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Abstract

Background: microRNAs (miRNAs) are endogenous, noncoding, small RNAs that have essential regulatory functions
in plant growth, development, and stress response processes. However, limited information is available about their
functions in sexual reproduction of flowering plants. Pollen development is an important process in the life cycle of
a flowering plant and is a major factor that affects the yield and quality of crop seeds.

Results: This study aims to identify miRNAs involved in pollen development. Two independent small RNA libraries
were constructed from the flower buds of the male sterile line (Bcajh97-01A) and male fertile line (Bcajh97-01B) of
Brassica campestris ssp. chinensis. The libraries were subjected to high-throughput sequencing by using the lllumina
Solexa system. Eight novel miRNAs on the other arm of known pre-miRNAs, 54 new conserved miRNAs, and 8 novel
miRNA members were identified. Twenty-five pairs of novel miRNA/miRNA* were found. Among all the identified

of miRNAs in pollen development.

sequencing, Degradome analysis

miRNAs, 18 differentially expressed miRNAs with over two-fold change between flower buds of male sterile line
(Bcajh97-01A) and male fertile line (Bcajh97-01B) were identified. qRT-PCR analysis revealed that most of the
differentially expressed miRNAs were preferentially expressed in flower buds of the male fertile line (Bcajh97-01B).
Degradome analysis showed that a total of 15 genes were predicted to be the targets of seven miRNAs.

Conclusions: Our findings provide an overview of potential miRNAs involved in pollen development and
interactions between miRNAs and their corresponding targets, which may provide important clues on the function
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Background

Pollen, as the male gametophyte, participates in sexual
reproduction in angiosperms and influences seed yield
and quality. Pollen development is one of the most fas-
cinating and critical processes that are critical for suc-
cessful reproduction in the life cycle of flowering plants
[1-3]. By employing a variety of resources and novel
techniques, scientists have made significant progress in
pollen research toward a deeper understanding of pollen
development. In 2010, the phytohormone brassinosteroid
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was verified to control male fertility by regulating the ex-
pression of key genes involved in Arabidopsis anther and
pollen development, such as SPL/NZZ, EMSI/EXS, DYT1,
TDF1, AtMYB103, AMS, MSI, and MS2 [4]. Honys and
Twell conducted a genome-wide study on pollen transcrip-
tome in Arabidopsis based on microarray analysis. Over
3500 genes were predicted to be expressed in pollen, out of
which more than 1400 genes were pollen-specific [5]. A
large-scale genetic screen was conducted in Arabidopsis,
and a number of genes were identified to be involved in
pollen exine production, including fatty acid w-hydroxylase
CYP704B1, putative glycosyl transferases At1g27600 and
At1g33430, 4-coumarate-coenzyme A ligase 4CL3, and
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polygalacturonase QUARTET3 [6]. Until now, a series of
genes which were successively renamed Brassica campestris
Male Fertile (BcMF) 2 [7], BcMF3 (8], BcMF4 [9], up to
BcMF21 [10], have been demonstrated to be involved in
pollen development in Brassica campestris. For example,
among these genes, one type was polygalacturonase
gene, which participated in pollen extine or intine
development, such as BcMF6 [11], BcMF2 [7], and
BcMF9 [12]. These previous studies provide important
information for understanding the gene regulatory
networks of pollen development. However, the mecha-
nisms that underlie pollen development remain un-
clear, and further studies must be conducted.

miRNAs are a newly identified class of endogenous
non-coding small RNAs that have become a research
hotspot because of their negative regulatory function in
gene expression at the posttranscriptional level by de-
grading target mRNAs or repressing gene translation.
Numerous studies have previously shown that miRNAs
have important functions in regulating a wide range of
plant developmental processes, including lateral root de-
velopment [13], leaf development and polarity [14],
vegetative phase change [15], flowering time and floral
organ identity [16,17], plant nutrient homeostasis [18],
signal transmission [19], and response to environmental
biotic and abiotic stresses [20,21]. Among miRNAs that
are known to function in a variety of plant development
processes, few miRNAs in pollen tissue have been re-
ported. Wei et al. identified 292 known miRNAs and 75
novel miRNAs in Oryza sativa. A total of 103 out of the
292 known miRNAs were enriched in developing pollen,
and more than half of the 75 novel miRNAs displayed
pollen- or stage-specific expression [22]. With the use of
microarray, Chambers and Shuai detected 26 miRNAs
which showed significant differences in expression be-
tween mature pollen and inflorescence in Arabidopsis.
They confirmed the expression of 22 miRNAs in mature
pollen by using real-time PCR, with most of miRNAs
being expressed in low abundance [23]. Grant-Downton
et al. detected 33 different microRNA families in mature
pollen, and several showed pollen-enriched expression
compared with leaves, such as miR156, miR2939, miR158,
and miR845 [24]. Previous studies demonstrated the exist-
ence of miRNAs in pollen or inflorescence. However,
studies must be conducted to investigate whether miRNAs
participate in the pollen development and to determine
their corresponding functions.

In this study, two small RNA libraries were constructed
from the flower buds of the sterile line Bcajh97-01A
(A line) and the fertile line Bcajh97-01B (B line) plants. A
total of 24 known miRNAs were detected, 54 conserved
miRNAs and 25 pairs of novel miRNA/miRNA* were iden-
tified. Meanwhile, 18 differentially expressed miRNAs were
identified by comparing their expression abundances in the
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two libraries. Results from qRT-PCR agreed with those
from high-throughput sequencing. To search for the target
genes of identified miRNAs, degradome sequencing was
conducted with the inflorescences of the B line plants. A
total of 15 targets were predicted to be cleaved by seven
miRNAs. Our study provides clues to explore miRNA
group involved in pollen development and the interactions
between miRNAs and their targets.

Results

Analysis of small RNA library data sets and the small

RNA profile

To identify miRNAs involved in pollen development in
the male sterile line ‘Bcajh97-01A" and the male fertile
line ‘Bcajh97-01B; two independent small RNA libraries
from the flower buds collected from the two lines were
sequenced by using Illumina Solexa high-throughput se-
quencing technology. The two libraries generated a total
of 6998586 and 6792888 raw reads, respectively (Table 1).
The raw reads of the two libraries were uploaded to
SRA database of NCBI and two accession numbers were
obtained, which were SRX462325 and SRX464860. After
removing the reads because 3ADT was not found,
reads <15 bases, and junk reads, 5098547 and 5309119
sequences were obtained with lengths that range from
15 nt to 30 nt, respectively. After further filtering the
RFam (rRNA, tRNA, snRNA, snoRNA, and other Rfam
RNAs) and Repbase sequences, a total of 4540620 and
4667617 mappable small RNA sequences, respectively,
were obtained (Table 1). The length distributions of
small RNAs were very similar between the two libraries
(Figure 1). In general, the majority of the small RNAs
ranged from 21 nt to 24 nt in size. The 24 nt small
RNAs in total sequence reads were the most dominant,
followed by 21 nt small RNAs (Figure 1).

Identification of known miRNAs

To identify known miRNAs in Brassica campestris, all
mappable small RNA sequences were compared with
the known plant miRNAs in the miRBase database. A
total of 24 small RNAs that have the same sequences
with the known bra-miRNAs in miRBase were identified
(i.e., 24 known Brassica campestris miRNAs were identi-
fied). The numbers of reads of the 24 known miRNAs in
the two small RNA libraries from flower buds of A line and
B line are listed in Additional file 1: Table S2 Among the
24 known miRNAs, bra-miR159a, bra-miR160a-5p, bra-
miR171e, bra-miR1885b, and bra-miR5724 showed very
high expression levels.

Novel miRNA on the other arm of known pre-miRNA
The advent of high-throughput sequencing technology
has given rise to the discovery that a great number of
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Table 1 Analysis of small RNA sequences from the flower buds of A line and B line of Brassica campestris

Category Flower buds of A line Flower buds of B line
Sequences Unique sequences Sequences Unique sequences

Raw reads 6998586 2093851 6792888 2463600

Number of reads removed because 3ADT was not found 507331 / 212884 /

Number of reads removed because of <15 bases 1365432 / 1237678 /

Junk reads 27276 / 33207 /

RFam 541924 56567 611768 76694

Repbase 35231 8193 73970 13031

Mappable sequences 4540620 1696791 4667617 2075669

miRNAs and miRNAs* are simultaneously present on
two arms of pre-miRNA secondary structures. miRNA
and miRNA* are renamed miRNA-3p or miRNA-5p,
which indicates their locations in the 5" arm or 3" arm
of pre-miRNA secondary structures. Through high-
throughput sequencing, eight novel miRNAs on the
other arm of known pre-miRNAs were identified.
miRNA sequences and the corresponding number of
reads in flower buds of the A line and B line are listed
in Table 2.

Identification of new conserved miRNA families and new
miRNA members

To identify conserved miRNAs in Brassica campestris,
all mappable small RNAs were mapped to the Brassica
campestris genome sequences and known plant miRNAs
in miRBase. If the small RNAs can exactly map to Bras-
sica campestris genome sequences and can also match
known plant miRNAs with no more than three mis-
matches, these small RNAs were classified as candidate
conserved miRNAs. Five criteria described in the mate-
rials and methods were mainly used to strictly screen
the candidate conserved miRNAs. As a result, 54 miR-
NAs (27 pairs of miRNAs) that belong to 15 families

I Flower buds of A line
I Flower buds of B line

2000 -

Number of reads (x 1000)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Length of small RNAs

Figure 1 Length distribution of small RNAs in flower buds of A
line and B line libraries of Brassica campestris.

were identified (Additional file 1: Table S3). These 54
miRNAs have not been previously reported as bra-
miRNAs in miRBase and show high sequence similarity
to some of the known plant miRNAs. Most of these
miRNAs were 21 nt long, with only few miRNAs having
lengths of 20, 22, or 23 nt; this characteristic is common
in most plant species. For the bra-miR156 family, eight
members were obtained by using deep sequencing. Two
family members (bra-miR168a and bra-miR168b) of
bra-miR168 were identified. Two pairs of miRNAs
that belong to bra-miR168a, with one pair being bra-
miR168a-1-p5 and bra-miR168a-1-p3, the other pair
being bra-miR168a-2-p5 and bra-miR162a-2-p3, were
identified. The two pairs of bra-miR168a shared the
same mature sequences. However, they were from different
precursors, ie., they came from different loci of the Bras-
sica campestris genome. The two precursor sequences of
bra-miR168a were highly similar with each other. These
two pairs of miRNAs were called sub-members. This type
of sub-member was also observed in the bra-miR395 fam-
ily. Four sub-members (bra-miR395a-1, bra-miR395a-2,
bra-miR395a-3, bra-miR395a-4) were identified for bra-
miR395a. This phenomenon suggests that some highly
similar MIRNA gene might be produced by a replication
event from one origin sequence to another one, which re-
sults in more copies of the miRNA group. Except the
abovementioned three miRNA families, only one miRNA
member was identified for the rest of miRNA family. At the
same time, six new miRNA members that belonged to
three known miRNA families were discovered in the two
small RNA libraries (Additional file 1: Table S4).

Identification of novel miRNAs

To predict novel miRNAs in Brassica campestris, all the
mappable small RNAs were blasted to the Brassica
campestris genome sequence in Brassica database and
plant known miRNAs in miRBase. The small RNAs that
exactly map to the genome sequence but not the plant
known miRNAs were classified as candidate novel miR-
NAs. To increase predictive accuracy, five criteria de-
scribed in the materials and methods were mainly used
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miR_name miR_seq Len Flower buds of A line Flower buds of B line
bra-miR164a-p3 CACGTGCTCCACTCCTCCAAC 21 108 44
bra-miR167b-p3 GATCATGTTCGCAGTTTCACC 21 6,061 3,762
bra-miR171b-p5 AGATATTAGTGCGGTTCAATC 21 53 17
bra-miR171e-p5 TATTGGCCTGGTTCACTCAGA 21 200 1,049
bra-miR172a-p5 GCAGCACCATCAAGATTCACA 21 8 8
bra-miR824-p3 CCTTCTCATCGATGGTCTAGA 21 520 3,882
bra-miR1140-p5 TCCGATTGGCTTTAGGCTGTTG 22 709 1,068
bra-miR5718-p5 TGTTCTGGTTTGATTTTGAAC 21 1,686 1,258

to search for novel miRNAs. Novel miRNAs were dis-
covered in pairs since the miRNA/miRNA* criterion was
used. As a result, 25 pairs of novel miRNAs/miRNA*
that belong to 23 miRNA families were identified in this
study (Table 3). The bra-miRnl had two sub-members
(bra-miRn1-1 and bra-miRn1-2), as well as bra-miRn10
(bra-miRn10-1 and bra-miRn10-2). The lengths of ma-
ture miRNAs were distributed in the range of 21 nt to
24 nt. The MFE of these predicted pre-miRNAs ranged
from -37 kcal/mol to -209.8 kcal/mol. The MFEI ranged
from 0.9 to 2.1, with an average of 1.3, which is consist-
ent with the characteristics of miRNA. Most of these
novel miRNAs were expressed in the flower buds of the
A line and B line, but the expression levels were very
low. bra-miRn22-3p showed obviously high expression
abundance in the flower buds of the A line and B line,
which was considerably higher than expression levels of
other miRNAs. The information about the numbers of
reads and the sequence characteristics of all the identi-
fied miRNAs by using high-throughput sequencing are
summarized in Additional file 2: Table S5. The hairpin
structures for precursors of bra-miRn9 and bra-miRn10-
1 are used as examples in Figure 2.

Expression profiling of differentially expressed miRNAs in
the flower buds of A line and B line

Throughout all the identified conserved and novel miR-
NAs, 18 differentially expressed miRNAs with more than
two-fold relative change between the flower buds of A
line and B line were identified in high-throughput
sequencing (Figure 3). The relative expression level was
calculated based on the normalized number of sequence
reads of these miRNAs in small RNA libraries from
flower buds of A line and B line. Among the 18 differen-
tially expressed miRNAs, 15 miRNAs were up-regulated
in flower buds of the B line. The remaining three
miRNAs (bra-miR391a-p3, bra-miR390a-p5, and bra-
miR168a-p5) showed higher expression levels in the
flower buds of A line than in the B line (Figure 3). For
all 15 miRNAs enriched in flower buds of the B line,
bra-miR824-p3 showed the highest relative expression

level (7.23-fold). For the three miRNAs enriched in
flower buds of the A line, the differential expression of
bra-miR168a-p5 was the most obvious (2.80-fold). qRT-
PCR was conducted to verify the expression profile of
the 18 differentially expressed miRNAs in deep sequen-
cing. The results of qRT-PCR largely agreed with the
deep sequencing results (Figure 3). In qRT-PCR, two
more miRNAs (bra-miR391a-p3 and bra-miR168a-p5)
were found to be up-regulated in the B line, which were
enriched in the A line based on deep sequencing ana-
lysis. bra-miR390a-p5 was also up-regulated in the A
line based on qRT-PCR analysis. In addition, expression
profiles of these 18 miRNAs were presented in terms of
the number of reads in flower buds of the A line and B
line libraries (Figure 4). The number of normalized
reads of bra-miR159a was very high, followed by bra-
miR160a-5p, P-bra-miR319b-p3, and bra-miR168a-p5.
P-bra-miR319b-p3 was predicted to be the 3’ arm
miRNA of bra-miR319b. For all the identified miRNAs
in this study, 5° arm and 3’ arm miRNAs, namely,
miRNA and miRNA*, were both detected, except for
P-bra-miR319b-p3. Therefore, a “P” was added to bra-
miR319b-p3, which denotes “predicted”. The two mem-
bers of bra-miR168 family, namely, bra-miR168a-p3 and
bra-miR168b-p3, were both up-regulated in flower buds
of the B line. bra-miR824-p3 and bra-miR824 were
consistently up-regulated in flower buds of the B line,
which indicates that different members can have similar
expression patterns.

Identification of miRNA target genes in Brassica
campestris by using degradome analysis

Target identification of the miRNAs is important to fur-
ther understand the potential regulatory role and bio-
logical function of a miRNA. In this study, degradome
sequencing was used to search for the target genes of
identified miRNAs in Brassica campestris. A total of 15
targets were predicted to be cleaved by seven miRNAs
(Table 4). The seven miRNAs were bra-miR156, bra-
miR159, bra-miR161, bra-miR172, bra-miR824, bra-
miR1885, and bra-miRn4. bra-miR156 was identified in
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Table 3 Novel miRNAs identified in the A line and B line of Brassica campestris by high-throughput sequencing

miR_name miR_seq LM LP CG% dG MFEI FbA FbB
bra-miRn1-1-5p CTATCGGTCTACTCGGTCAGC 21 153 50 -1315 1.2 19 7
bra-miRn1-1-3p TGACCGAGTAGACCGATAGTC 21 153 50 -1315 12 87 222
bra-miRn1-2-5p CTATCGGTCTACTCGGTCAGC 21 153 47 -152.2 13 19 7
bra-miRn1-2-3p TGACCGAGTAGACCGATAGTC 21 153 47 -152.2 13 87 222
bra-miRn2-5p CAACAGTCTCAGGATGGAAAA 21 134 35 -47.6 1 3 12
bra-miRn2-3p TTTCATCTTAGAGAATGTTGTT 22 134 35 -47.6 1 57 153
bra-miRn3-5p TACAAAGCTGAAGCTAATTATG 22 141 4 -70.2 09 18 56
bra-miRn3-3p TAATCAGCTCCAGCTATGTACA 22 141 41 -70.2 09 145 175
bra-miRn4-5p GAATGATACTTGGATATGATC 21 147 34.7 -80.3 15 14 6
bra-miRn4-3p TTATATCCAAGTATCATTCCT 21 147 34.7 -80.3 15 15 34
bra-miRn5-5p TTCTAAGCTTTACGGGAAACC 21 201 29 -1014 17 10 1"
bra-miRn5-3p TTTCCCGTAAAGCTTAGAACC 21 201 29 -1014 17 12 7
bra-miRn6-5p GTCAATTGGTGATAGTAGTTC 21 84 36.7 -383 1.2 1 4
bra-miRn6-3p TCTACTTTCACCAATTGGCCT 21 84 36.7 -383 12 4 54
bra-miRn7-5p TTTTGCGTTTCAACTCGGTCC 21 139 388 -64 09 73 61
bra-miRn7-3p GCTGAGTTGGAACACAAAATC 21 139 388 -64 09 19 8
bra-miRn8-5p AGAGATGTCTGGCTTGCAACA 21 140 445 -74.3 1.1 1 3
bra-miRn8-3p TTGCAAGCCAGACATTTCCTTT 22 140 44.5 -74.3 1.1 5 9
bra-miRn9-5p TTTGGATTTTGGTCATTGTTG 21 107 321 -50.7 14 0 2
bra-miRn9-3p ACAATGAACGAAATCCAAATC 21 107 321 -50.7 14 4 9
bra-miRn10-1-5p ACAGGTGGTGGAACAAATATGAGT 24 128 31.8 -52.5 13 1 13
bra-miRn10-1-3p TCATATTAGTTCTACCTCCTGCTG 24 128 318 -52.5 13 2 7
bra-miRn10-2-5p ACAGGTGGTGGAACAAATATGAGT 24 130 31.6 -44.4 1 1 13
bra-miRn10-2-3p TCATATTAGTTCTACCTCCTGCTG 24 130 316 -44. 4 1 2 7
bra-miRn11-5p TGAGTCTCTCACCAGTCTTTCAC 23 17 341 -59.3 14 2 2
bra-miRn11-3p GAGAGACTCTGAAAGACTCACC 22 117 34.1 -59.3 14 8 5
bra-miRn12-5p TGTAATTGCGGGGTTCTAAGC 21 204 29.1 -103.6 1.7 7 9
bra-miRn12-3p TTAGAAACCTGCAATTATATA 21 204 29.1 -1036 1.7 3 3
bra-miRn13-5p ACTATGCAATTGTGAACAAAC 21 128 29.5 -56.4 13 2 3
bra-miRn13-3p TTATTCACAACTGCATAATTC 21 128 29.5 -56.4 13 2 0
bra-miRn14-5p GGGAGCCAGGGAAGAGGCAGT 21 165 417 -66 09 0 2
bra-miRn14-3p TGCTTGTTCCCTGTCTCTCTC 21 165 417 -66 09 4 1
bra-miRn15-5p ACCCGTCTCTTAATTTTTAAC 21 161 31.7 -594 1.1 19 32
bra-miRn15-3p TAAAAGTTAAGAGACAAGTTA 21 161 317 -594 1.1 0 1
bra-miRn16-5p ATAAAACGATTACACAGCTCGGTC 24 230 42.1 -209.8 2.1 1 1
bra-miRn16-3p CGAGCTGTGTAATCGTTTTGTTA 23 230 421 -209.8 2.1 1 0
bra-miRn17-5p TCTCGTTCTCTCGTTTCAGCT 21 114 396 -56.6 1 0 3
bra-miRn17-3p CTGAAGCTAGTGAAAGAGAGA 21 114 396 -56.6 1 0 2
bra-miRn18-5p TTGTTGACAAATACTTAGGCTC 22 154 335 -1216 17 3 7
bra-miRn18-3p GAGCCTAAGTATTTGTCAACAATG 24 154 335 -1216 1.7 0 7
bra-miRn19-5p TAAACAACACATATACTTTGC 21 132 37 -89.6 18 0 2
bra-miRn19-3p AAACTATATGTGTTGCTTAGA 21 132 37 -89.6 1.8 1 0
bra-miRn20-5p AAGAACTCGTCTCTTAACTTTTAA 24 177 30.7 -86.7 1.2 1 5
bra-miRn20-3p AAACTAAGAGATGAATTCTTAC 22 177 30.7 -86.7 12 1 1
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Table 3 Novel miRNAs identified in the A line and B line of Brassica campestris by high-throughput sequencing

(Continued)
bra-miRn21-5p NGCGGATATCTTAGGATGAGGT 22 144 28.7 -55.8 13 0 1
bra-miRn21-3p TCATCGTAAGAGATCTGCATT 21 144 28.7 -55.8 13 0 1
bra-miRn22-5p TGAGTTATCATTGGTCTTGTG 21 186 28.1 -94.6 18 0 1
bra-miRn22-3p ACACAGGAACAATACTAACTCATT 24 186 28.1 -94.6 1.8 2664 4123
bra-miRn23-5p CTTTGTCTATCGTTTGGAAAAG 22 101 374 -37 09 25 95
bra-miRn23-3p TTTCCAAATGTAGACAAAGCT 21 101 374 -37 09 0 1

miR_name, miRNA name; miR_seq, miRNA sequence; LM, length of mature miRNA; LP, length of precursor miRNA; dG, minimum free energy; MFEIl, minimum

folding free energy index; FbA, flower buds of A line; FbB, flower buds of B line.

this study and was found to be highly conserved in
plant species. Three targets that encode squamosa
promoter binding protein (SBP) transcription factors
were identified for bra-miR156. bra-miR159 and bra-
miR172 were highly conserved miRNAs. They respect-
ively targeted three and two transcription factors that
belong to MYB domain protein family and AP2-like
factor, respectively. bra-miR161 and bra-miR824 were both
Cruciferae-specific miRNAs. bra-miR161 was identified in
the present deep sequencing analysis and was found to tar-
get two pentatricopeptide repeat (PPR)-containing protein
family genes. bra-miR824 is a known miRNA, which was
predicted to cleave an AGAMOUS-like transcription factor.
bra-miR1885 is a known miRNA that is only reported in
Brassica campestris and might be specific only to Brassica.
bra-miR1885 was predicted to target two genes encoding
disease resistance protein (TIR-NBS-LRR class). bra-miRn4
is a novel miRNA that was predicted to cleave two genes
that encode unknown proteins. Most of the identified tar-
gets are generally homologous to target genes found in
Arabidopsis (Table 4). Unfortunately, for most miRNAs
identified through deep sequencing, including conserved
miRNAs and novel miRNAs, their target genes could not
be detected in the present degradome analysis. In the above
analysis, 15 target genes were identified for seven miRNA
families. Among the 15 targets, nine were transcription fac-
tors. For each miRNA family, one target was chosen and a
t-plot was constructed (Figure 5). In t-plots, the cleavage
site for each miRNA'mRNA alignment is shown. The
t-plots for the remaining eight targets are illustrated in
Additional file 3: Figure S1.

Discussion

Characteristics of conserved and non-conserved miRNAs
in plants

In plants, many miRNAs seems to be universally expressed
among diverse angiosperms, such as miR156, miR159,
miR160, miR162, miR171, miR172 and so on. Among
them, a small number of miRNAs have also been detected
in bryophyte, lycopod, gymnosperm, such as miR156,
miR319 [25]. However, there are a large number of miR-
NAs which are just present in a few species, even in only

one species. For example, miR415, miR416, miR417, and
miR418 have only been detected in Arabidopsis and Oryza
sativa [26,27]. miR1885 and miR5718 have just been identi-
fied in Brassica campestris [28,29]. Considering that some
miRNAs are widespread, while others distribute in limited
plant species, miRNAs are classified into two categories,
‘conserved’ miRNAs and ‘non-conserved’ miRNAs. In pre-
vious reports, the term ‘conserved miRNAs are mainly
used when the miRNAs are present throughout at least one
major ancient clade of land plants, for example angio-
sperms. ‘Non-conserved’ miRNAs are defined as those with
a limited phylogenetic distribution and characterized by pri-
marily being single-copy genes [25]. In present years, with
the development of high-throughput sequencing, a high
proportion of non-conserved miRNAs have been identified
in many species, such as larch [30], Populus euphratica
[31], rice [32], maize [33], and soybean [34]. In our
study, 15 conserved miRNA families, which had not been
previously reported in Brassica campestris but reported in
other plant species, were identified Meanwhile, 25 pairs of
novel miRNA/miRNA* were identified according to strict
miRNA/miRNA* identification criteria. They are likely to
be Brassica campestris-specific miRNAs, of course which
are classified into non-conserved miRNAs.

Previous reports have indicated that non-conserved
miRNAs are often species specific, weakly expressed,
and encoded by single loci [35], while highly conserved
miRNAs are widespread, highly expressed, and most of
them have more than one family member [36].Our re-
sults were just in accord with the previous results. In
our study, the numbers of reads of the 25 pairs of novel
miRNA/miRNA* were extremely low, except for bra-
miRn22-3p. Most of their read numbers were less than
100. However, the read numbers of the conserved miR-
NAs were very high. Most of their read numbers were
more than 1000. bra-miR159 had the highest number of
reads, which was close to 45000. A similar phenomenon
was also observed in Arabidopsis lyrata [35,37]. In addition,
in our study, except for bra-miRnl and bra-miRn10 fam-
ilies, only one member was identified for the rest of 21
novel miRNA families, while most of the conserved miRNA
families have more than two family members. Our results
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Figure 2 Predicted secondary structures of novel miRNAs in
Brassica campestris. (A) bra-miRn9 (B) bra-miRn10-

1.

I Flower buds of A line
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T

Figure 3 Relative expression analysis of miRNAs in the flower
buds of the A line and B line by high-throughput sequencing
and gRT-PCR analysis. Relative expression level was normalized to
the expression level of 5.8SrRNA in gRT-PCR. All gRT-PCR reactions
were prepared in triplicate for each sample. Left indicates the
miRNA relative expression level generated from the high-throughput
sequencing. Right indicates the miRNA relative expression level
obtained by using gRT-PCR analysis.

indicates that compared with conserved miRNAs, most of
the novel miRNAs were encoded by a single locus., which
was consistent with the previous study [35]. In general, all
of the previous studies and our results verify that conserved
and non-conserved miRNAs present nearly opposite char-
acters. As for why they show so different characters, more
research on evolution and functional diversification of
MIRNA genes will be helpful to elucidate it.

Diverse miRNAs are present in pollen and they are
possibly involved in pollen development

Previous studies have demonstrated that many miR-
NAs exist in Arabidopsis mature pollen. In 2009,
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Figure 4 Expression profiles of differentially expressed miRNAs
in flower buds of the A line and B line by high-throughput
sequencing. The Y axis represents the number of reads of miRNAs
detected in small RNA libraries from flower buds of A line (black

bars) and B line (red bars) by using high-throughput sequencing.
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Table 4 Target genes identified by degradome sequencing in Brassica campestris

miRNA Target Target description Homologous Cleavage site Reads Category Conserved in
family gene to Arabidopsis A. thaliana
bra-miR156  Bra032822 Squamosa promoter-binding protein-like 11,  AT1G27360 (SPL11) 1009 1 4 Y
transcription factor
Bra010949 Squamosa promoter-binding protein-like 10,  AT1G27370 (SPL10) 1006 1 4 Y
transcription factor
Bra030041 Squamosa promoter-binding protein-like 10,  AT1G27370 (SPL10) 1030 1 4 Y
transcription factor
bra-miR159  Bra034842 MYB domain protein 65; DNA binding/ AT3G11440 (ATMYB65) 946 6 2 Y
transcription factor
Bra002042 MYB domain protein 65; DNA binding/ AT3G11440 (ATMYB65) 934 6 0 Y
transcription factor
Bra035547 MYB domain protein 120; DNA binding/ AT5G55020 (ATMYB120) 1120 1 4 Y
transcription factor
bra-miR161  Bra027636 PPR repeat-containing protein AT1G64580 241 1 4
Bra028267 PPR repeat-containing protein AT1G12300 982 1 4
bra-miR172  Bra017809 AP2 (APETALA 2)-like factor; transcription ATA4G36920 (AP2) 1192 1 4 Y
factor
Bra011741 AP2 (APETALA 2)-like factor; transcription AT4G36920 (AP2) 1192 1 4 Y
factor
bra-miR824  Bra011509 AGL16 (AGAMOUS-like 16); transcription fctor  AT3G57230 (AGL16) 750 1 4 Y
bra-miR1885 Bra036417 Disease resistance protein (TIR-NBS-LRR class), AT2G14080 192 1 4
putative
Bra038872 Disease resistance protein (TIR-NBS-LRR class), AT5G11250 198 1 4
putative
bra-miRn4  Bra012382 Unknown protein AT2G27670 554 3 3
Bra012383 Unknown protein AT1G23560 1439 3 3

Grant-Downton et al. detected 33 known miRNAs in
Arabidopsis pollen by using 454 sequencing technology
[24]. In the same year, Chambers and Shuai verified
that many miRNAs are expressed in the pollen and in-
florescences of Arabidopsis using miRNA array [23].
Many studies have also been conducted in rice. In
2011, Wei et al. used deep sequencing technology to
analyze the composition and expression patterns of
miRNAs in developing pollen of rice, including uni-
nucleate microspores, bicellular pollen and tricellular
pollen, as well as sporophytic tissues. A total of 292
known miRNAs and 75 novel miRNAs were detected.
Among the 292 known miRNAs, 103 were enriched in
developing pollen and more than half of the novel
miRNAs displayed pollen- or stage-specific expression.
These pollen- or stage-specific miRNAs might function
during pollen development process [22]. In our study,
we identified 24 known miRNAs, 54 conserved miR-
NAs, and 25 pairs of novel miRNA/miRNA* in flower
buds of the A line and B line plants. Among all these miR-
NAs, 18 differentially expressed miRNAs with more than
two-fold relative change between flower buds of A line and
B line were identified. Moreover, most of the 18 differen-
tially expressed miRNAs were up-regulated in flower buds

of B line. We speculate that these miRNAs might be in-
volved in pollen development process. Previous studies and
the present study demonstrate that diverse miRNAs exist
in plant pollen and they might have potential regulatory
roles in pollen development.

In 2009, Grant-Downton et al. demonstrated that several
mainly SRNA pathway genes, including AGO family mem-
bers, DCL1-4, HASTY, SERRATE, HEN1, and RDR family
members, were expressed in unicellular microspores, bicel-
lular pollen, tricellualr pollen, and mature pollen grains in
Arabidopsis by RT-PCR analysis. At the same time, they
succeeded in amplifying the pri-miRNAs, pre-miRNAs, and
mature miRNAs from mature pollen cDNA, which verified
that miRNA synthesis in pollen was going on as usual [38].
Their results further verify that miRNAs are not only
present in pollen, but also may participate in the complex
regulatory network of pollen development.

The application of degradome analysis have massively
accelerated the research on the interactions of miRNAs
and their target genes

Identification of target genes is the first and essential
step to understand the regulatory roles of miRNAs. In
plants, most miRNAs can perfectly or almost perfectly
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bind to their target mRNAs. Thus, bioinformatics pre-
diction is a common approach for predicting miRNA
target genes. In recent years, many computational tools
have been developed for predicting plant miRNA targets,

such as psRNATarget [39], Target-align [40], TAPIR [41],
and PMRD [42]. 5'-modified RACE is frequently used to
demonstrate miRNA targets. This method is easy to op-
erate, and the results are reliable. However, 5'-modified



Jiang et al. BMC Genomics 2014, 15:146
http://www.biomedcentral.com/1471-2164/15/146

RACE is based on the premise that the candidate target
is already predicted and its mRNA sequence is known
for primer design. 5'-modified RACE is not efficient for
identifying a large number of candidate target genes.
Fortunately, in recent years, degradome sequencing ana-
lysis [43], a new method for massively identifying target
genes, is increasingly being developed for such applica-
tions. The application of this new method greatly accel-
erates the detection of miRNA targets.

In recent years, degradome sequencing has been used for
large-scale target identification in many species, such as
Populus euphratica [31], soybean [34], cucumber [44], and
Brassica juncea [45]. In the present study, degradome se-
quencing was performed and finally a large number of can-
didate target genes were detected. In order to confirm the
reliable candidate targets, two criteria described in the ma-
terials and methods were mainly used. Finally, a total of 15
targets were chosen and predicted to be cleaved by seven
miRNA families. Nine of the 15 targets were transcription
factors. They were squamosa promoter binding (SBP) tran-
scription factors (Bra032822, Bra010949, Bra030041), MYB
transcription factors (Bra034842, Bra002042, Bra035547),
AP2-like transcription factors (Bra017809, Bra011741),
AGAMOUS-like transcription factors (Bra011509), which
were targeted by miR156, miR159, miR172, miR824 fam-
ilies, respectively. These target genes have been reported
playing an important role in plant growth and develop-
ment. miR172, which targets AP2-like transcription factors,
has been implicated in the regulation of flowering time and
floral organ identity in maize and Arabidopsis [16,17]. In
2009, Wu et al. indicated that miR156 and miR172 regu-
lated the development transition from juvenile to adult
[46]. In the next year, Xing et al. concluded that fully
fertile Arabidopsis flowers required the action of multiple
miR156/7-targeted SPL genes in concert with SPLS8, other-
wise semi-sterile or fully sterile would emerge [47]. The re-
sults suggested that miR156/7 and their targets, namely
SBP transcription factors, might participate in gametophyte
development. miR159 and its target genes, namely MYB-
like genes, were proved to inhibit growth and promote
programmed cell death in Arabidopsis [48]. In addition to
targeting transcription factors, the remaining 6 target genes
were also shown to be involved in other biological pro-
cesses. For example, miR1885 and its two targets were in-
volved in disease resistance [29]. miR161 and bra-miRn4
both had two candidate target genes and their functions in
plants were unknown yet. In summary, degradome analysis
has greatly accelerated the identification of miRNA targets.
Meanwhile, it speeds up the research on miRNA/target
interactions.

Conclusion
In this study, a large number of miRNAs were identified
in Brassica campestris ssp. chinensis, including 8 novel
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miRNAs on the other arm of known pre-miRNAs, 54
conserved miRNA families, 8 new miRNA members that
belong to 8 known miRNA families, and 25 pairs of
novel miRNA/miRNA*. Meanwhile, by analyzing the se-
quencing reads of miRNAs, we found that there werel8
miRNAs differentially expressed between the flower
buds of A line and B line, and 15 of them were up-
regulated in flower buds of B line. This result was vali-
dated by using qRT-PCR analysis. By using degradome
sequencing, a total of 15 targets were identified for 7
miRNA families, which reveal interaction between miR-
NAs and targets. In a word, the identification of plenty of
miRNAs has greatly enriched the existing miRNA group
in Brassica campestris. More importantly, the present
study might provide valuable clues for exploring miRNA-
mediated regulatory networks during pollen development.

Methods

Plant materials, sample collection, and total RNA
extraction

A genic male sterile system in Chinese cabbage-pak-choi
(Brassica campestris ssp. chinensis, syn. Brassica rapa
ssp. chinensis), named ‘Bcajh97-01A/B" was used in this
study. ‘Bcajh97-01A" is a male sterile line that lacks ma-
ture pollen, and its male sterility is controlled by a pair
of nuclear recessive genes. ‘Bcajh97-01B’ is the fertile
line that generates normal mature pollen and is the
maintainer line of ‘Bcajh97-01A". The ‘Bcajh97-01A/B
sister line system has been developed through continu-
ous backcrossing within the population for several
generations [49]. The progenies of ‘Bcajh97-01A/B’ line
regularly segregate into sterile and fertile types during
reproduction at a ratio of 1:1. The characteristics of male
sterility can be steadily maintained.

All plant materials were grown in the experimental
farm of Zhejiang University. In this study, three kinds of
samples were harvested at the flowering stage from
‘Bajh97-01A/B’ plants, which were the mixture of flower
buds from ‘Bcajh97-01A" and ‘Bcajh97-01B’ and the in-
florescences from ‘Bcajh97-01B’, respectively. Each kind
of sample was collected from 10 different plants and
subsequently mixed, flash frozen in liquid nitrogen, and
stored at -80°C until total RNA isolation. Total RNAs of
the three kinds of samples were extracted by using mir-
Vana kit (Ambion, USA) according to the manufacturer’s
instructions.

Small RNA library construction and sequencing

Small RNA library construction was conducted by using
[lumina TruSeq Small RNA Preparation Kit following
the manufacturer’s instructions (LC Sciences, Hangzhou,
China). The general process is as follows: first, the
total RNA was ligated to RNA 3" and RNA 5" adapters.
Second, reverse transcription followed by PCR was
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performed to create ¢cDNA constructs based on the
small RNAs ligated with 3" and 5" adapters. Third, small
¢DNA fractions that range from 22 nt to 30 nt in length
were isolated by using 6% denaturing polyacrylamide gel
electrophoresis. Fourth, cDNA construct was purified,
and the library was validated.

The purified ¢cDNA library was used for cluster gener-
ation on Illumina’s Cluster Station and subsequently se-
quenced on Ilumina GAIlx (Illumina, Inc., Santa Clara,
CA) following the manufacturer’s instruction on running
the instrument. Raw sequencing reads were obtained by
using related Illumina’s analysis software. The ACGT101-
miR program (version 4.2; LC Sciences) was used for stand-
ard sequencing data analysis.

Identification of conserved and novel miRNAs

After the raw sequence reads were extracted, adapter se-
quences, impurities, and sequences beyond 15 nt to 30
nt were filtered. The remaining sequences that range
from 15 nt to 30 nt in length were used for miRNA
prediction by using the ACGT101-miR program (version
4.2; LC Sciences). First, the sequences were blasted to the
RFam database (RFam: rRNA, tRNA, snRNA, snoRNA,
and other non-coding RNAs), repeat sequences, and
mRNAs. Matched sequences were discarded. The se-
quences were then compared with the Brassica campestris
genome sequences downloaded from the Brassica data-
base (http://brassicadb.org/brad/). The unmatched se-
quences were filtered. Finally, the remaining sequences
were mapped to all known plant miRNAs sequences to
identify the conserved miRNAs in Brassica campestris from
the miRBase database (version 19.0, http://www.mirbase.
org/). Matched sequences with no more than three mis-
matches were considered as candidate conserved miRNAs.
At the same time, the unmatched sequences were reserved
as candidate novel miRNAs. To identify conserved or novel
miRNAs in Brassica campestris, novel and conserved can-
didate miRNAs sequences were blasted against Brassica
campestris genome sequences, and their flanking sequences
in the genome were used to predict their secondary
structures by using the mfold Web server (http://mfold.rna.
albany.edu/?q=mfold/download-mfold) [50]. A potential
miRNA precursor must be a non-coding sequence and
must meet certain criteria. The first and the most
important criterion is the miRNA/miRNA* criterion.
Both a candidate miRNA and its corresponding reverse
sequence, namely, the candidate miRNA* sequence,
must be detected in the present high-throughput se-
quencing. Second, the candidate miRNA and miRNA*
sequences must be found on the stem, and the number of
mismatched bases between them must be less than four
(four continuous mismatches are also not allowed). Third,
within the miRNA/miRNA* duplex, the number of asym-
metric bulges must be one or fewer, and the number of
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bases in the asymmetric bulges must fewer than two.
Fourth, the miRNA and miRNA* should be located in
opposite stem-arms and form a duplex with two nucleotide
3" overhangs [51]. Fifth, the potential miRNA precursor
must have higher negative minimal folding energy
(MFE) and minimal folding energy indexes (MFEI),
with the MFEI > 0.8, to distinguish from other small
RNAs [52]. After the above strict screening, conserved and
novel miRNAs are identified in Brassica campestris.

Degradome library construction, data analysis, and target
identification

A degradome library was constructed from the inflores-
cences of the fertile line (Bcajh97-01B) based on the
method described by German et al. [43] and Addo-Quaye
[53]. Briefly, poly(A)-enriched RNA was ligated to a 5'-
RNA adapter with 3" a EcoP15 I recognition site. Reverse
transcription was performed to generate first-strand cDNA,
followed by PCR amplification and EcoP15 I digestion.
After digestion with EcoP15 I, a PAGE-gel was used to
purify the EcoP15 I-cleaved fragments. The gel-purified
products were ligated to a 3'-double-strand DNA adapter,
followed by PAGE-gel purification to obtain the ligated
products. PCR amplification was performed, and PAGE-gel
was used for the third time to purify the corresponding gel
bands containing the final products. Finally, the purified
c¢DNA library was ready for deep sequencing (LC Sciences,
Hangzhou, China).

The purified cDNA library was first used for cluster
generation on Illumina’s Cluster Station and then se-
quenced on Illumina GAIIx. Raw sequencing reads were
obtained by using Illumina’s Pipeline v1.5 software fol-
lowing sequencing image analysis by Pipeline Firecrest
Module and base-calling by using Pipeline Bustard
Module (LC Sciences, Hangzhou, China). A public soft-
ware package, CleaveLand 3.0, was used for analyzing se-
quencing data [53,54].

By degradome sequencing, a great many genes may be
predicted as potential target genes. In this study, two cri-
teria were mainly used to choose reliable genes as candi-
date targets. First, the cleavage site must be the 9th or
10th nucleotide of the target mRNA in the miRNA/tar-
get binding region. Second, the candidate targets must
be homologous to corresponding A. thaliana targets
[55]. The candidate target genes that meet the above cri-
teria would be identified as targets.

Quantitative real-time PCR

Total RNA was extracted from the flower buds of the
sterile line and the fertile line by using the mirVana kit
(Ambion, USA). According to the procedures provided
by a miRNA cDNA synthesis kit (TaKaRa, Japan), 1 pg
of total RNA was polyadenylated with ATP by poly(A)
polymerase. The poly(A)-tailed total RNA was reverse-


http://brassicadb.org/brad/
http://www.mirbase.org/
http://www.mirbase.org/
http://mfold.rna.albany.edu/?q=mfold/download-mfold
http://mfold.rna.albany.edu/?q=mfold/download-mfold

Jiang et al. BMC Genomics 2014, 15:146
http://www.biomedcentral.com/1471-2164/15/146

transcribed by PrimeScript® RTase by using a universal
adapter primer (containing oligo-dT). qRT-PCR analysis
was carried out by using SYBR® Premix Ex TaqTM II (Per-
fect Real Time) (TaKaRa, Japan) on a Bio-Rad CFX96 ma-
chine. All reactions were performed in triplicate for each
sample, and 5.8S rRNA was used as the internal control
gene. Relative expression levels of miRNAs were quantified
by using the 2°4“* method [56]. The primers used for
qRT-PCR are listed in Additional file 1: Table S1.
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RT-PCR analyses. Table S2. Identification of known miRNAs. Table S3.
Identification of new conserved miRNAs in Brassica campestris. Table S4.
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Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JXJ and JSC designed the study. JXJ performed the experiments, analyzed
the data, and drafted the manuscript. YL and MLL assisted with bioinformatic
analysis and aided in writing the manuscript. ZMM aided in performing the
experiments. All authors carefully checked and approved this version of the
manuscript.

Acknowledgements

This work was supported by the National Program on Key Basic Research
Projects (No. 2012CB113900), the Natural Science Foundation of China
(No. 31071805) and the Key Sci-Technology Project of Zhejiang Province
(No. 2010C12004) and the Breeding project of the Science-Technology
Foundation of Zhejiang provice (Grant No. 2012C12903).

Received: 27 September 2013 Accepted: 7 February 2014
Published: 21 February 2014

References

1. McCormick S: Male gametophyte development. Plant Cell 1993, 5:1265-1275.

2. Goldberg RB, Beals TP, Sanders PM: Anther development: basic principles
and practical applications. Plant Cell 1993, 5:1217-1229.

3. McCormick S: Control of male gametophyte development. Plant Cell 2004,
16(Suppl):S142-S153.

4. YeQ ZhuW, LiL, Zhang S, Yin Y, Ma H, Wang X: Brassinosteroids control
male fertility by regulating the expression of key genes involved in
Arabidopsis anther and pollen development. Proc Natl Acad Sci USA 2010,
107:6100-6105.

5. Honys D, Twell D: Comparative analysis of the Arabidopsis pollen
transcriptome. Plant Physiol 2003, 132:640-652.

6.  Dobritsa AA, Geanconteri A, Shrestha J, Carlson A, Kooyers N, Coerper D,
Urbanczyk-Wochniak E, Bench BJ, Sumner LW, Swanson R, Preuss D: A
large-scale genetic screen in Arabidopsis to identify genes involved in
pollen exine production. Plant Physiol 2011, 157:947-970.

7. Huang L, Cao JS, Zhang AH, Ye YQ, Zhang YC, Liu TT: The
polygalacturonase gene BcMF2 from Brassica campestris is associated
with intine development. J Exp Bot 2009, 60:301-313.

8. LiuL-C Cao JS, Yu X-L, Xiang X, Fei Y-J: Expression of an Antisense BcMF3
affects microsporogenesis and pollen tube growth in arabidopsis. Agri Sci
China 2006, 5:339-345.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34,

Page 12 of 13

Liu LC, Xiang X, Cao JS: [BcMF4 gene, encoding a leucine-rich repeat
protein, plays a role in male fertility in Chinese cabbage-pak-choil.

Yi Chuan 2006, 28:1428-1434.

Jiang J, Yu X, Miao Y, Huang L, Yao L, Cao J: Sequence characterization and
expression pattern of BcMF21, a novel gene related to pollen development
in Brassica campestris ssp. chinensis. Mol Biol Rep 2012, 39:7319-7326.

Zhang Q, Huang L, Liu T, Yu X, Cao J: Functional analysis of a pollen-expressed
polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L.
ssp. chinensis Makino). Plant Cell Rep 2008, 27:1207-1215.

Huang L, Ye Y, Zhang Y, Zhang A, Liu T, Cao J: BcMF9, a novel
polygalacturonase gene, is required for both Brassica campestris intine
and exine formation. Ann Bot 2009, 104:1339-1351.

Guo HS, Xie Q, Fei JF, Chua NH: MicroRNA directs mRNA cleavage of the
transcription factor NAC1 to downregulate auxin signals for arabidopsis
lateral root development. Plant Cell 2005, 17:1376-1386.

Floyd SK, Bowman JL: Gene regulation: ancient microRNA target
sequences in plants. Nature 2004, 428:485-486.

Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS: miRNA
control of vegetative phase change in trees. PLoS Genet 2011, 7:¢1002012.
Aukerman MJ, Sakai H: Regulation of flowering time and floral organ
identity by a MicroRNA and its APETALA2-like target genes. Plant Cell
2003, 15:2730-2741.

Chen X: A microRNA as a translational repressor of APETALA2 in
Arabidopsis flower development. Science 2004, 303:2022-2025.

Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M:
Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol
Chem 2007, 282:16369-16378.

Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction
of plant microRNA targets. Cell 2002, 110:513-520.

Sunkar R, Chinnusamy V, Zhu J, Zhu JK: Small RNAs as big players in plant
abiotic stress responses and nutrient deprivation. Trends Plant Sci 2007,
12:301-309.

Katiyar-Agarwal S, Jin H: Role of small RNAs in host-microbe interactions.
Annu Rev Phytopathol 2010, 48:225-246.

Wei LQ, Yan LF, Wang T: Deep sequencing on genome-wide scale reveals the
unique composition and expression patterns of microRNAs in developing
pollen of Oryza sativa. Genome Biol 2011, 12:R53.

Chambers C, Shuai B: Profiling microRNA expression in Arabidopsis pollen
using microRNA array and real-time PCR. BMC Plant Biol 2009, 9:87.
Grant-Downton R, Le Trionnaire G, Schmid R, Rodriguez-Enriquez J, Hafidh
S, Mehdi S, Twell D, Dickinson H: MicroRNA and tasiRNA diversity in
mature pollen of Arabidopsis thaliana. BVIC Genomics 2009, 10:643.
Axtell MJ, Bowman JL: Evolution of plant microRNAs and their targets.
Trends Plant Sci 2008, 13:343-349.

Wang XJ, Reyes JL, Chua NH, Gaasterland T: Prediction and identification
of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol
2004, 5:R65.

Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAS and their regulatory
roles in plants. Annu Rev Plant Biol 2006, 57:19-53.

Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y:
Identification of conserved and novel microRNAs that are responsive to
heat stress in Brassica rapa. J Exp Bot 2012, 63:1025-1038.

He XF, Fang YY, Feng L, Guo HS: Characterization of conserved and novel
microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R
gene-derived novel miRNA in Brassica. FEBS Lett 2008, 582:2445-2452.

Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L: Genome-wide
identification of microRNAs in larch and stage-specific modulation of 11
conserved microRNAs and their targets during somatic embryogenesis.
Planta 2012, 236:647-657.

Li B, Qin Y, Duan H, Yin W, Xia X: Genome-wide characterization of new
and drought stress responsive microRNAs in Populus euphratica. J Exp
Bot 2011, 62:3765-3779.

Heisel SE, Zhang Y, Allen E, Guo L, Reynolds TL, Yang X, Kovalic D, Roberts
JK: Characterization of unique small RNA populations from rice grain.
PLoS One 2008, 3:e2871.

Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li WX: Cloning and characterization
of maize miRNAs involved in responses to nitrogen deficiency. PLoS One
2012, 7:229669.

Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H: Identification of wild
soybean miRNAs and their target genes responsive to aluminum stress.
BMC Plant Biol 2012, 12:182.


http://www.biomedcentral.com/content/supplementary/1471-2164-15-146-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-146-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-15-146-S3.pdf

Jiang et al. BMC Genomics 2014, 15:146
http://www.biomedcentral.com/1471-2164/15/146

35.

36.

37.

38.

39.

40.

41,

42.

43.

44,

45,

46.

47.

48.

49.

50.

51,

52.

53.

54.

Ma ZR, Coruh C, Axtell MJ: Arabidopsis lyrata Small RNAs: Transient
MIRNA and Small Interfering RNA Loci within the Arabidopsis Genus.
Plant Cell 2010, 22:1090-1103.

Cuperus JT, Fahlgren N, Carrington JC: Evolution and functional
diversification of MIRNA genes. Plant Cell 2011, 23:431-442.

Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: A diverse and evolutionarily fluid
set of microRNAs in Arabidopsis thaliana. Genes Dev 2006, 20:3407-3425.
Grant-Downton R, Hafidh S, Twell D, Dickinson HG: Small RNA pathways
are present and functional in the angiosperm male gametophyte.

Mol Plant 2009, 2:500-512.

Dai X, Zhao PX: psRNATarget: a plant small RNA target analysis server.
Nucleic Acids Res 2011, 39:W155-W159.

Xie F, Zhang B: Target-align: a tool for plant microRNA target
identification. Bioinformatics 2010, 26:3002-3003.

Bonnet E, He Y, Billiau K, Van de Peer Y: TAPIR, a web server for the
prediction of plant microRNA targets, including target mimics.
Bioinformatics 2010, 26:1566—1568.

Zhang Z, Yu J, Li D, Liu F, Zhou X, Wang T, Ling Y, Su Z: PMRD: plant
microRNA database. Nucleic Acids Res 2010, 38:D806-D813.

German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan
V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers
BC, Green PJ: Global identification of microRNA-target RNA pairs by
parallel analysis of RNA ends. Nat Biotechnol 2008, 26:941-946.

Mao W, Li Z, Xia X, Li Y, Yu J: A combined approach of high-throughput

sequencing and degradome analysis reveals tissue specific expression of

microRNAs and their targets in cucumber. PLoS One 2012, 7:e33040.
Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M: Identification of miRNAs
and their targets using high-throughput sequencing and degradome
analysis in cytoplasmic male-sterile and its maintainer fertile lines of
Brassica juncea. BMC Genomics 2013, 14:9.

Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS: The
sequential action of miR156 and miR172 regulates developmental
timing in Arabidopsis. Cell 2009, 138:750-759.

Xing S, Salinas M, Hohmann S, Berndtgen R, Huijser P: miR156-targeted
and nontargeted SBP-box transcription factors act in concert to secure
male fertility in Arabidopsis. Plant Cell 2010, 22:3935-3950.

Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White
RG, Millar AA: The microRNA159-regulated GAMYB-like genes inhibit

growth and promote programmed cell death in Arabidopsis. Plant Physiol

2010, 154:757-771.

Huang L, Cao J, Ye W, Liu T, Jiang L, Ye Y: Transcriptional differences
between the male-sterile mutant bcms and wild-type Brassica
campestris ssp chinensis reveal genes related to pollen development.
Plant Biology 2008, 10:342-355.

Zuker M: Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res 2003, 31:3406-3415.

Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X,
Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC,
Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y,
Weigel D, Zhu JK: Criteria for annotation of plant MicroRNAs. Plant Cell
2008, 20:3186-3190.

Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA: Evidence that miRNAs
are different from other RNAs. Cell Mol Life Sci 2006, 63:246-254.
Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ: Endogenous siRNA and
miRNA targets identified by sequencing of the Arabidopsis degradome.
Curr Biol 2008, 18:758-762.

Addo-Quaye C, Miller W, Axtell MJ: CleaveLand: a pipeline for using
degradome data to find cleaved small RNA targets. Bioinformatics 2009,
25:130-131.

Page 13 of 13

55, Jiang JX, Jiang JJ, Yang YF, Cao JS: Identification of microRNAs potentially

involved in male sterility of Brassica campestris ssp chinensis using microRNA
array and quantitative RT-PCR assays. Cell Mole Biol Lett 2013, 18:416-432.

56.  Livak KJ, Schmittgen TD: Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods
2001, 25:402-408.

doi:10.1186/1471-2164-15-146

Cite this article as: Jiang et al.: Identification of novel and conserved
miRNAs involved in pollen development in Brassica campestris ssp.
chinensis by high-throughput sequencing and degradome analysis. BMC
Genomics 2014 15:146.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

e Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Analysis of small RNA library data sets and the small RNA profile
	Identification of known miRNAs
	Novel miRNA on the other arm of known pre-miRNA
	Identification of new conserved miRNA families and new miRNA members
	Identification of novel miRNAs
	Expression profiling of differentially expressed miRNAs in the flower buds of A line and B line
	Identification of miRNA target genes in Brassica campestris by using degradome analysis

	Discussion
	Characteristics of conserved and non-conserved miRNAs in plants
	Diverse miRNAs are present in pollen and they are possibly involved in pollen development
	The application of degradome analysis have massively accelerated the research on the interactions of miRNAs and their target genes

	Conclusion
	Methods
	Plant materials, sample collection, and total RNA extraction
	Small RNA library construction and sequencing
	Identification of conserved and novel miRNAs
	Degradome library construction, data analysis, and target identification
	Quantitative real-time PCR

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

