
Patterns of DNA bases surrounding the TSSs are also
known to be different to other regions in the genome [23].
A 500 base pair window was created upstream and
another downstream of the summit of each CAGE peak.
Frequencies of all 4-mers were calculated independently
for the two windows. In the upstream window, there
are 44 = 256 distinct 4-mers, and similarly downstream,
making a total of 512 4-mer features.
RNA-seq difference
The number of RNA-seq reads on either side of the peak
was counted. Since there would be numerous reads
expected downstream of a TSS region and none immedi-
ately upstream, two counts were made. One count is a
100 base wide flanking window immediately upstream of
the 5’ edge of the CAGE peak. The other is the same size,
but downstream of the 3’ edge of the peak. The feature
calculated was P(Y ≤ y) of the Poisson distribution
where λ is equal to the downstream flank count and y is
the count in the upstream flank.
Table 1 provides a summary of all features and their

calculation. PCA was used to determine which of the
calculated features would be included in the classification
analyses. Principal components were calculated and the
first two dimensions visualised. Features that had |ρ| ≥ 0.5
with components that appeared to separate samples by
class labels were retained. Correlation was calculated as
the component loading multiplied by its eigenvalue. This
procedure was done separately for the single features and
the 4-mer multiple feature. The combinatorial number of
4-mer features means that they add a large amount of
total variance without necessarily being informative, which
PC1 will explain. Selected features were standardised to be
between 0 and 1 by dividing by the maximum score for all
peaks, per feature type and per cell line.

Peak classification
Class labelling of peaks was made by the same method
used for Segway [19]; Segway is, to date, the most

comprehensive study of TSS region determination. Unlike
typical classification datasets, where the true class mem-
bership is clear and known in advance, TSS datasets
require the assignment of inferred class labels to peaks.
Briefly, 500 base windows were made upstream and down-
stream of the start position of each GENCODE transcript.
If a CAGE peak overlapped with any of the windows, it
was labelled as a TSS peak. Otherwise, it was assigned to
the non-TSS group.
SVM training was done with a L2-regularised L2-loss

linear SVM and the primal solving option was chosen.
This is because there are as many variables to optimise as
there are features in the primal form, and there are many
more CAGE peaks than peak features. A broad range of
cost values was examined, to understand classification per-
formance at different hardness levels of the SVM margin.
To handle imbalanced class sizes, error weights were
provided for each class. Not adjusting for differences in set
sizes of the smaller TSS and larger non-TSS set would
result in high accuracy for the non-TSS set and low accu-
racy for the TSS set, since the default parameterisation of
SVMs is to maximise the overall number of correct
predictions [24]. For the TSS class, the weight was calcu-
lated as the number of peaks in the non-TSS class divided
by the number of peaks belonging to the TSS class. For the
non-TSS class, the weight was 1.
Performance of the classification was evaluated by preci-

sion and recall. Precision is the percentage of TSS classi-
fied peaks that are labelled as TSS peaks. Recall is the
percentage of labelled TSS peaks that were classified as
TSS peaks. Leave-one-out cross validation (LOOCV) was
used with five cell lines for training and one for testing, in
each round. Precision and recall values were compared to
those of Segway and ENCODE HMM, to determine which
method performs best for TSS region prediction, overall.

Computing environment
All analyses were performed in R [25] version 2.15.3.
Packages from the Bioconductor [26] project were used

Table 1 Number of peaks found by Poisson thresholding of sliding window method.

Name Summarisation Location Type

Kurtosis Directly used Peak Internal

Read Density Directly used Peak Internal

4-mers Counts Count 500 bases upstream and downstream of peak summit Internal

TFBS Maximum Peak and 100 base extension of boundaries External

DNAse I
Hypersensitivity

Maximum Peak and 100 base extension of boundaries External

H3K4me3
Hypersensitivity

Maximum Peak and 100 base extension of boundaries External

Mammalian
Conservation

Average Peak External

RNA-seq Difference Distribution function probability 100 bases flanks adjacent to peak boundaries External

For each feature, the summarisation procedure, location of data points summarised, and the feature categorisation are shown.
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extensively. Mapped data was read into R by using the
Rsamtools package. The package GenomicRanges was
used for overlapping genomic intervals and creating flank-
ing regions. The function oligonucleotideFrequency from
Biostrings was used for calculating all 4-mers based on the
sequence of the hg19 genome found in the package BSge-
nome.Hsapiens.UCSC.hg19. The rtracklayer package was
used for importing ENCODE feature tracks and exporting
coverage and peak region tracks. The CRAN package
“moments” was used to calculate peak kurtosis. SVM
training and prediction were performed with the R inter-
face to LIBLINEAR [27], LiblineaR.

Results
Peak finding
The local Poisson thresholding algorithm discovered tens
of thousands of peaks in each sample (Table 2). About
twice as many peaks were found for the H1-hESC cell line
compared to any other cell line. This is biologically
expected, because stem cells have open chromatin and
transcription of many tissue-specific transcripts occurs,
which are otherwise silenced in differentiated cells [28].
Manual exploration of coverage tracks showed that the
algorithm finds peaks both broad and narrow (Figure 2).
By definition, the algorithm will not find extremely broad
peaks that were rarely observed, some of which are thou-
sands of bases wide. However, based on current biological
knowledge, these peaks are not likely to be real TSS
regions, and were observed to overlap with known long 3’
UTRs.

Feature selection
Feature selection is an important step in any classifica-
tion algorithm, as features not correlated to the class
distinction can adversely affect the prediction perfor-
mance. All peaks from all cell lines were used in this
step, so as to ensure features selected are those which
generalise well. Initial exploration of the association of
single features with classes suggested that some features
would be better discriminators than others (Figure 3).
Higher scores were generally observed for the three
pooled external features and kurtosis, for TSS class

peaks. The three pooled features are known to be posi-
tively correlated with TSS regions. The relationship of
higher kurtosis for the TSS peaks than non-TSS peaks is
expected, as TSS regions are known to be taller and nar-
rower than non-TSS regions [2]. These observations
motivate the use of feature selection.
Single feature selection was done based on standardised

scores, as described in Methods, for all six single features.
The first dimension had good separation, and largely corre-
sponded to the separation between samples of the two
classes. Those with an absolute correlation to PC1 of more
than 0.5 were selected to be in the model. The features
selected were: kurtosis (ρ = −0.53), transcription factor
maximum (ρ = −0.92), DNase I hypersensitivity maxi-
mum (ρ = −0.91), and H3K4me3 maximum (ρ = −0.86).
These are the same features that were observed to be dif-
ferent between classes in the density plots.
In addition to the single features, we also examined

the multiple feature of 4-mer frequency. PCA was used
on standardised counts of the 512 distinct 4-mers. The
first principal component had good separation of the
two classes. There were 168 4-mers that had |r| ≥ 0.5
with PC1, and were selected to be used in classification.
Among the selected features, we can broadly categor-

ise them into internal and external features. Firstly,
internal features have the characteristic of being directly
computable from the mapped CAGE-seq data. Kurtosis
and 4-mer frequencies are the internal features. The
other features are external features. They must either be
obtained from external databases or experimentally
derived. In the next section, we examine classifier per-
formance in a range of different feature scenarios.

Classification evaluation
We used a linear SVM to classify peaks based on the
selected features. Several different cost parameters were
investigated. At each level, LOOCV was performed. In
the first scenario, only internal features were considered.
These are kurtosis and 4-mer counts. Kurtosis and each
4-mer were initially scaled to be in the range [0, 1]. To
combine the kurtosis and 168 different 4-mers so that
they have equal weighting in the classifier, the values of
kurtosis were rescaled to be in the range [0, 168]. Figure
4A shows the precision and recall values for this SVM
across a large range of cost values. Precision and recall
are high for most of the cost parameter values.
In the second scenario, the internal features were

combined with the unmatched external features. Three
external features were selected previously - namely
TFBS, DNAse I hypersensitivity, and H3K4me3. They
are rescaled to each be in the range [0, 2 × 168/3], so
that the contribution of all three external features is the
same as the set of internal features. Figure 4B shows
precision and recall values for this feature set. Precision

Table 2 Summary of features and how they are
calculated.

Cell Line Total Peaks Detected

GM12878 43161

H1-ESC 111945

HeLa-S3 41195

HepG2 59390

HUVEC 40420

K562 35622

For the six ENCODE cell lines used, the total number of peaks found by the
sliding window approach is shown.
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is essentially the same as for the internal feature set,
while a moderate improvement of recall is observed.
Genome browser tracks of peak locations for this sce-
nario are available (Additional File 2).
Finally, the matched RNA-seq dataset was considered,

because it is desirable to determine if integration of a com-
plementary RNA-seq experiment with internal features
can improve peak classification. The RNA-seq feature is
scaled to have equal importance as the internal features by
setting its range to be [0, 2 × 168]. Figure 4C shows preci-
sion and recall values for this feature set. Recall is better,
relative to the internal feature set.
Performance comparisons were made to Segway and

ENCODE HMM, to determine the best currently avail-
able method for TSS determination. The precision and
recall of Segway (Table 3) was calculated for all six cell
lines, using the same definition as in the publication, but
with a current genome annotation. Segway’s precision is
comparable to our method across all feature scenarios.
Recall, however, averages 71 % for Segway, whereas it
averages 82 % for our method when considering cost

parameters ≥ 10−4. Evaluation of the ENCODE HMM
was also performed. The reference labelling was gener-
ated in the same way as for Segway. Precision and recall
results of ENCODE HMM are also presented in Table 3.
As expected from its assumptions, the algorithm has
good recall (mean 0.92) at the expense of precision
(mean 0.27). Our proposed SVM-based method has
much better mean precision than ENCODE HMM.

Discussion
We propose a two-stage approach for the identification of
TSS sites in CAGE-seq data. The first stage involves a
novel algorithm to determine the peaks of CAGE reads
across the genome. This method utilizes a sliding window
approach with peak calling based on a local Poisson thresh-
old that allows us to automatically detect a large number of
visually meaningful peaks. In the second stage, we build a
classification framework to determine which of these peaks
are representative of real transcription initiation. This is
achieved through employing a collection of internal and
external features together in a linear SVM classifier.

Figure 2 Peaks found by the algorithm in six cell lines. CAGE-seq strand-specific read coverage is shown along with tracks that contain
boxes representing the areas that are found to be peaks. A narrow peak of between 1 and 3 bases wide is at the left side of the figure. A wider
peak that varies between 76 bases and 207 bases is located at the right side.
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A good evaluation framework for peak finding methods
in CAGE-seq data is still a challenging task. Although the
peak locations found by the sliding window algorithm
appear to be intuitively correct, there is no objective
quality metric that could be used to fairly compare it to

other peak-finding methods. In other fields, like tran-
scription factor binding site sequencing, many peak find-
ing algorithms don’t provide any measurement of peak
quality [29,30]. Sometimes, a surrogate measure of how
well the algorithm performs is the percentage of peaks

Figure 3 Density plots of single feature scores for all peaks in all cell lines. Red line is for TSS class. Blue line is for non-TSS class. Kurtosis
and read density are internal features. The other four features are external features.

Strbenac et al. BMC Genomics 2013, 14(Suppl 5):S9
http://www.biomedcentral.com/1471-2164/14/S5/S9

Page 8 of 11



which contain the transcription factor’s binding motif
[31-33]. However, it is only possible to calculate this
measure if the transcription factor has a known binding
motif. In addition, it is impossible to assess false nega-
tives, because a provably complete and correct experi-
mental method does not exist. The general field of peak
finding in high throughput sequencing data would bene-
fit greatly if it were possible to generate a truth set to
compare algorithm performance.
Our study shows that improvement by integrating RNA-

seq data isn’t as evident as expected; the classification
model with simple features shows comparable perfor-
mance to the more feature-rich models. We examined
three classes of features here: internal features, external
(non-matched) features and external cell-specific features
(RNA-seq). Internal features performed well, in terms of
both precision and recall. Adding pooled external data for
DNA accessibility, transcription factor site density, and an
epigenetic modification known to be associated with TSS
peaks resulted in a minor improvement in identifying true

TSS peaks. Likewise, adding matched RNA-seq informa-
tion to the internal feature set for two of the cell lines did
not noticeably improve precision, while recall improved.
Even with the myriad of ‘omics data, identification of

TSS regions remains a non-trivial task. The ENCODE
HMM algorithm is dominated by false positives. This is a
common type of analysis bias in most of the ENCODE
consortium’s methods [34]. Currently, the segmentation of
the genome using multiple epigenetic features appears to
be the most sophisticated way to find regions of transcrip-
tion initiation. In the published example using Segway, 31
different sources of data were required [19] and this com-
plexity translates into days of training on a computing
cluster [W. S. Noble, pers. comm.]. In contrast, our pro-
posed method runs in the order of seconds on a desktop
computer, and was shown to have similar precision, but
noticeably better recall. The reduced computational run-
time is a major advantage of our method.
The current wealth of generated CAGE data needs to be

mined for biological insights, from both the ENCODE [13]

Figure 4 Precision and recall for three feature scenarios. Precision and recall are calculated at each cost parameter value based on a LOOCV
scheme. Blue lines are precision. Red lines are recall. Horizontal bars or dots represent the minimum and maximum value of all cell lines. Points
on the line are averages across all cell lines. A. Internal features for six cell lines. B. Internal features and pooled external features for six cell lines.
C. Internal features and matched RNA-seq data for two cell lines.
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and FANTOM [6,7] consortium, and would greatly benefit
from the proposed SVM classification method. Conceiva-
bly, a sample preparation improvement may be developed
in the future that is able to separate the recapped RNA
from genuinely transcribed 5’ ends, and may diminish the
importance of the classification stage of our approach.
However, any newly discovered knowledge relating to the
recapping position can easily be incorporated into our
SVM framework as additional features, enabling more
accurate analysis of the many existing datasets.

Conclusions
A two-stage approach involving a sliding window using a
Poisson-based cut-off together with a SVM classifier is a
simple and effective approach to computationally define
TSS peaks. An evaluation study considering three types
of feature sets (internal, pooled external, and matched
RNA-seq) showed that the precision was comparable to
Segway and recall was consistently better across each of
the three training feature scenarios, even though our
method runs many times faster than Segway. There are
currently no other algorithms that could be applied to
the classification problem with good precision and recall,
and desirable run time.

Additional material

Additional file 1: Plot of raw total RNA-seq data quality scores from
ENCODE. Quality scores drop in the middle of the read, then again at
the end of the read, suggesting that the data is unlikely to have been
generated by a single-end sequencing protocol. The vertical axis is Phred
quality score. A. Cell line GM12878 B. Cell line K562.

Additional file 2: Archive of all peak calls. Archive contains one BED
file for each cell line. BED files can be viewed in any genome browser.
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