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Abstract

Background: Algae are important non-vascular plants that have many research applications, including high species
diversity, biofuel sources, and adsorption of heavy metals and, following processing, are used as ingredients in
health supplements. The increasing availability of next-generation sequencing (NGS) data for algae genomes and
transcriptomes has made the development of an integrated resource for retrieving gene expression data and metabolic
pathway essential for functional analysis and systems biology. In a currently available resource, gene expression profiles
and biological pathways are displayed separately, making it impossible to easily search current databases to identify
the cellular response mechanisms. Therefore, in this work the novel AlgaePath database was developed to retrieve
transcript abundance profiles efficiently under various conditions in numerous metabolic pathways.

Description: AlgaePath is a web-based database that integrates gene information, biological pathways, and NGS
datasets for the green algae Chlamydomonas reinhardtii and Neodesmus sp. UTEX 2219–4. Users can search this
database to identify transcript abundance profiles and pathway information using five query pages (Gene Search,
Pathway Search, Differentially Expressed Genes (DEGs) Search, Gene Group Analysis, and Co-expression Analysis). The
transcript abundance data of 45 and four samples from C. reinhardtii and Neodesmus sp. UTEX 2219–4, respectively,
can be obtained directly on pathway maps. Genes that are differentially expressed between two conditions can be
identified using Folds Search. The Gene Group Analysis page includes a pathway enrichment analysis, and can be used
to easily compare the transcript abundance profiles of functionally related genes on a map. Finally, the Co-expression
Analysis page can be used to search for co-expressed transcripts of a target gene. The results of the searches will
provide a valuable reference for designing further experiments and for elucidating critical mechanisms from
high-throughput data.

Conclusions: AlgaePath is an effective interface that can be used to clarify the transcript response mechanisms
in different metabolic pathways under various conditions. Importantly, AlgaePath can be mined to identify critical
mechanisms based on high-throughput sequencing. To our knowledge, AlgaePath is the most comprehensive
resource for integrating numerous databases and analysis tools in algae. The system can be accessed freely online at
http://algaepath.itps.ncku.edu.tw.
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Background
The global energy crisis poses a major threat to human
survival. Gradual depletion of non-renewable energy
resources has increased energy costs and pollution. To
remedy this situation, renewable energy sources such
as biomass have been developed. Biomass is gathered from
various plants (including crops or peas) and used to gener-
ate bio-alcohol or bio-fuel [1,2]. However, using crops as a
biomass source may crowd out food, especially in poor
regions of the world [3]. Thus, an alternative species with
less land requirement and high oil production needs to be
identified. Algae are highly efficient in oil production, and
are a promising biofuel source [4]. In addition to their
possible use for biofuel, algae have many research applica-
tions [5]. For instance, because of its high species diversity,
algae is an excellent model for evolution studies. The
diversity of algae has been attributed not only to the
evolution force, but also to horizontal gene transfer [6].
Allochthonous genes can increase species diversity and
organism competition [6]. Further, because algae are
capable of absorbing heavy metals, they can be used to
remove pollution in waste water [7-11]. Currently, algae are
the most important non-vascular model plants that are
used for research.c Because of their diverse applications,
numerous studies have investigated the functional gen-
omics of algae. Therefore, with the increasing availability
of algae genome and transcriptome data from next-
generation sequencing, an integrated resource for the
retrieval of gene expression data with metabolic pathways
is essential for functional analysis in algae. Further, un-
derstanding cellular response mechanisms under different
environments is a high priority in systems biology.
Chlamydomonas reinhardtii is a single-celled green algae,

which is distributed worldwide in soil and water. C.
reinhardtii is used mainly as a model organism when
addressing fundamental issues such as photosynthesis,
cellular movement, abiotic response mechanisms, and
regulation of flagellar mechanism. This model organism is
also an important model for non-vascular plant research
and information on the genomics and transcript abundance
of C. reinhardtii is available in public resources. Neodesmus
sp. UTEX 2219–4 is a species of green microalgae, which
was isolated from collection number UTEX 2219 from
the University of Texas at Austin (UTEX) and identified
subsequently as genus Neodesmus [12]. Wang et al. [12]
indicated that oil bodies were accumulated significantly
under nitrogen starvation and osmotic stress in Neodes-
mus sp. UTEX 2219–4. Therefore, this strain was identified
as having a high potential for biofuel applications. This
study analyzed the transcriptome deep sequencing data that
was obtained from four samples under various conditions.
Increasing amounts of next generation sequencing (NGS)

data have become available in recent years and algal
biochemistry and biology have attracted growing interest
for their potential in developing renewable biofuel. In
addition, RNA-seq technology has been used widely to
identify algal cellular physiology and metabolism under
various types of abiotic stress and/or nutrient deficiency
[13-18]. For example, a previous study investigated cellular
response mechanisms by characterizing the C. reinhardtii
transcriptome under nutrient-replete and sulfur-depleted
conditions [16]. Based on Roche 454 and Illumina sequen-
cing, Miller et al. [17] investigated diversion of metabolism
and transcript abundance during nitrogen repletion and
deprivation in C. reinhardtii. Consequently, the increasing
use of NGS has made the integration of high-throughput
data from different experiments a priority concern. Gene-
vestigator [19] is a high performance platform that inte-
grates many public microarray experiments and visualizes
gene expression data in different biological contexts.
However, although nine important higher plants have
been collected in the Genevestigator database, none of
them are non-vascular plants. The Bio-Analytic Resource
for Plant Biology (BAR) [20] also integrates numerous
microarray data and provides expression profile similarity
rankings of homologous genes in plant species; however,
BAR cannot access algae-related information. BioCyc [21]
is a collection of databases that provides the metabolic
pathways of sequenced organisms including C. reinhardtii,
but no gene expression data have been integrated into the
collection. To our knowledge, the Algal Functional Anno-
tation Tool (AFAT) is the first database in which algae
gene expression data and metabolic pathways have been
collected [22]. AFAT provides an integrated data-mining
environment for algal genomics by integrating multiple
annotation databases into a centralized system. Unfor-
tunately, the metabolic pathways and gene expression
profiles are displayed in separate windows in AFAT,
making it difficult for users to understand the variations
in cellular responses under different conditions. Addition-
ally, the complex IDs and datasets in AFAT can often
confuse users who want to search for interesting genes
and pathways. For gene expression analysis, the AFAT
website provides only an expression similarity search
and the result page outputs only a Gene ID. As a result,
it is relatively difficult to compare the variations of gene
expression under different conditions using AFAT tools.
Surprisingly, there are currently no other databases or
tools that can be used to combine gene expression data
with metabolic pathways in algae for systems biology,
thereby necessitating the development of additional da-
tabases and related tools.
In this work, the novel AlgaePath database, which allows

the efficient retrieval of cellular response data from differ-
ent conditions, was developed. AlgaePath integrates various
high-throughput datasets of C. reinhardtii and the stress-
induced oil accumulation dataset of Neodesmus sp. UTEX
2219–4. AlgaePath can be used to identify transcript
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abundance profiles and to compare variations among
different conditions in a pathway map through five query
functions (Gene Search, Pathway Search, Differentially
Expressed Genes (DEGs) Search, Gene Group Analysis,
and Co-expression Analysis). The novel database can be
accessed freely online at http://AlgaePath.itps.ncku.edu.tw.

Construction and content
AlgaePath is a web-based database, which includes a high-
throughput experimental dataset and information for
C. reinhardtii and Neodesmus sp. UTEX 2219–4. The
flowchart of AlgaePath is displayed in Figure 1. The sys-
tem runs on an Apache web server on a Linux operating
system. All the data are stored in a MySQL database and
displayed in web pages, which are written in the PHP,
Perl, and HTML programming languages. Details of the
AlgaePath data and structure are described below.

Transcriptome data of Neodesmus sp. UTEX 2219–4
The Neodesmus sp. UTEX 2219–4 transcriptome was
sequenced on a Roche 454 system. The transcriptome data
were obtained under four conditions (normal, nitrogen
starvation, sorbitol stress, and salt stress) and have been
integrated into the AlgaePath database. The sequence
data processing and analysis have not been published
(unpublished data in Dr. Ching-Nen Nathan Chen’s lab).
The assembled sequences were annotated based on their
similarity to sequences in the NCBI non-redundant (nr)
database and the UniProt UniRef50 protein database.
Currently, there are 20,698 Neodesmus sp. UTEX 2219–4
transcripts (including isotigs, contigs, and singletons) in
the AlgaePath database.

Transcriptome data of C. reinhardtii
The C. reinhardtii reference sequences and their annotation
were downloaded from Phytozome (http://www.phyto-
zome.net/, v5.3.1 of Chlamydomonas annotations) [23]. A
total of 19,529 transcripts with annotations from Pfam
(10,122) [24], PANTHER (8,905) [25], NCBI eukaryotic
orthologous groups (KOG) (5,623) [26], KEGG (2,724
KEGG ortholog), and Arabidopsis homologous genes
(9,106) were obtained. The RNA-seq transcriptome data
were accessed from the Gene Expression Omnibus (GEO).
In this study, the GSE17970, GSE24367, GSE25622,
GSE33927, GSE33548, GSE34826, and GSE35305 datasets
were used [13-18]. The conditions used for RNA-seq tran-
scripts are sulfur depletion, nitrogen deprivation, mineral
nutrient treatment, various concentration of carbon diox-
ide (CO2), oxidative stress, and Fe deprivation, including
45 samples. Adaptors were trimmed from all the se-
quences in the different samples and then the reads were
mapped back to the reference sequences. The Bowtie2
[27] and BLAT [28] programs were used with their default
parameters to map the Illumina sequence reads (Solexa)
and the 454 pyro-sequence reads separately to the reference
sequences. Finally, the expression level of each of the
transcripts was calculated using reads per kilobase per
million reads (RPKM).

Normalization of expression data of each transcripts and
identification differentially expressed genes
Because different transcriptome datasets were used, Deseq
R package was applied to normalize various algae raw data
and identify differentially expressed genes (DEGs) de-
pending on negative binomial distribution. DEGs based
on 17 comparison groups (see Additional file 1: Table S1)
were pre-run and saved in AlgaePath database. However,
there is the other option in AlgaePath web interface.
Various samples could be selected to compare gene ex-
pression level, and identify DEGs based on expression
fold change. Furthermore, Giorgi et al. indicated that
Variance-Stabilizing Transformated (VST) RNA-seq data
brings RNA-seq samples hierarchically closer to microarrays
than RPKM normalization or raw counts when recon-
structing co-expression networks [4]. Therefore, Variance-
Stabilizing Transformation (VST) method was used to
transform DEseq pre-normalized data. The VST was also
performed by Deseq R package [29]. The VST normalized
data were than used to analyze co-expression genes.

Analysis of co-expressed genes
For the co-expression analysis, all the samples (excluding
mutant samples) were divided into six categories (all
conditions (GSE17970, GSE24367, GSE25622, GSE33927,
GSE33548, GSE34826, and GSE35305), nitrogen depri-
vation (GSE24367), mineral nutrient treatment (GSE17970,
GSE25622), carbon dioxide treatment (GSE33927), oxida-
tive stress (GSE34826), and iron deprivation (GSE35305)).
Based on Pearson’s correlation coefficient (PCC), the
similarity of expression patterns across various samples in a
category was measured, which represents the co-expressed
level between a pair of genes. The co-expressed genes were
then calculated, depending on the different categories.
Next, the gene-pairs with PCC values (r) between −0.5 and
0.5 were removed from the co-expression data. Finally, the
100 best positive and 100 best negative correlations of a
transcript were stored in the AlgaePath database. The PCC
values were calculated as:

r correlation of a gene pairð Þ ¼
Xn

i¼1
Xi−�Xð Þ Y i−�Yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Xi−�Xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Y i−�Yð Þ2

q ;where

�X and �Y denote the average expression values of X and
Y genes under all conditions in each category, respect-
ively n represents the total number of samples in each
category.

http://algaepath.itps.ncku.edu.tw
http://www.phytozome.net/
http://www.phytozome.net/
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Figure 1 The flowchart of AlgaePath.
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Additionally, The Spearman’s rank-correlation is less
sensitive than the Pearson correlation to strong outliers.
AlgaePath also provide the co-expression results using
Spearman’s correlation. Users can identify co-expression
genes based on different statistics methods.
Pathways identification of each transcript and gene group

analysis.
KEGG genes and KEGG orthology (KO) were down-

loaded from the KEGG database (Release 2013) [30].
The KO IDs were mapped to transcripts annotated in
AlgaePath. Related pathways of each transcript were
then identified using the KEGG pathway reconstructed
tool. For gene group analysis, pathway enrichment in a
group of gene sets was analyzed using the hypergeometric
distribution method [31]. The number of transcripts in-
volved in each pathway was calculated as the abundance
pathways in a group of gene sets. Pathway enrichment
was then verified based on the p-value of each pathway
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following the hypergeometric distribution method as
follows:

Pj ¼
Xn
i¼x

M
i

� �
N−M
n−i

� �

N
n

� �

where, i denotes the number of transcripts in the gene
group involved in the j pathway; n is the total number of
transcripts in the gene group annotated in KEGG; M is
the number of all C. reinhardtii transcripts involved in the
j pathway; and N is the total number of all Ch. reinhardtii
transcripts annotated in KEGG.

Utility and discussion
Web interface of AlgaePath
Two species (C. reinhardtii and Neodesmus sp. UTEX
2219–4) are displayed on the AlgaePath home page
(Figure 2). By clicking on either of the species (for example
C. reinhardtii), five transcriptome analysis functions are
Figure 2 The web interface of AlgaePath.
displayed; namely, Gene Search, Pathway Search, Differ-
entially Expressed Genes (DEGs) Search, Gene Group
Analysis, and Co-expression Analysis. Tutorial and Browse
options are displayed at the top of the home page for each
species. On the Gene Search page, a gene symbol, keyword,
gene ID from various databases (Pfam, PATHER, KEGG K
ENTRY, and KOG), DNA sequence, or protein sequence
can be input as a query. Gene Search uses the query to re-
trieve the gene expression profiles in a specific pathway
under different conditions (Figure 3). The Pathway Search
page allows users to first select the stress conditions of
interest. This opens the pathway browser in which either
one of the listed pathways can be selected or a pathway
search can be performed using a keyword. The algae genes
(marked in green) involved in the pathway are then dis-
played in a pathway figure. Clicking on an identified gene
opens a link to the KEGG ortholog information for that
gene. Expression level profiles under various conditions
and information about the gene are also displayed. The
DEGs Search page has two options: “Analyzing by Deseq
R package” and “Fold change search”. DEGs from 17



Figure 3 The output result of “Gene Search” in AlgaePath. The input gene is marked in red background, and the gene expression levels
under different conditions are displayed in a popup window.
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comparison groups can be identified by using “Analyzing
by Deseq R package”, respectively. “Fold change search”
can be used to compare differentially expressed genes
between two conditions that can be selected by the user.
The fold range can be chosen and/or keywords can be
used to limit the number of results. The search results
pages are similar either use “Analyzing by Deseq R pack-
age” or “Fold change search”. The numbers of genes within
the chosen fold range or p-value are displayed both as a
graph and in a table. Detailed information about the genes
and pathways with a particular fold change can be accessed
by clicking on the gene numbers in the table (Figure 4).
The Gene Group Analysis page provides a tool for users to
perform pathway enrichment analysis for a group of input
genes. Pathways related to the user-selected group of genes
are listed in a table which also displays a hit percentage and
p-value (Figure 5). The pathway view button can be used to
display the transcript abundance levels of these genes under
numerous conditions. The Co-expression Analysis page
can be used to retrieve gene information and expression
profiles of genes that have similar expression profiles
(based on PCC or Spearman’s correlation) to a user-input
gene. First, the condition of interest and the gene of interest
are selected. Then co-expressed genes under a particular
experiment are identified and top ten correlated genes for
each query gene are displayed. The functional related genes
with similar expression profiles across different experimen-
tal conditions can be accessed directly (Figure 6). Up to 100
positive and negative correlations can be accessed from dif-
ferent pages. Co-expression analysis can also be accessed
from the Gene Search page.

Comparative analysis of gene expression profiles under
various conditions
Comparative analysis of gene expression under various
conditions can help biologists identify critical genes in-
volved in changes of interest. For example, the feasibility
of using algae in biofuel production has been studied
[4] and scientists have attempted to overexpress acetyl-
CoA carboxylase (a substrate for fatty acid production)



Figure 4 The output results of “Differentially Expressed Genes (DEGs) Search” in AlgaePath. The statistics numbers of genes in particular
folds ranges are listed in a table. The further information about those genes could be retrieved by clicking the gene numbers on the web page.
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in microalgae to improve oil production [29]. Unfortunately,
until now, the performance of algae in oil production has
been insignificant [32]. Rismani-Yazdi et al. [33] recently
identified some important metabolic pathways related
to microalgae-based biofuel feedstock by comparing tran-
scriptome sequencing data under four different conditions.
Numerous NGS transcriptome datasets are currently avail-
able in public resources and they need to be integrated so
that important checkpoints can be identified in biological
mechanisms. Importantly, in the AlgaePath database, users
can easily investigate variations in transcript abundance
under various conditions in a specific pathway based on
user selection. All output result pages are displayed in a
figure and in a downloadable table, as shown in Figure 3.
The user-friendly interface can help users determine effi-
ciently whether their genes of interest undergo significant
changes in expression under different conditions. In this
sense, AlgaePath is similar to the other resources that have
been developed for higher plants (e.g. Genevestigator and
the BAR database). Importantly, the biological pathways
in AlgaePath are thoroughly combined with the transcript
abundance data. Many important phenotypic changes that
cause serious biological reactions are affected by more
than one gene; therefore, researchers need to determine
which genes have expression patterns that are similar to
their target gene. Such information can help biologists
clarify the mechanisms that they are interested in. Because
co-expression analysis is very important in systems biology
research, the ability to study the co-expression of genes
in the six categories available in AlgaePath will be highly
effective. The six categories were designed to provide users
with a variety of options for data mining because many



Figure 5 The output results of “Gene Group Analysis” in AlgaePath. The pathways related to a group of genes are listed in a table with hit
percentage and p-value. After clicking pathway viewer, query genes will be marked in red rectangle in a pathway map. The gene expression
profile of each gene will be displayed in a pop-up window.
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genes are co-expressed only under specific conditions.
The AlgaePath system will provide users a multifunctional
analysis platform for algae-related research.

Case study: identification of critical genes during nitrogen
starvation and sulfur depletion
The accumulation of oil bodies in C. reinhardtii under
nitrogen starvation conditions was reported previously
[34]. Several up-regulated and down-regulated genes in
lipid biosynthesis pathway under nitrogen starvation con-
ditions were identified using the AlgaePath database [17].
For instance, the diacylglycerol O-acyltransferase (DGAT,
Cre12.g557750.t1.3), fatA acyl-ACP thioesterase (Cre06.
g256750.t1.2), and plant stearoyl-acyl-carrier-protein desa-
turase family protein (Cre17.g701700.t1.2 and g17011.t1)
genes were found to be significantly up-regulated under
nitrogen starvation using the DEGs Search tool in Algae-
Path. In addition, the variation of the expression profiles
of genes involved in the fatty acid biosynthesis pathway
were identified easily using Pathway Search. Sulfur is
essential in the synthesis of proteins, lipids, and various me-
tabolites. Because most organisms, including C. reinhardtii,
have limited sulfur storage abilities, the continuous uptake
of sulfur from the surrounding environment is critical
to their survival. Based on microarray experiments, Zhang
et al. [35] identified the responses of numerous genes to
sulfur depletion. The identified genes were involved in
sulfur metabolism, photosynthesis, carbon metabolism,
respiration alternative electron transfer pathways/ATPase/
transporters, oxidative stress, chaperones, proteolysis,
signal transduction, and transcription, and, in particular,
several genes related to sulfur metabolism or biosynthesis



Figure 6 The output results of “Co-expression Analysis” in AlgaePath. 10 correlation genes of the query gene will be displayed in one
output page. Totally, 100 positive and negative correlation genes could be accessed, respectively.
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were significantly induced during sulfur starvation (e.g.,
arylsulfatase (ARS), ATP-sulfurylase, sulfate transporter,
and sulfite reductase) [35]. These genes were validated
using the AlgaePath system because the output results
demonstrated that the transcript abundance levels in-
creased obviously under sulfur depletion. Based on the
AlgaePath data, the folds change between the sulfur
starvation treatment and control samples, ARS (Cre16.
g671350.t1.2), ATP-sulfurylase (Cre02.g107450.t1.2), sul-
fate transporter (Cre17.g723350.t1.2), and sulfite reductase
(Cre09.g410750.t1.2) genes was found to be up-regulated
by more than 2 folds (P-value < 0.01) (Figure 7). These
results suggest that AlgaePath can accurately represent
phenomena reported in previous studies and can be used
to identify the responses of some important genes to en-
vironmental stresses.

Evaluation of AlgaePath and future perspectives
The Algal Functional Annotation Tool (AFAT) integrates
many algae databases for use in algae research [22].
AFAT has large-scale analysis functions, including pathway
enrichment analysis and differential expression analysis;
however, despite its capability for processing high-
throughput or microarray results, AFAT has a number
of limitations. For example, most of the query tools in
AFAT require specific gene IDs from specific data sets
(Augustus u10.2, Augustus v5.0, JGI v3.0, JGI v4.0) and no
gene symbols or sequences are allowed as input. Further,
transcript abundance levels and pathways in AFAT are
presented on separate result pages, which makes it dif-
ficult for users to evaluate expression patterns under
various conditions in a pathway. Therefore, in this work
a user-friendly, web-based database for algae was devel-
oped. The results of a comparison between the AFAT
and AlgaePath characteristics are shown in Table 1. A
number of different query types are available in AlgaePath,
and the transcript abundance data under different condi-
tions are displayed simultaneously in a pathway map.
Broadly, AlgaePath can be used to retrieve a cellular re-
sponse in a pathway under a specific condition. Identifying
differentially expressed genes between various samples
is crucial to elucidating biological response mechanisms
under a particular condition. Notably, the AlgaePath system
helps users find critical genes related to cellular responses



Figure 7 A case study result: the gene expression levels changed during sulfur starvation. (A) Arylsulfatase (Cre16.g671350.t1.2),
(B) ATP-sulfurylase (Cre02.g107450.t1.2), (C) Sulfate transporter (Cre17.g723350.t1.2), and (D) Sulfite reductase (Cre09.g410750.t1.2).
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relatively easily. The ability to search for similar expression
profiles is usually necessary to investigate the function
of a novel gene. Both AFAT and AlgaePath can be used
to identify co-expressed genes; however, in AFAT, de-
termining gene functions based only on a gene ID can
Table 1 The comparison between algal functional annotation

Content AFAT

Species Chlamydomonas reinhardtii

Chlorella NC64A

Search interface Identifiers ID and keyword

Pathways information of each transcript Yes, only pathway map (out

Gene group analysis (Pathway enrichment) Yes, only mark genes in a pa
(out link to KEGG)

Differentially expression genes No

Expression similar search Yes, only provide identifier ID
expression map

Pathway map with gene expression profiles No
be rather challenging. To retrieve gene functions in
AFAT, users have to access JGI (http://genome.jgi-psf.org/)
online by clicking each ID number. On the other hand,
in AlgaePath it is relatively easy to study genes that are
positively and negatively correlated with the query gene,
tool (AFAT) [22] and AlgaePath

AlgaePath

Chlamydomonas reinhardtii

Neodesmus sp. UTEX 2219-4

Gene symbol, Gene ID from various database, keyword,
DNA/protein sequences

link to KEGG) Yes, combine pathway map with transcript abundance
profiles under various conditions

thway map Yes, not only mark genes in a pathway map but with
transcript abundance profiles under various conditions

Yes, easily identify differentially expressed genes between
two samples

in the Yes, provide detail information of co-expression genes

Yes

http://genome.jgi-psf.org/
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and all gene lists and information are downloadable from
the web site.
A major advantage of AlgaePath over AFAT lies in its

ability to integrate transcript abundance and pathway
maps; however, although the genome sequence of C. rein-
hardtii was completed in 2007, the functions of many of
the genes are still unknown [36]. In addition, some of the
algal gene information in AlgaePath is limited; therefore,
as more high-throughput experimental datasets become
available it will be essential to continuously update the
high-throughput data in AlgaePath. Although single data-
sets can be used to find interesting phenomena and to solve
some related problems, the integration of many datasets
can help increase the ability of researchers to identity
variations in cellular responses under various conditions.
Therefore, an improved normalization method needs to be
developed to normalize many datasets from various plat-
forms, including microarray, and Roche 454 or Illumina.
Conclusions
The emergence of whole transcriptome and genome
research has made an integrative database for displaying
cellular response essential. Algae are important non-model
plants that have many research applications, including
higher species diversity, sources of biofuel, adsorption of
heavy metals and, following processing, health supplements.
AlgaePath is a web-based database that comprehensively
integrates C. reinhardtii and Neodesmus sp. UTEX 2219–4
gene information, biological pathways, and transcript abun-
dance profiles from various databases. AlgaePath provides
an effective interface for users interested in obtaining
further insights into the transcript response mechanisms
in different metabolic pathways under various conditions.
Moreover, the Gene Group Analysis and Co-expression
Analysis tools in AlgaePath can be used to detect similar
expression transcripts of a target gene and enrichment
pathways (functions) in a gene group. The results obtained
using AlgaePath will provide a valuable reference for future
efforts to elucidate critical mechanisms by mining high-
throughput data. Importantly, the AlgaePath database is a
significant contribution to algae research.
Availability and requirements
The AlgaePath database is publicly available at http://
AlgaePath.itps.ncku.edu.tw.
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Additional file 1: Table S1. The comparison groups for differentially
expressed genes (DEGs) identification in AlgaePath.
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