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Abstract

Background: Alzheimer's disease (AD) is one of the leading genetically complex and heterogeneous disorder that
is influenced by both genetic and environmental factors. The underlying risk factors remain largely unclear for this
heterogeneous disorder. In recent years, high throughput methodologies, such as genome-wide linkage analysis
(GWL), genome-wide association (GWA) studies, and genome-wide expression profiling (GWE), have led to the
identification of several candidate genes associated with AD. However, due to lack of consistency within their
findings, an integrative approach is warranted. Here, we have designed a rank based gene prioritization approach
involving convergent analysis of multi-dimensional data and protein-protein interaction (PPI) network modelling.

Results: Our approach employs integration of three different AD datasets- GWLGWA and GWE to identify overlapping
candidate genes ranked using a novel cumulative rank score (Sg) based method followed by prioritization using clusters
derived from PPI network. Sg for each gene is calculated by addition of rank assigned to individual gene based on
either p value or score in three datasets. This analysis yielded 108 plausible AD genes. Network modelling by creating
PPI using proteins encoded by these genes and their direct interactors resulted in a layered network of 640 proteins.
Clustering of these proteins further helped us in identifying 6 significant clusters with 7 proteins (EGFR, ACTB, CDC2,
IRAKT, APOE, ABCA1 and AMPH) forming the central hub nodes. Functional annotation of 108 genes revealed their role
in several biological activities such as neurogenesis, regulation of MAP kinase activity, response to calcium ion,
endocytosis paralleling the AD specific attributes. Finally, 3 potential biochemical biomarkers were found from the
overlap of 108 AD proteins with proteins from CSF and plasma proteome. EGFR and ACTB were found to be the two
most significant AD risk genes.

Conclusions: With the assumption that common genetic signals obtained from different methodological platforms
might serve as robust AD risk markers than candidates identified using single dimension approach, here we
demonstrated an integrated genomic convergence approach for disease candidate gene prioritization from
heterogeneous data sources linked to AD.
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Background

Alzheimer’s disease (AD) is a gradually progressive neuro-
degenerative disease, characterized by cognitive impairment
in elderly. Genetics is known to play a major role in its de-
velopment with studies showing both gene-gene and gene-
environment interactions as risk factors [1,2]. The number
of people afflicted with AD is estimated to be more than 24
million worldwide, and the heritability is estimated to be
60-80% [3-5]. Over the last decade, several high throughput
experimental approaches involving genome-wide linkage
(GWL) scans, genome-wide association (GWA) studies,
and genome-wide expression (GWE) profiling, have been
extensively utilized to identify the underlying genetic risk
factors. Linkage studies were instrumental in the initial
identification of four genes (APB PSENI, PSEN2 and
APOE) associated with AD [6]. Later, several other loci
spanning many genes were discovered in AD using GWL
scans. However, linkage studies in sporadic or late onset
AD (LOAD) suffers from limitations of low resolution of
results, lack of availability of large multigeneration families
and inclusion of phenocopies [7].

With the advent of high throughput genotyping plat-
forms in recent years, several GWA studies were carried
out using population based case—control designs which re-
sulted in the identification of additional AD risk genes
[7,8]. However, these studies require very large sample size
specifically to detect genetic variant with small attributable
risk. Additionally, case control studies are prone to issues
of population stratification and population admixture. In
recent years, a limited number of global gene expression
profiling studies have been conducted using post-mortem
AD brain tissues [9,10]. These studies have led to identifi-
cation of genes related to multiple cellular pathways
known to be involved in AD pathogenesis and progres-
sion. However, the major drawback of such studies in-
cludes limited access to brain samples from AD subjects
as well as age matched controls. Further, variable RNA
quality due to post-mortem delay and the difficulty in es-
tablishing temporal and regional specificity of gene ex-
pression changes adds up to the limitations [11]. Although
different genetic based approaches have led to the accu-
mulation of massive amounts of data, however, due to dif-
ferential limitations of each study, limited success has
been achieved in identifying common underlying genetic
markers related to AD progression and pathogenesis. This
warrants designing of novel approaches complementing
the existing ones for disease gene discovery.

In recent years, integrative approaches combining mul-
tiple data sources have been widely used to identify sus-
ceptible genes in complex disorders such as AD [12,13],
epilepsy [14], type 2 diabetes [15,16], prostate cancer [17],
depression [18], schizophrenia [19] and Parkinson’s dis-
ease (PD) [20]. Such approaches may help imbibe disease
specific biological knowledge that may not be available
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from one dimensional approaches. Further, network mod-
elling of gene-gene and protein-protein interactions (PPI)
provides a relatively new integrative approach to under-
stand complex disease and identify disease-related genes
[21,22]. For instance, candidate genes in complex disor-
ders, such as AD [23-27], obstructive sleep apnea [28],
heart failure [29], cancer [30] and cardiorenal syndrome
[31], have already been explored extensively using PPI
based approach. Thus, a convergent analysis approach in-
volving multi-dimensional datasets combined with net-
work or pathway analysis might serve as a comprehensive
approach for disease candidate gene prioritization.

In this study, we aimed to develop a system biology
approach based on genomic convergence of genetic data
from multiple high-dimensional genome-wide studies
and network modelling of protein-protein interactions
to prioritize candidate genes linked to AD. We identified
108 common overlapping genes from integrated analysis
of three datasets - GWL [8,32,33], GWA [34] and GWE
[[35,36]; GSE5281] and ranked them using our ranked
based scoring method. We identified direct protein
interactors of 108 candidate genes and then created a
layered PPI network comprising of 640 nodes based
on subcellular localization of proteins. Finally, we per-
formed Markov Cluster algorithm (MCL) based clustering
using clusterMaker and functional enrichment analysis
using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) to identify functional modules
and significant Gene Ontology (GO) annotation clusters,
respectively [37-39]. Hence, integrating AD linkage, gen-
etic association, and gene expression data followed by net-
work modelling of PPI resulted in a list of evidence-based
candidate genes for future experimental validation and re-
lated pathways for better understanding of underlying AD
patho-physiology. This multi-dimensional evidence-based
approach can be applied to other complex disorders hav-
ing publically available high throughput data.

Results

The objective of this study was to identify potential can-
didate genes involved in AD development and progres-
sion by an integrative genomic convergence approach
involving rank based scoring method. The datasets, for
integrative analysis, were retrieved from AlzGene database
(GWL), I-GAP (International Genomics of Alzheimer’s Pro-
ject) study (GWA) and NCBI Gene Expression Omnibus
(GEO) database: GSE5281 (GWE). The common overlap-
ping genes occurring in all the three datasets were identified
and ranked by cumulative rank score obtained by addition
of gene ranks based on either p values or scores. The final
108 overlapping genes were used for ‘GO analysis’ and to
create a layered PPI network comprising 640 nodes and
2214 edges. These identified putative proteins were then
used to identify functionally important clusters and
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common biomarkers among plasma/serum and CSF prote-
ome. The entire work flow is depicted in Figure 1.

Putative AD linked candidate genes from integrative analysis
For GWL data analysis, genomic linkage regions linked
to AD were retrieved from AlzGene database with LOD
scores 2 2.0 or p value <0.05 (1p31.1-q31.1, 3q12.3-q25.31,
6p21.1-ql5, 7pter-q21.11, 8p22-p21.1, 9q21.31-q32, 10p14-
q24, 17q24.3-qter, 19p13.3-qter) and used for further ana-
lysis. Among these 9 linkage regions, 7 were included from
meta-analysis of five independent genome scans carried out
by Butler et al. [32], using genome search meta-analysis
(GSMA) approach and 2 regions from Hamshree et al. [33]
that combined three large samples to give a total of 723 af-
fected relative pairs (ARPs) and analyzed using multipoint,
model-free ARP linkage analysis approach. A total of
2976 genes were retrieved using UCSC genome browser
[40] from these linkage regions and genes were ranked
according to their score obtained from GeneWanderer
web server [41].
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Further, for the GWA dataset, 19,532 single nucleotide
polymorphisms (SNPs) with p value <0.0001 [34] were se-
lected. These SNPs were mapped to their corresponding
genes using NCBI Variation Reporter, SCAN (SNP and
CNV Annotation) database [42] and SPOT web tool [43].
This led us to the identification of 1,686 genes which were
ranked based on weighted p value obtained though gen-
omic information network prioritization and scoring
method implemented in SPOT [43]. For replication ana-
lysis, we used another GWA dataset from Boada et al. [44]
which included genotyped and imputed SNPs (1,098,485)
from 7 reported GWA studies comprising ~8082 cases
and ~12040 controls for stage I meta-analysis. With this
cohort used in stage I analysis with P < 0.001, 1202 SNPs
were obtained. When candidate genes identified in the
main and replication datasets were compared, we found a
concordance of 35.4% (see Additional file 1).

For GWE data analysis, the GSE5281 dataset was se-
lected and analyzed using GEO2R tool accessed from
GEO web server [45]. In our study, expression data from
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Figure 1 Flow chart describing the entire work flow. Integrated data analysis was performed on three genome wide datasets to identify

overlapping 108 AD putative candidate genes which were ranked by using cumulative rank based scoring method. These genes were further
used to create a PPl and identify overlapping proteins among 108 and proteins from CSF and plasma proteome. PPl was then used to create a
layered network based on the subcellular localization information of 640 genes, to identify clusters using MCL algorithm and to retrieve
functional annotation using DAVID web tool.
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six brain regions — entorhinal cortex (EC), hippocampus
(HIP), posterior cingulate cortex (PC), middle temporal
gyrus (MTG), superior frontal gyrus (SFG) and primary
visual cortex (VCX), were used for analysis. The genes
with adjusted p value < 0.05 and fold change > 2.0 for up-
regulated genes and < 0.5 for down regulated genes were
selected from each region and then merged. This ana-
lysis resulted in 7961 genes which were ranked by their
corresponding adjusted p values. For replication analysis,
we used another GWE dataset - GSE15222 that com-
prised expression data from post-mortem brain cortical
regions of 176 late-onset AD cases and 188 controls
[46]. A concordance of 58.2% was found between
GSE5281 and GSE15222 datasets after analysis (see
Additional file 1).

The intersection of all the three datasets resulted in
the final set of 108 putative candidate genes (Figure 2)
and their individual ranks were added to get Sg, score.
Based on this rank score the genes were re-ranked with
gene having the lower cumulative rank score getting the
higher rank. The top 10 genes are listed in Table 1 and
the list of 108 genes is provided in Additional file 2.

As all the six brain regions are found to be associated
with AD pathology with different degree of involvement de-
pending upon disease severity, we analysed expression pro-
file data of each region separately and obtained candidate

GWE GWAS

GWL

Figure 2 Venn diagram of putative overlapping AD candidate
genes among different genome wide datasets. The venn
diagram represents the genes in the three individual datasets and
overlapping 108 putative AD target genes identified by integrated
analysis of the three datasets.
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genes specific in each brain region. We identified 25, 16,
40, 38, 27 and 1 candidate genes specific in EC, HIP, PC,
MTG, SFG and VCX brain regions, respectively, from over-
lap with GWA and GWL repertoires (see Additional files 3
and 4).

Protein-protein interaction network, layering and network
analysis

Identification of proteins that interact directly with pro-
teins encoded by identified 108 target genes might
help elucidate the molecular mechanism underlying AD
patho-physiology. Thus, in the present study, we created
a PPI network from the 108 candidate genes using
APID2NET plugin in Cytoscape [47,48] comprising 640
nodes and 2214 edges. Then, a layered network based
on the sub-cellular localization information of 640 pro-
teins using “Cerebral” plugin [49] in Cytoscape was ob-
tained from the PPI network. The layered network is
depicted in Figure 3. Further, another cytoscape plugin
“clusterMaker” [37] was used on the PPI to create clus-
ters using MCL clustering algorithm [50]. This resulted
in the identification of 6 important clusters with 7 pro-
teins (EGFR, ACTB, CDC2, IRAK1, APOE, ABCA1 and
AMPH) forming the central hub nodes (Figure 4a-f). All
63 clusters obtained from MCL clustering are provided
in Additional file 5.

Functional annotation analysis by GO terms

We performed functional GO enrichment analysis of the
108 AD candidate genes, using functional annotation clus-
tering tool implemented in DAVID [38,39], to identify as-
sociation of candidate genes with different ‘GO terms’.
The significantly over represented ‘GO terms; identified
neurogenesis (p =0.0032) as the top cluster, followed by
regulation of neurogenesis (p =0.0062). The other signi-
ficantly over represented biological processes included
peptidyl tyrosine phosphorylation (p =0.0041), cytoplas-
mic membrane-bounded vesicles (p = 0.006), regulation of
MAP kinase activity (p=0.0005), kinase activity (p=
0.0081), purinergic nucleotide receptor activity, G-protein
coupled (p=0.0153), neuron development (p = 0.0098),
response to calcium ion (p=0.0067), sensory perception
of light stimulus (p=0.0041), endocytosis (p=0.0192)
(Figure 5). This analysis was also repeated for 640 candi-
date genes (Additional file 6).

AD putative biochemical biomarkers

In this study, we also looked for the identification of
cerebrospinal fluid (CSF) and plasma based AD specific
biomarker and found 3 common proteins (APOE, EGFR,
ACTB) among 108 AD proteins and proteins from CSF
and plasma proteome (Figure 6) and 38 common pro-
teins among 640 putative AD proteins and proteins from
CSF and plasma proteome (Additional file 7), which
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Table 1 Top 10 genes from the list of 108 target genes found in the overlap of three data sets

S. Gene Gene Name Rank_ Rank_ Rank_ Cumulative Final HGNC ID Location

No. Symbol GWL GWA GWE rank score rank

1 RPN1 Ribophorin | 232 61 324 617 1 HGNC:10381  3g21.3

2 RGS4 Regulator of G-protein signaling 4 240 300 97 637 2 HGNC:10000 19233

3 HIP1 Huntingtin interacting protein 1 548 29 303 880 3 HGNC:4913 7q11.23

4 PTK2B Protein tyrosine kinase 2 beta 148 14 879 1041 4 HGNC:9612 8p21.1

5 ICAT Islet cell autoantigen 1, 69 kDa 323 453 268 1044 5 HGNC:5343 7p22

[§ AMPH Amphiphysin 540 539 194 1273 6 HGNC:471 7p14-p13

7 ATP5H ATP synthase, H + transporting, mitochondrial ~ 817 279 192 1288 7 HGNC:845 17925
Fo complex, subunit d

8 EGFR Epidermal growth factor receptor 24 434 909 1367 8 HGNC:3236 7p12

9 ABCAT ATP-binding cassette, sub-family A (ABC1), 47 217 1138 1402 9 HGNC:29 9g31
member 1

10 ACTB Actin, beta 49 1348 10 1407 10 HGNC:132 7p22

might serve as potential biochemical biomarkers for  progressive degeneration of dopaminergic neurons within
early detection of AD cases in future. multiple brain regions. It clinically manifests as both a

movement disorder, characterized by tremor, rigidity, bra-
Validation of Rank based approach by using PD datasets dykinesia and postural instability and a distinct form of
For validation of our rank based gene prioritization ap-  cognitive impairment, characterized by visuospatial im-
proach, we selected PD, another common complex pairment and fluctuations in mental state [51,52]. We
neurodegenerative disorder that involves the deposition  applied our rank based method to identify overlapping
of a-synuclein as intracellular Lewy bodies leading to  genes in three PD datasets — GWL, GWA, and GWE. We
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Figure 3 Layered Protein-Protein Interaction network (PPI) of 108 proteins. A layered network based on the subcellular localization of 640
proteins in the PPl was created. The nodes representing functionally important genes were highlighted in the layered network using colour
codes - green (genes forming hub nodes in clusters (7), occurring in top 15 of ranked genes (108) and also present in putative biomarker dataset
(38)); cyan (genes forming hub nodes in clusters, occurring in 108 AD genes and also present in putative biomarker dataset); yellow (genes
occurring both in cluster hub and in 108 ranked genes); pink (genes forming hub nodes in clusters and occurring in top 15 of ranked genes); blue
(remaining 59 from 108 list); red (38 biomarkers from AD, CSF and plasma overlap); grey (remaining proteins from 640 candidates).
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Figure 4 Important clusters obtained from clustering of 640 proteins using MCL algorithm in clusterMaker. (a-f) Biologically significant
gene clusters were identified from PPl using MCL algorithm. The nodes representing functionally important genes were coloured in the pattern
described for the layered network.

J

retrieved GWL dataset from PDgene database (http://  [55]. This dataset comprises PD cases drawn from popula-

www.pdgene.org/) [53]. It included genetic loci showing
evidence for linkage in the meta-analysis of five GWL
scans comprising 862 families with 1384 affected subjects
using the GSMA method by Rosenberger et al. [54].

For GWA dataset, we retrieved SNPs with pre-computed
p values from a NCBI dbGaP database with study acces-

tion of North American Caucasians, and neurologically
normal controls from the population which are banked in
the National Institute of Neurological Disorders and Stroke
(NINDS Repository) collection for a stage I genome wide
analysis. Initially, genome-wide, SNP genotyping of these
samples was carried out in 267 PD subjects and 270 con-

sion: phs000089.v3.p2 (http://www.ncbinlm.nih.gov/gap)  trols, and later extended to include genotyping in 939 PD
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Figure 5 Clustering of GO terms: significantly over represented top 11 functionally annotated clusters from biological process, cellular
component and molecular function of 108 proteins.
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CSF

Plasma/Serum

AD proteins
Figure 6 Putative AD specific biomarkers. The venn diagram

depicts overlap among putative 108 AD proteins, proteins from CSF
and plasma proteome.

cases and 802 controls. This collection was included in the
first stage study by Fung et al. [56], and the expanded study
by Simon-Sanchez et al. [57,58]. A total of 7,943 SNPs
(stage I) were selected for further analysis, with p value <
0.01, from raw data comprising total of 453,217 SNPs.

For GWE dataset, we selected the gene expression data
from NCBI GEO database (GSE20295) (www.ncbi.nlm.
nih.gov/geo) [59] for analysis. It contained gene expression
profiling data in post-mortem tissue of three brain regions
(the substantia nigra, putamen, and Brodmann’s area 9)
from matched groups of 15 neuropathologically confirmed
PD and 15 controls with no history of major brain illness.

The analysis of three PD datasets using rank based scor-
ing method led us to the identification of 59 putative target
genes from the overlap of 1528 genes from GWL, 2882
genes from GWA and 2923 genes from GWE which could
have significant association with PD development and pro-
gression (Figure 7a). The entire list of 59 genes is provided
in Additional file 8. The comparison of 108 AD and 59 PD
putative candidate genes resulted in only 2 common genes
(ABCA1I and LPARI) between the two groups (Figure 7b).

Discussion

AD is a complex polygenic disorder with lack of under-
standing of natural course of the disorder and absence
of reliable biomarkers that can predict disease onset and
progression. Although, genome-wide studies, such as
genetic linkage, association and expression, have allowed
unbiased identification of candidate genes and pathways

(a) (b)

GWE GWAS PD Genes AD Genes

GWL

Figure 7 Prioritized putative PD candidate genes and overlap
with prioritized AD candidate genes. (a) The venn diagram
represents the genes in the three individual datasets and
overlapping 59 putative PD target genes identified by integrated
analysis of the three datasets. (b) The venn diagram represents the
overlapping genes among AD and PD putative target genes.

associated with AD development and progression, suscep-
tibility loci or genes for AD with clinical significance have
not yet been reported. This can be attributed to certain
limitations associated with these methods. For instance,
linkage studies require large, multi-generational pedigrees
within which both affected and unaffected individuals are
required for testing and even in such cases, this approach
yields only regions of linkage and not the causative gene
[60-62].This suggests that only a fraction of the genes, sig-
nificant in these analyses, are causal genes. On the other
hand, GWA studies often lack statistical power to detect
SNPs with small effect size and therefore cannot detect all
causal genes [63]. Further, in case of gene expression stud-
ies, identified genes are expected to contain a mix of
causal and the differentially expressed genes because of
the ripple effect of the causal genes [64]. The huge amount
of AD specific genetic data accumulated in the past dec-
ade also indicates involvement of multiple pathways
wherein each gene confers only a modest risk. Therefore,
integration of datasets from multiple disciplines may lead
to identification of candidate genes from different path-
ways and may provide an opportunity to uncover the bio-
logical functions and molecular mechanisms underlying
AD through PPI network and GO analysis.

In this work, we presented a framework for integrated
analysis of multi-dimensional datasets by using a rank
based scoring method. First, we retrieved and analysed
data from three datasets —-GWL, GWA and GWE, based
on the assumption that genes identified by all the three
experimental technique might be significantly involved
in AD pathology. Then, we used a ranked based method
in which overlapping genes were first identified in all the
three datasets and then each gene was assigned cumula-
tive rank score (Sg), based on addition of corresponding
rank in individual datasets. The genes in each datasets
were ranked based on either p values or scores. Finally,
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the genes were ranked based on their Sy with gene hav-
ing lower Sy getting the higher rank. This analysis led us
to the identification of 108 ranked genes from the over-
lap of 2729 genes from GWL, 1686 genes from GWA
and 7961 genes from GWE which might serve as puta-
tive target genes having significant association with AD
development and progression.

A majority of top ranked putative candidate genes have
been found to be significantly associated with molecular
mechanism and pathways related to AD development and
progression and may serve as critical candidates for pre-
dicting AD risk. For instance, first ranked RPNI gene en-
codes for a type I integral membrane protein, ribophorin
that have been shown to directly interact with opioid re-
ceptors (OR). Overexpression of RPN1 is reported to en-
hance cell surface expression of SOR and pOR but not
that of kOR [65]. Significant reductions in pOR binding
are observed in the subiculum and HIP regions of brain
from AD cases as compared to controls. Further, binding
of SOR is also found to be decreased in the amygdala and
putamen of AD brains [66]. In addition, SOR have been
associated with increased processing of amyloid beta (Af)
precursor protein (APP) by BACEIL and y-secretase, but
not that of Notch, N-cadherin or APLP1. Moreover,
knockdown or blocking of SOR in AD mouse model
decreases secretase activities and abolishes AP pathology
and AfB-dependent behavioral abnormalities [67]. Second
ranked gene, RGS4, encodes for regulator of G protein sig-
nalling 4 protein, is reported to be involved in neuronal
calcium dependent signaling, a cellular process related to
both AD and aging [68]. In parietal cortex of AD subjects,
53% and 40% lower levels of RGS4 and Gq/11 proteins is
found as compared to age-matched controls. Further, it
was proposed that alteration of dynamic equilibrium be-
tween the cytosolic and membrane levels of RGS4 and
Gq/11 may lead to the regional differences in the coupling
of muscarinic M1 receptors in AD which in turn may lead
to variable response to currently available cholingeric
treatment strategies [69]. HIPI gene encodes for Hunting-
tin interacting protein 1 (HIP1) that is predominantly
expressed in brain and is proposed as a novel brain tumor
marker that interacts with EGFR [70]. In a published
genome-wide study of aging, rs17149227 (p value < 107°)
close to HIPI gene, is found to be associated for time to
death from meta-analysis of 9 cohorts [71]. Mills et al.
(2005) proposed that transcriptional deregulation of HIP1
may play a significant role in the pathogenesis of neurode-
generative diseases [72].

A recently found strong LOAD candidate is PTK2B/
CAKB/FAK2/PYK?2 gene that encodes for a cytoplasmic
protein tyrosine kinase, which is highly expressed in the
CNS, particularly in HIP [73]. AP fibrils has been shown
to induce THP-1 cells resulting in the stimulation of
PYK?2 tyrosine phosphorylation as a consequence of Lyn
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and Syk activation, intracellular calcium release, and
PKC stimulation [74]. Activation of CAKb/Pyk2 is re-
quired for inducing long-term potentiation (LTP) in
CA1 HIP neurons which may depend upon downstream
activation of Src to upregulate N-methyl-D-aspartate-
type (NMDA) glutamate receptors [75-77]. Further, in
the case of AD, the immunoreactivity for c-Jun is found
to be elevated in diseased brain [78,79] and interestingly,
PYK?2 represents a stress sensitive mediator of c-Jun N-
terminal kinase (JNK) signaling pathways.

ICA1 encodes for 69 kDa islet cell autoantigen, a BAR
(Bin/amphiphysin/Rvs)-domain-containing protein with
highest expression levels in brain, pancreas, and stomach
mucosa [80]. It is identified as the major binding partner
of protein PICK1 (protein interacts with C-kinase 1).
ICA1 regulates AMPA receptor trafficking, an important
mechanism underlying synaptic plasticity, by forming
heteromeric ICA69-PICK1 complexes and preventing for-
mation of PICK1- PICK1 homomeric complexes [81].
Spitzenberger et al. demonstrated that mutation of ICA69
homologue gene ric-19 in C. elegans leads to impairment
of acetylcholine release at neuromuscular junctions sug-
gesting role of ICA69 in neuroendocrine secretion [82].
AMPH]1 gene encodes for protein amphiphysin I, an im-
portant regulator for synaptic vesicle endocytosis (SVE)
when massive amounts of Ca** flow into presynaptic ter-
minals, a phenomenon observed in AD [83]. In AMPH1
knockout mice, decreased synaptic vesicle recycling effi-
ciency and cognitive deficits has been observed [84]. In
a recent study, AMPH1 level is found to be reduced in
AD brain regions known to accumulate aggregates of hy-
perphosphorylated tau proteins [85]. Further, stimulated
neurons are also shown to abnormally accumulate amphi-
physin, at the membrane during Af treatment [86].

Interestingly, ATPSH/KCTD?2 locus is reported as the
major candidate gene associated with AD pathogenesis
in the study by Boada et al. [44] that is used in this study
as the replication dataset. ATP5SH gene encodes for mito-
chondrial ATP synthase that plays an important function
in mitochondrial energy production and neuronal hyper-
polarization during cellular stress conditions, such as
hypoxia or glucose deprivation [44]. EGFR gene encodes
for epidermal growth factor receptor protein, a cell sur-
face protein that binds to epidermal growth factor. It has
been put forward as a preferred target for treating amyl-
oid beta induced memory loss in a recent study by
Wang L et al. [87]. Interestingly, it has come up as one
of the most significant candidate in our study occurring
in top 10 ranked genes among 108 candidates, as central
hub node in cluster and in the overlap of AD protein
and proteins from plasma and CSF proteome. Increased
expression of EGFR is observed in fibroblasts deficient
in PS/gamma-secretase activity or APP expression [88].
Further, studies also indicate role of PS1 in trafficking
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and turnover of EGFR as well as perturbed endosomal-
lysosomal trafficking in cell cycle control and Alzheimer
disease and suggest potential pathogenic effects of ele-
vated EGFR [89]. In a recent study, altered EGFR tran-
script levels are reported among APOE4 (high risk) when
compared to APOE3 (low risk) genotype groups [90].

A major candidate gene for LOAD due to its role in
cholesterol transport and metabolism is ABCAI gene that
encodes for ATP-binding cassette transporter Al, a
membrane-associated protein. Increased expression of
ABCAI is highly correlated with severity of dementia in
AD HIP [91]. Further, ABCA1 has been shown in mouse
models of AD to enable the clearance of AP from the
brain, through its role in the apolipoprotein (APOE) lipi-
dation in the CNS [92-95]. In APP transgenic mice,
ABCA1 deficiency increased AP deposition in the brain
paralleled by decreased levels of ApoE [96]. In addition,
ABCAL1 is also found to be up-regulated in primary mouse
cortical neurons and cultured astrocytes in response to
oligomeric AB42 [97,98]. Recent studies pointed out that
ABCA1 mediates the beneficial effects of the liver X re-
ceptor (LXR) agonist GW3965 on object recognition
memory and amyloid burden in APP/PSlmice [99,100].
Based on strong evidence the LXR-ABCA1-APOE regula-
tory axis is now considered a promising therapeutic target
in AD [101]. However, a meta-analysis report of 13 studies
involving a total of 12,248 subjects failed to find asso-
ciation of common SNPs in ABCA I with AD risk [102]. In
contrast, Lupton et al. in a very recent study sequenced all
ABCAI coding regions in 311 LOAD cases and 360 con-
trol individuals of Greek ethnicity and observed signifi-
cantly higher proportion of rare non-synonymous variants
in control individuals compared to AD cases. These find-
ings suggest that high throughput sequencing may identify
rare variants that are left undetected by GWAS [92].
ACTB gene encodes for protein 3-actin. It is found to have
the worst candidate with reliable expression among a set
of suitable endogenous reference genes (ERG) in human
post-mortem brain when used for the expression analysis
of potential candidate genes associated with AD [103].
ACTB was found to be upregulated by 10.2 folds in AD
cerebral cortex compared with age-matched control brain
[104]. Further, immunoprecipitation of proteins from AD
and control brain showed oxidative modification of B-
actin in the AD brain [105]. In addition, B-Secretase-
cleaved APP is shown to accumulate at actin inclusions in
neurons induced by stress or AP [106]. Several recent
studies also indicate that abnormalities of actin cytoskel-
eton may play a critical role in AD pathology by mediating
synaptic degeneration [107,108].

We aimed to identify direct protein interactors of pro-
teins encoded by identified 108 candidate genes by
PPI network modelling with an assumption that they
might provide important biological information related to
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molecular mechanisms underlying AD development and
progression. PPI network was obtained by using APID2-
NET plugin in Cytoscape and included 640 protein nodes
and 2214 edges. It was converted to a layered network
based on subcellular localization information. We ob-
served that majority of the proteins were localized in cyto-
plasm followed by nucleus. Further, we applied MCL
clustering algorithm to identify functional modules with
proteins forming hub nodes (EGFR, ACTB, CDC2, IRAK2,
APOE, ABCA1 and AMPH) which might serve as import-
ant candidates related to AD [50]. For instance, CDC2
[109,110], IRAK2 [111] have been reported in recently
published studies with suggestive role in AD pathogenesis.
GO analysis was also carried out using 108 genes to iden-
tify biological processes, molecular functions and cellular
components. Top 11 annotation clusters with enrichment
score > 1.3 included genes involved in diverse biological
processes related to AD such as neurogenesis (DFNB31,
PTK2B, RET, DLL3, APOE, CRX, ACTB, NRP1, LMXIA,
PIP5KIC, ZNF488), regulation of neurogenesis (DLL3,
APOE, CRX, NRP1, LMXIA, ZNF488), peptidyl tyrosine
phosphorylation (TYK2, PTK2B, DDR2, SYK), cytoplasmic
membrane-bounded vesicles (PLA2G4A, ABCAI, HIPI,
AMPH, HGE SFTPD, EGFR, ICA69, ATP8B3, RPNI),
regulation of MAP kinase activity (PTK2B, LPARI, APOE,
RGS4, HGE EGFR, SYK), kinase activity (PTK2B, TYK2,
NMES, DDR2, NRPI, PIPSKIC, EGFR, RET, PAK4, IPMXK,
POLR2E, ADK, SYK), purinergic nucleotide receptor
activity, G-protein coupled (SUCNRI, P2RY12, P2RY14),
neuron development (DFNB31, PTK2B, RET, ACTB,
NRP1, LMXIA, PIPSKIC, EGFR), response to calcium ion
(PLA2G4A, PTK2B, ACTB, EGFR), sensory perception of
light stimulus (DFNB31, RGS16, PCDHI5, CRX, RIMS],
ELOVL4, OPNS5), endocytosis (ABCAI1, APOE, HIPI,
AMPH, ELMO1, SFTPD).

In addition, potential CSF and plasma/serum based
biomarkers were identified from the overlap of 108 and
640 AD proteins separately with proteins from CSF and
plasma proteome. This resulted in the identification of 3
proteins and 38 proteins as potential biochemical bio-
markers for AD among 108 and 640 identified protein
datasets, respectively. Among these proteins, the CSF or
plasma level of, APOE [112-120], EGFR [121] proteins
have been reported to be altered in previous AD studies.

For validation of our approach, we have applied our
rank based scoring method to identify PD candidate
genes using three (GWL, GWA and GWE) datasets and
then we compared PD candidate genes with those iden-
tified in analysis of AD datasets to check the robustness
of our approach. We failed to find significant overlap in
genes between AD and PD dataset in our study, which is
further substantiated by a recent meta-analysis carried
out by Moskvina et al. that combined the AD and PD
GWA studies and failed to identify any significant
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evidence to support a common genetic risk between AD
and PD [122]. Further, the author failed to find loci that
associate with increased risk of causing both PD and
AD. In addition, it is proposed that the pathological
overlap among AD and PD proteins may occur at a later
stage during disease progression suggesting interaction
of genes from downstream cascade with susceptibility
genes that increase the risk of each disease [122]. Few
studies investigated simultaneous co-occurrence of AD
and PD in families but yielded inconsistent results. In
general, studies have reported either no risk of AD in
the relatives of subjects with PD or an increased risk of
AD in younger subjects with PD or those with cognitive
impairment [123-125].

The recent association of several genes identified in our
study to AD provides an immediate support of our work
and prioritization of such candidates clearly indicates the
efficiency and importance of our method. Our approach
provides a list of AD candidate genes that are promising
for further analysis by exploration of biological functions.
The other most common candidate gene prioritization ap-
proaches use single-dimentional data-source and are
based on direct PPI of the genes that are being studied.
However, currently only ~10% of all human PPI have been
described which is a major drawback of these approaches
[126]. Here, we have tried to address these issues by using
multi-dimensional data and exploiting the clustering of
PPI network for identification of functional modules. Still,
the limitations of our study include constraints in the gene
annotation in the selected linkage regions and the avail-
ability of raw genome-wide data. Owing to these limita-
tions, it is possible that a few putative candidate genes
may have been missed out in this study during the screen-
ing process. Further, extensive experimental validation of
candidate genes from our analysis is warranted in future.

Conclusion

To achieve better identification of complex disease asso-
ciated genes, it is imperative to use integrative approach
with disease specific methodologies. We performed inte-
grated analysis of three different datasets — GWL,GWA
and GWE and developed a rank based scoring method
which resulted in the identification of 108 putative AD
candidate genes. Further, network analysis led to a PPI
with 640 nodes and clustering of this network resulted
in 6 significant clusters with 7 genes forming central
hub nodes. Finally, 3 biochemical biomarkers were also
identified from the overlapping genes between 108 AD
proteins and proteins in CSF-plasma proteome. EGFR
and ACTB were found to be the two most significant
AD risk genes ranked 8 and 10 among 108 genes re-
spectively, present as central hub nodes in respective
clusters and also as potential biochemical biomarker.
We believe that our findings would provide a wealth of
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information for future experimental and clinical valid-
ation in AD pathogenesis and therapeutics.

Methods

Genetic linkage data retrieval and processing

We used linkage regions from AlzGene database which
were based on the results of meta-analyses [32] and
combined analysis [33] of previously published genome-
wide linkage (GWL) data. In our study, linkage regions
with LOD scores>2.0 or p value <0.05 linked to AD
were selected for further analysis. The chromosomal co-
ordinates for each linkage region were retrieved using
UCSC genome browser. These were then used to extract
genes from GeneWanderer web server [41] which pro-
vides a method for prioritization of candidate genes by
using four different ranking strategies (random walk, dif-
fusion kernel, shortest path and direct interaction) on a
PPI network. We used random walk since it has been
showed to outperform the others [41,127,128].

Genome wide association data retrieval and processing
We used SNPs with pre-computed p values from a re-
cently published GWA study performed under the Inter-
national Genomics of Alzheimer’s Project (I-GAP) banner
[34]. The data are available for download from the follow-
ing link: http://www.pasteur-lille.fr/en/recherche/u744/
Igap_stagel.zip. The study performed meta-analysis on
genotyped and imputed data (7,055,881 SNPs) from 4
previously published GWAS [ADGC, CHARGE, EADI,
GERD consortium datasets] comprising 17,008 cases
and 37,154 controls (stage 1). A total of 19,532 SNPs
were found to be associated with AD risk and having p
value < 1 x 1072 after stage 1 meta-analysis. For replica-
tion analysis, we have used another GWA dataset from
Boada et al. [44] that included genotyped and imputed
SNPs (1,098,485) from 7 reported GWAS (Antunez et al.
[129], TGEN [130], ADNI [131], genADA [132], NIA
[133], Pfizer [134], GERAD [135]) comprising ~8082 cases
and ~12040 controls for stage I meta-analysis. With this
cohort used in stage I analysis with P < 0.001, 1202 SNPs
were obtained. These data are available as Supplementary
Table S4 in the study by Baoda et al. [44].

The SNPs were mapped to genes using NCBI variation
reporter tool, SCAN database [42] and SPOT tool [43].
SNPs, which remained unmapped, were excluded from
further analysis. SPOT tool implements the Genomic In-
formation Network prioritization method and provides a
prioritization score that represents an order of magni-
tude change in p value from a test for association. SPOT
score takes into account SNPs functional properties (in-
cluding nonsense, frameshift, missense and 5 and 3’-
UTR designations), impact of an amino acid substitution
on the properties of the protein product from PolyPhen
server [136,137], evolutionary conserved regions from
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ECRbase [138], all possible LD proxies - SNPs with e
over a predefined threshold in a specific HapMap sam-
ple [139].

Gene expression data retrieval and processing

We retrieved the gene expression data from NCBI GEO
(GSE5281) database (www.ncbi.nlm.nih.gov/geo) [38]. It
contained expression data from six functionally and ana-
tomically distinct regions in human brains, including EC,
HIP, MTG, PC, SFG and VCX. The data included 161
samples and each brain region contains AD cases versus
normal controls. GEO2R web application, available at
http://www.ncbi.nlm.nih.gov/geo/geo2r/, was used for R-
based analysis of GEO data [38]. The numbers of samples
in each region of control/affected cases were 13/10 of EC,
13/10 of HIP, 12/16 of MTG, 13/9 of PC, 11/23 of SFG
and 12/19 of VCX. In our study data from all 6 regions
were analysed separately and then merged. For replication
analysis, we used another GWE dataset - GSE15222 that
comprised expression data from post-mortem brain cor-
tical regions of 176 late-onset AD cases and 188 controls.
On the GEO2R web interface, after the GSE5281 series
were specified, a table populated with sample characteris-
tics appears. The AD and control sample groups were des-
ignated to compare for each brain region separately.
Default analysis setting with Benjamini & Hochberg (False
discovery rate) for p value adjustments was used.

Probe sets that were not associated with known genes
were removed from further analysis. If multiple probe sets
represented the same gene and they showed same direc-
tion of expression, the probe set with the highest variance
was used. If the direction of expression for multiple probe
set was different then they were excluded from further
analysis. The genes with adjusted p value < 0.05 and fold
change > 2.0 for upregulated genes and < 0.5 for downreg-
ulated genes were selected. The genes from the six brain
regions were merged and duplicates were removed.

Filtering and scoring of genes from data sets

The genes in all the three datasets were assigned HGNC
(HUGO Gene Nomenclature Committee) ids separately
[140]. The pseudogene, hypothetical, loci, non-coding
RNA, non-protein coding genes, non-functional proteins,
open reading frames (orf), chromosome X (Xp; Xq), with-
drawn entries, antisense RNA, microRNA, uncharacter-
ized genes were excluded from each data set for further
analysis. The genes were ranked in GWL and GWA data-
sets by score and weighted p value obtained through Gen-
eWanderer [41] and SPOT web servers [43], respectively.
The genes in GWE dataset were ranked by adjusted or
unadjusted p value obtained after analysis with GEO2R
web tool. The genes, with higher weight or lower p
value, were assigned higher ranks. The genes, appearing
in all the three dataset, were identified and cumulative
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rank score for each gene was calculated using the follow-
ing equation -

Sr, = rewe, + rewi, + rewas,
where,

S, = Cumulative rank score for gene,

(wherei=1,2,3.....108)
rewe, = rank of gene; in GWE dataset
rewr, = rank of gene; in GWL dataset
rewas; = rank of gene; in GWA dataset

Based on their rank score the genes were re-ranked
with one having the lower cumulative rank score getting
the higher rank.

Protein-protein Interaction network, layering and network
analysis

To identify the direct interacting partners of the putative
genes identified in this study from integrative analysis of
three different data types, we built a PPI network using
plugin APID2NET in Cytoscape version 2.8.1 [48] as de-
scribed by Silla et al. [141]. Briefly, the APID2NET
(APID) server creates PPI network of user-provided pro-
teins using literature-curated protein interaction infor-
mation from various databases such as BIND, BioGrid,
DIP, HPRD, IncAct and MINT. UniProt ids of the 108
putative AD target genes were retrieved using uniprot id
mapping tool (http://www.uniprot.org) [142] and pro-
vided as input ids in APID server to build the interaction
network. For creating a PPI network, we first considered
only those interactions supported by at least two experi-
mental validations in order to minimize false-positive in-
teractions. However, for proteins lacking interacting
partners validated by two experiments, the interacting
partners with one experimental validation were consid-
ered resulting in another PPI network. Three Cytoscape
tools viz Advance Network Analyzer [143], Cerebral [52]
and clusterMaker [37] were then applied for modelling
PPI network. The Advanced Network Merge was used
to model a final PPI network by taking union of both
the PPI networks and for removal of duplicated edges
and self loops. Isolated nodes were also manually re-
moved from the final PPI network. Protein sub-cellular
localization information for 635 proteins were retrieved
from uniprot database [142] and for remaining 56 genes
from human protein atlas [144] which were imported as
node attributes in cytoscape. Then Cytoscape plugin
“Cerebral” v.2.8.2 was applied to the final network to lay-
out all nodes according to their sub-cellular localization
such as plasma membrane, cytoplasm, nucleus, golgi ap-
paratus, extracellular matrix, endoplasmic reticulum
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(ER), lysosome and mitochondria. Further, Markov Clus-
ter algorithm (MCL) [50,145] which was implemented in
the “clusterMaker” v.1.9 plugin [37] in cytoscape was
used on the PPI to create clusters with the hub nodes.
The MCL algorithm has been used specifically to cluster
simple graphs and weighted graphs by calculating suc-
cessive powers of the associated adjacency matrix also
called as Markov matrices which capture the mathemat-
ical concept of random walks on a graph [50].

GO annotation analysis

To assess the identified candidate genes in the context of
GO, the DAVID functional annotation tool (version 6.7)
[38,39] was used. The functional annotation clustering of
significantly over-represented GO term: cellular compart-
ment (CC), molecular function (MF) and biological process
(BP) was retrieved by using options GOTERM_CC_ALL,
GOTERM_MF_ALL and GOTERM_BP_ALL. The default
setting parameters and multiple corrections by the
Benjamini method were used to determine the signifi-
cant enrichment score of 1.3 [38,39].

AD putative biochemical biomarkers analysis

To identify putative biochemical biomarker associated
with AD, CSF and plasma proteins were retrieved from
Sys-BodyFluid Database [146]. The 108 target genes were
mapped to their corresponding uniprot ids using ID map-
ping tool available at http://www.uniprot.org [142]. The
venn diagram of the overlapping proteins in all the three
datasets (GWL,GWA and GWE) was created using Gene-
Venn tool [147] by taking intersection among these data
sets.

Additional files

Additional file 1: AD GWA and GWE replication datasets. The file

contains the list of 294 genes from AD GWA replication dataset (Boada
et al) and list of 182 genes from AD GWE replication dataset (Webster
et al, GEO:GSE15222).

Additional file 2: Final list of AD genes from three data sets and
final list of ranked 108 genes. The file contains the list of genes from
three datasets, final overlapping 108 genes ranked by their cumulative
rank score.

Additional file 3: Venn diagrams of overlapping genes from
independent analysis of genes from 6 brain region separately with
GWA and GWL datasets. The file contains Venn diagrams of genes from
three datasets, final overlapping 108 genes ranked by their cumulative
rank score.

Additional file 4: List of overlapping genes from independent
analysis of genes from 6 brain region separately with GWA and
GWL datasets. The file contains the list of genes from three datasets,
final overlapping 108 genes ranked by their cumulative rank score.

Additional file 5: Clusters identified from PPI using MCL algorithm

implemented in clusterMaker. The file details the 69 clusters identified
by MCL algorithm from the PPI containing 640 genes.
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Additional file 6: Annotation clusters from DAVID. The file contains
top 11 and 10 annotation clusters with GO analysis from DAVID for 108
and 640 genes respectively.

Additional file 7: Putative AD specific biomarkers among 640 AD
proteins and proteins from CSF and plasma proteome. The file
contains Venn diagram showing overlap of 640 AD proteins and proteins
from CSF and plasma proteome.

Additional file 8: Final list of PD genes from three data sets and
final list of 59 candidate overlapping genes. The file contains the list
of genes from three datasets, final overlapping 59 candidate genes.
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