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Abstract

Background: A protein may bind to its target DNA sites constitutively, i.e., regardless of cell type. Intuitively,
constitutive binding sites should be biologically functional. A prerequisite for understanding their functional
relevance is knowing all their locations for a protein of interest. Genome-wide discovery of constitutive binding sites
requires robust and efficient computational methods to integrate results from numerous binding experiments. Such
methods are lacking, however.

Results: To locate constitutive binding sites for a protein using ChIP-seq data for that protein from multiple cell
lines, we developed a method, T-KDE, which combines a binary range tree with a kernel density estimator. Using
132 CTCF (CCCTC-binding factor) ChIP-seq datasets, we showed that the number of constitutive sites identified by
T-KDE is robust to the choice of tuning parameter and that T-KDE identifies binding site locations more accurately
than a binning approach. Furthermore, T-KDE can identify constitutive sites that are missed by a motif-based
approach either because a bound site failed to reach the motif significance cutoff or because the peak sequence
scanned was too short. By studying sites declared constitutive by T-KDE but not by the motif-based approach, we
discovered two new CTCF motif variants. Using ENCODE data on 22 transcription factors (TF) in 132 cell lines, we
identified constitutive binding sites for each TF and provide evidence that, for some TFs, they may be biologically
meaningful.

Conclusions: T-KDE is an efficient and effective method to predict constitutive protein binding sites using ChIP-seq
peaks from multiple cell lines. Besides constitutive binding sites for a given protein, T-KDE can identify genomic
“hot spots” where several different proteins bind and, conversely, cell-type-specific sites bound by a given protein.

Keywords: Binding pattern, ChIP-seq, Kernel density estimation, Binary range tree, Mode-finding, Constitutive site,
CTCF code
Background
Transcription factors (TFs) are important components of
gene transcriptional regulation. The binding of a TF to a
specific locus can be developmental-stage or cell-type
specific; alternatively, as growing evidence suggests,
sometimes a protein binds to a specific locus constitu-
tively, i.e., in all the cell types studied so far. A good ex-
ample is the CCCTC-binding factor (CTCF). Studies using
chromatin immunoprecipitation followed by microarray
(ChIP-chip) or sequencing (ChIP-seq) showed that, unlike
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many other TFs/proteins, a portion of the CTCF sites are
constitutively bound [1,2] as illustrated in Figure 1. We be-
lieve that these constitutive binding sites are likely to
have unique or fundamental biological roles. Recently,
we carried out a comprehensive analysis of the 116
CTCF ChIP-seq datasets from 56 cell lines from the
ENCODE (Encyclopedia of DNA Elements) consortium
and identified ~24,000 CTCF binding sites that were
bound in more than 90% of the 56 cell lines [3] . Because
these constitutive CTCF binding sites were enriched
among CTCF-mediated long-range chromatin interac-
tions in K562 and MCF7 cell lines, we hypothesized
that these constitutive CTCF binding sites might play
a role in maintaining and/or establishing chromatin
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Figure 1 An example of one constitutive and one non-constitutive CTCF binding site in a restricted region on chromosome X. Each
track (for the cell line indicated on the left) displays the CTCF binding profile in the region using UCSC big wiggle format. The locus to the right
of center where a CTCF binding peak appears in all cell lines displayed would be declared constitutive whereas the locus to the left of center
where a binding peak is present less often would be non-constitutive.
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structures common to all cell types [4]. Thus, we see
value in locating constitutive binding sites for other
DNA binding proteins as a possible window into highly
conserved biological processes.
Many TFs bind to DNA directly and have well-defined

motif models. For such TFs, binding sites may be located
by scanning their ChIP-seq peak sequences with motif
models like position weight matrices (PWM) [5]. Using
ChIP-seq data for the same TF from a number of cell
lines, one would consider a binding site constitutive if it
were found in a sufficiently high proportion of the avail-
able cell lines/types. We refer to this as the motif-based
approach. Not every transcription factor has a known
binding motif, however. Among the ~1,400 sequence-
specific DNA-binding transcription factors in the human
genome [6], only about 10-20% of them have known
binding motifs [7]. Thus, while the motif-based ap-
proach should work well for factors with well-defined
PWMs such as CTCF, it will fail for TFs lacking reliable
PWMs or for proteins that do not always bind to their
target DNA sites directly.
A simple alternative approach, one that accommodates

TFs that binds indirectly or that lack a well-defined
PWM, is to divide the genome into fixed width bins and
count the number of peak centers from ChIP-seq that
fall into each bin, e.g., [8] and [9]. Bins containing peak
centers for a sufficiently high proportion of the available
cell lines/types are declared as constitutive. Although
this binning method is simple, intuitive and commonly
used in genome analysis, it suffers from several draw-
backs, including a boundary effect where which of two
adjacent bins contains a peak center may be ambiguous.
Our T-KDE approach is based on the following idea. If

a particular genomic locus is bound by a protein in all
available cell lines, then the centers of all ChIP-seq
peaks, one from each cell line, at that locus should be
within close proximity (as in Figure 1). We aimed to sys-
tematically identify such sites from ChIP-seq experi-
ments that target the same protein in multiple cell lines
by simultaneously analyzing peak centers across all the
experiments.
Our goal is distinct from peak calling in a single ChIP-

seq experiment. A ChIP-seq peak is a genomic region
(~100 to 500 bps for a typical transcription factor)
enriched with sequence reads and identified using a
peak-calling algorithm, e.g. [10,11]. Various peak calling
algorithms find genomic regions enriched for a binding
signal in a variety of data types. These include Hidden
Markov Model (HMM)-based peak calling algorithms
for ChIP-seq data [11], for ChIP-chip data [12,13], and
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for MeDIP-seq data [14]. All identify peaks by modeling
emission and transition probabilities using multiple
states and exploiting distinct signal signatures in differ-
ent states.
Despite the distinct goals, another approach for detect-

ing constitutive protein binding sites might be to apply
existing peak-calling tools to the original ChIP-seq reads
from multiple cell lines simultaneously, expecting that
constitutive binding sites will exhibit especially high
peaks. Such an approach has several drawbacks. First,
BAM files from individual ChIP-seq experiments can be
very large, so that combining and processing BAM files
from tens or hundreds of experiments together will be
computationally intensive. Secondly, combining read
counts from multiple data sets where some binding oc-
curs at loci common across many data sets and some
binding occurs at loci specific to particular data sets will
introduce unusual patterns variation in reads counts that
could bias estimation of background rates. For tools that
require estimation of background models, this feature
may compromise their ability to reliably detect constitu-
tive binding sites. Finally, the definition of constitutive
binding site in terms of binding in most cell lines to the
same site does not directly translate to a criterion based
on peak height in a combined BAM file. Consequently,
declaring a constitutive peak seems to require mapping
all reads under each detected peak back to their original
BAM files – an additional computational burden.
In this paper, we propose an effective and efficient al-

ternative to binning for locating binding sites for TFs
that may bind directly or indirectly. Like binning, it uses
peak centers from ChIP-seq as input data. Our algo-
rithm, T-KDE, identifies binding site locations by com-
bining a kernel density estimator (KDE) with a binary
range tree. Kernel density estimation, also known as the
Parzen window method, is an unsupervised and non-
parametric technique for estimating a continuous prob-
ability density function from sample data [15,16]. Because
KDEs can converge asymptotically to any density function
[16], they are widely used and have been applied to many
genomic problems such as ChIP-seq peak calling [17],
analyzing nucleosome positioning [18] and detecting tran-
scription factor binding motifs based on their over-
representation in regulatory regions [19]. In this paper, we
use a KDE to find those genomic regions that contain the
highest density of ChIP-seq peak centers from multiple
cell lines/types for a given TF. Use of a binary range
tree in conjunction with kernel density estimation en-
hances T-KDE’s speed. A binary range tree is a helpful
algorithm for many applications involving range or
nearest neighbor searches, indexing and clustering
[20-22]; we use it to recursively subdivide the set of
peak centers into subgroups that allow efficient density
estimation and mode finding.
Using information on the location of peak centers
from 132 CTCF ChIP-seq datasets from the ENCODE
project, we compared T-KDE to both the motif-based
approach and the binning approach. T-KDE outper-
formed the binning approach and was competitive with
the motif-based approach. More than 90% of the T-
KDE-declared constitutive CTCF binding sites were
within 20 base pairs (bp) from the nearest motif-
declared constitutive CTCF binding sites (16-bp canon-
ical motif ) — indicating that T-KDE is highly accurate.
In addition, T-KDE also identified additional constitutive
CTCF binding sites that the motif-based approach failed
to find due to lack of apparent motif sites in the ChIP-
seq peaks. We also applied T-KDE to 21 other proteins
for which replicate ChIP-seq datasets were available in
six or more cell lines and found that the number of con-
stitutive binding sites varied from less than a hundred to
tens of thousands. Gene ontology (GO) analysis of the
genes with constitutive binding sites in their promoters
suggests that constitutive binding sites for several of the
proteins are biologically meaningful.

Methods
Data
We downloaded data on ChIP-seq peaks for 22 tran-
scription factors (in Additional file 1: Table S1) from the
ENCODE portal at the UCSC Genome Browser [23].
(The complete list of datasets and their unique identi-
fiers can be found in Additional file 1: Table S2.) For
each ChIP-seq peak, we calculated the location of the
peak center as half the sum of the start and end coordi-
nates for the peak, and we used these locations for sub-
sequent analysis.

Location of constitutive CTCF binding sites via motif
model: our “gold standard”
For each of 132 CTCF ChIP-seq datasets with at least
one replicate, we extended/trimmed each peak to 200 bp
in length from its center. We then used a custom Python
code to extract the sequences from the GRCh37 assem-
bly stored locally. Next, we predicted the locations of the
CTCF binding sites in the sequences using the GADEM
software [24] with a CTCF position weight matrix
(PWM) derived previously [24] (see in Additional file 1:
Table S3). We declared a subsequence a CTCF binding
site when its PWM score exceeded the score corre-
sponding to the p-value cutoff of 0.0005. When more
than one CTCF site was found in the sequence for a sin-
gle peak, only the highest scoring site (with the lowest
p-value) was retained for that peak. When a CTCF bind-
ing site was found in two or more replicate datasets
representing a single cell line, the site was declared
present in that cell line. A CTCF binding site was con-
sidered a constitutive binding site when the same motif
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site was present in more than 90% of the 55 cell lines.
We used the center of the motif site as the location of
the motif-based binding site.

Identification of constitutive binding sites via binning
We divided each chromosome of the human genome
into bins of equal size beginning at the centromere and
proceeding outward along each arm (the final bin on
each arm might be smaller than the others). The center
of any bin containing peak centers from at least 2 repli-
cate datasets from the same cell line was declared a
binding site location as before, and those bins containing
peak centers for more than 90% of the cell lines were de-
clared constitutive. We examined this binning procedure
with various bin sizes ranging from 100 to 1000 bp.

Identification of constitutive binding sites via T-KDE
Overview
For ChIP-seq datasets from multiple cell lines, T-KDE
identifies genomic regions where peak centers occur.
T-KDE starts by partitioning the locations of peak cen-
ters into subsets, called terminal nodes, using a binary
range tree algorithm (step 1 in Figure 2). For each ter-
minal node, T-KDE uses kernel density estimation to
estimate a probability density using all peak centers in
the node, the relative frequency with which a peak cen-
ter will occur near each location along the portion of
the genome spanned by the terminal node (step 2). In
step 3, for each node, T-KDE finds all local maxima
and minima of the estimated probability density
Figure 2 A schematic overview of T-KDE.As input, T-KDE uses the loc
not the sequence reads. Step 1: order the peak centers for a TF from all c
using a binary range tree algorithm. Solid circles indicate terminal nodes. S
Horizontal lines represent ChIP-seq peaks with dots indicating their centers
mode finding algorithm to each terminal node’s density estimate to identi
function shown has four local maxima (the rightmost two almost coincide)
vertical lines mark boundaries of the modal regions.
function and uses them to define modal regions. The
location of each local maximum is taken as a “binding
site” location. In this analysis, we required that a modal
region contained peak centers from at least two data
sets from the same cell line. This requirement is meant
to reduce false positives (but could be relaxed). A bind-
ing site is declared constitutive when its modal region
contains peak centers from at least two replicate data-
sets per cell line for more than 90% (an arbitrary cutoff
that the user can specify) of the available cell lines.
Below, we describe each step in more details; the algo-
rithm is provided in Additional file 2.

Binary range tree
A binary range tree is an algorithm that produces a
structure with all data points stored in the leaves
(terminal nodes) of the tree for efficient data retrieval
and manipulation [25]. In our application, we construct
a separate range tree for each chromosome. Initially, all
peak centers on the chromosome (from all ChIP-seq
data sets for the given TF) are ordered from the smallest
to the largest according their genomic locations and
placed in the top node. Then, the midrange (mean of the
minimum and maximum locations) is used to partition
the peak centers into two sub-nodes: the left sub-node
contains peak centers whose locations are less than the
mid range whereas the right sub-node contains peak
centers whose locations equal or exceed the midrange.
This process continues recursively within each sub-node
until a stopping criterion is satisfied. In our case, a sub-
ations of peak centers (defined by chromosome and coordinate),
ell lines together and partition them into subsets (terminal nodes)
tep 2: apply KDE to estimate a density function for each terminal node.
. The blue curve is the estimated density function. Step 3: apply a
fy the modal regions associated with each local maximum. The density
; a horizontal red bar marks the constitutive modal region and seven
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node becomes a terminal node when further partitioning
it would result in one or two of its children nodes con-
taining peak centers for fewer than 90% of available cell
lines. Although each terminal node in our tree contains
peak centers from at least 90% of the cell lines, each ter-
minal node may contain zero, one, or more constitutive
binding sites as determined by the subsequent KDE ana-
lysis and mode finding.

Kernel density estimation
Kernel density estimation provides a way to estimate the
probability density function of a random variable with-
out assuming a particular parametric form [15,26,27].
For N independent samples {x1, x2,…, xN} drawn from
the same unknown distribution with density f, a kernel

density estimate of f at any point x, f̂ xð Þ, is given by:

f̂ xð Þ ¼ 1
N

XN
i¼1

1
N
k

x−xi
h

� �
; ð1Þ

where h represents the bandwidth, a user-defined tuning
parameter that controls the smoothness of the resulting
estimate. The kernel K(•) is a symmetric (not necessarily
positive) function that integrates to one, i.e., ∫K(x)dx = 1.
The kernel function serves to smear the probability mass
of each data point across a local region.
T-KDE uses the Gaussian kernel, the density function

for a Gaussian random variable with mean zero and vari-
ance one, defined as:

K xð Þ ¼ 2πð Þ−1=2exp − x2=2
� �� � ð2Þ

With this kernel, each term in the sum of equation (1)
is a Gaussian density with mean xi and standard devi-

ation h. Thus, equation (1) states that the estimate f̂ xð Þ
at any location x is formed by averaging contributions
from Gaussian densities with standard deviation h and
means at the observed peak centers. The basic opera-
tions of kernel density estimation used by T-KDE have
been modified directly from the KDE Toolbox for
Matlab [28].

Mode finding in Gaussian mixture models
To find local maxima and minima of the estimated
density function, we adapted a fixed-point iterative
search scheme [29]. Our kernel density estimate is an
equally weighted mixture of Gaussian densities where
the mean of each component is an observed peak center.
Such a Gaussian mixture has, at most, as many local
maxima as it has components. If peak centers are far
apart relative to the bandwidth, each peak center will
yield a local maximum. If peak centers are close relative
to bandwidth, a local maximum must be between their
smallest and largest smallest locations. Thus, within each
terminal node, we can use a “hill-climbing” algorithm
starting from every peak center to locate all the local
maxima and minima. Once we find a location whose
gradient is zero using Newton’s method, we use a second
derivative test to determine whether it is a maximum or
a minimum. Modal regions are defined as extending
from the observed peak center farthest to the left of the
local maximum but no farther than the next local mini-
mum to the similarly delimited observed peak center far-
thest to the right. (With this definition, modal regions
containing a single peak center have width zero.)

Gene ontology
We used DAVID [30] to analyze gene ontology (GO).
We assigned a constitutive binding site to a gene(s) if
the site was located within ±5kb from the gene’s tran-
scription start site using the UCSC refGenes model
(hg19). All unique genes that were within the distance
were included in the GO analysis.

Results
Utility of the binary range tree
Without initial data partition using the binary range tree,
KDE analysis and mode finding on even a single
chromosome is computationally prohibitive; estimating
the density, rather than finding the local maxima/
minima, is the bottleneck. For the CTCF datasets, ana-
lysis of chromosome 1 took less than half an hour with
the binary range tree compared to more than 5 days
without it (in Additional file 1: Table S4). The loca-
tions of sites declared constitutive using KDE with and
without the binary range tree were nearly identical (in
Additional file 3: Figure S1).

Bandwidth and bin width selection
The bandwidth (h) of a kernel in KDE estimation and
the bin width in the binning approach are tuning param-
eters whose choice influences each method’s perform-
ance in locating binding sites (see Method section).
Thus, selection of an appropriate bandwidth or bin
width is crucial to accurate identification of binding
sites. We systematically tested several different choices
for their performance in identifying binding sites using
the 132 CTCF ChIP-seq datasets (55 unique cell lines
with two or more replicate experiments). We used both
binning and T-KDE to identify binding site locations
chromosome by chromosome, declaring a binding site
constitutive if the corresponding bin or modal region
contained peak centers from at least two replicate data-
sets per cell line for more than 90% of available cell
lines. Both the total number of binding sites and the
number of constitutive binding sites identified depended
on the method (binning vs. T-KDE) and on the value of
the corresponding tuning parameter (Table 1). For T-KDE,



Table 1 Observed number of CTCF binding sites on 23
chromosomes

Bandwidth
or bin

width (bp)

T-KDE Binning

Number of declared sites Number of declared sites

Total Constitutive Total Constitutive

100 142,087 21,812 200,907 2,815

200 133,194 21,884 178,992 11,114

300 128,303 21,834 169,610 14,543

400 124,552 21,750 163,191 16,593

500 121,303 21,690 158,106 17,687

600 118,408 21,606 154,369 18,267

700 115,859 21,523 151,016 18,911

800 113,530 21,464 148,453 19,370

900 111,222 21,375 146,293 19,511

1,000 109,188 21,314 144,005 19,803

Figure 3 Performance of T-KDE and binning. (A) Proportion of
T-KDE-declared constitutive CTCF binding sites whose distance
from the nearest motif-based constitutive CTCF binding site on 23
chromosomes is less than distance d plotted as a function of d for
various bandwidths. (B) Proportion of binning-declared constitutive
CTCF binding sites whose distance from nearest motif-based
constitutive CTCF binding site on 23 chromosomes is less than
distance d plotted as a function of d for various bin widths.
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as expected, the total number of modal regions decreased
as the bandwidth increased since a larger bandwidth re-
sults fewer but broader modal regions; however, the
number of constitutive binding sites remains relatively un-
changed. For binning, the number of total binding sites
also decreased with increasing bin width because the num-
ber of bins, hence, the number of possible binding sites,
decreased with increasing bin width, however, the number
of constitutive binding sites increased with bin width be-
cause wider bins accumulate adjacent binding sites into the
same bin, wrongly declaring several non-constitutive sites
amalgamated into the same bin as constitutive.
Applying the motif-based approach to the same 132

CTCF ChIP-seq data sets with the same criteria (a bind-
ing site must be present in at least two replicate datasets
per cell line and a constitutive binding site being present
in more than 90% of the cell lines) identified 17,575 con-
stitutive CTCF binding sites (the canonical 16-bp motif
site). We regarded those motif-based constitutive CTCF
biding sites as an “alloyed gold standard”. We have high
confidence in a CTCF binding site identified by the
motif-based approach because binding at the exact same
motif location is detected in more than 90% of cell lines.
On the other hand, the motif-based approach is imper-
fect as it may fail to identify low affinity or indirect bind-
ing sites. The motif-based approach could also overlook
constitutive sites if the length of peak sequence scanned
(200 bp around peak centers in our application) is too
short to cover the actual binding site.
To compare the locations of constitutive CTCF bind-

ing sites from T-KDE and from binning to the locations
of our motif-based constitutive CTCF binding sites. We
plotted the proportion of constitutive binding sites iden-
tified by each method that are less than distance d from
the nearest motif-based constitutive CTCF binding site
as a function of distance d (T-KDE in Figure 3(A): bin-
ning in Figure 3(B)).
For T-KDE with bandwidths smaller than 500 bp, all

CTCF binding sites declared constitutive are within 200
bp of their nearest motif-based constitutive CTCF bind-
ing sites. For a bandwidth of 100 bp, more than 90% of
the T-KDE-declared constitutive CTCF binding sites are
within 20 bp of the nearest motif-based constitutive
CTCF binding sites and nearly all are within 70 bp. For
bandwidths exceeding 500 bp, performance deteriorates
though roughly 90% of the T-KDE-declared constitutive
binding sites are still within 500 bp from their nearest
motif-based counterpart.
The results from Table 1 and Figure 3 strongly suggest

that changing the bandwidth with T-KDE has little im-
pact on the number of constitutive binding sites identi-
fied but a greater impact on their locations. On the
other hand, changing the bin width with the binning ap-
proach has an impact on both the number of constitu-
tive binding sites identified and on their locations. Our
results also suggest that, for CTCF, a bandwidth near
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100 bp and a bin width near 400 bp may be the optimal
values for T-KDE and for the binning method, respect-
ively. Although derived from CTCF comparisons, we be-
lieve these choices of bandwidth or bin width should be
applicable to other factors whose ChIP-seq peak length
distributions are similar to those of CTCF.
Comparing Figure 3(A) and 3(B) also reveals that the

accuracy of T-KDE for locating constitutive binding sites
is generally far superior to that of the binning approach.
In particular, the optimal bandwidth of 100 bp was more
accurate in locating constitutive binding sites than the
optimal bin width of 400 bp. Consequently, for our
remaining analyses, we focus on T-KDE using a band-
width of 100 bp.

T-KDE versus Binning
Using our motif-based constitutive CTCF binding sites
as the reference, we believe that the optimal bandwidth
for T-KDE is 100 bp and the optimal bin size for binning
method is 400 bp. We plotted the proportion of consti-
tutive binding sites identified by each method that are
less than distance from the nearest motif-based consti-
tutive CTCF binding site as a function of distance d
(Figure 4). As shown in Figure 4, T-KDE is much more
accurate in locating constitutive CTCF binding sites
than binning method.

Constitutive sites found by T-KDE but not by the
motif-based approach
Only 25 of the 17,575 motif-based constitutive CTCF
binding sites were farther than 70 bp from the nearest
constitutive CTCF binding sites identified by T-KDE.
Figure 4 Proportion of T-KDE declared versus bin declared constitutiv
nearest motif-based constitutive CTCF binding site are less than dista
bandwidth of 100 bp and bin with size of 400 bp.
Furthermore, T-KDE declared an additional 4,237 CTCF
binding sites as constitutive that the motif-based
approach missed. Among those 4,237 sites, the motif-
based approach failed to detect 312 because no sub-
sequence in the corresponding peaks reached the motif
significance cutoff. (The motif-based approach did not
declare any of these as a binding site in any of the cell
lines). The remaining additional constitutive sites found
by T-KDE were found by the motif-based approach in a
majority of cell lines but not in enough cell lines to
reach the required 90%. When the true binding sites are
not located near the center of some peaks and/or the
peak sequences used in motif scan are not long enough
to cover the actual motif, a motif-based approach would
miss the site. T-DKE, however, is unaffected by these is-
sues. Because it uses peak centers from all cell lines to
identify the center of mass of each modal region as the
binding site, some misalignment or displacement among
ChIP-seq peaks is tolerated. Thus, T-KDE is capable of
identifying constitutive binding sites that are bound by a
protein either directly or indirectly.
Motif discovery using GADEM [24] on the 312 consti-

tutive sites identified by T-KDE where no canonical
CTCF motif was found yielded two new motif variants
(Figure 5) of the canonical core CTCF motif. We named
these motifs as core variant motifs 1 and 2 (Cv1 and
Cv2), respectively. Cv2 was the dominant motif found in
~65% of the 312 sequences whereas Cv1 was found in
~35% of the sequences. Compared to the canonical core
CTCF motif, these motif variants lacked information at
either the 5′- or the 3′-end. This feature may explain
their lack of motif significance when compared to the
e CTCF binding sites in the entire genome whose distance from
nce d plotted as a function of d. Separate curves for T-KDE with



Figure 5 Motif logos of CTCF motif variants in comparison to the canonical core CTCF motif. The regions that are aligned to the core
CTCF motif are highlighted in red and blue boxes.
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canonical core CTCF motif. Both variants are likely au-
thentic, as they are highly centrally distributed along the
200 bp peak sequences (not shown). It is also likely that
such variant motifs are not limited to those 312 consti-
tutive CTCF sites. The two new motifs along with those
discovered recently [31,32] add to the complexity of the
CTCF code.
Analysis of constitutive binding sites for 22 factors
We applied T-KDE using a bandwidth of 100 bp to 22
factors with ChIP-seq data available from ENCODE for
multiple cell lines with replicates. The number of de-
clared binding sites (modal regions) among these TFs
ranged from 30,000 to over 900,000, and the number
constitutive binding sites ranged from a few to over
20,000 (Table 2). Constitutive binding sites identified for
TFs that were studied in fewer than 10 cell lines, espe-
cially when the number of constitutive binding sites
identified is relatively small, have a high likelihood of be-
ing false positives. As data from additional cell lines be-
comes available, some sites now declared constitutive
could fail to meet the necessary criterion. Thus, we focus
attention on the possible biological roles of constitutive
binding sites for TFs with more than 1,000 declared con-
stitutive binding sites based on 9 or more cell lines.
Besides CTCF and RAD21, Pol II exhibited a large
number of constitutive binding sites (~4,700), although
they represented only a small proportion of the total Pol
II binding sites. Gene ontology (GO) analysis of the
genes containing constitutive Pol II binding sites in their
proximal promoters suggests that those Pol II target
genes are highly enriched with biological processes such
as metabolism, biosynthesis and cell cycle (Table 3).
Similarly, genes with constitutive binding sites for other
TFs are highly enriched in certain biological processes.
These include GABP, NRSF, TAF1, etc. (in Additional file 1:
Tables S5-S19). Together, those results suggest that
binding sites declared constitutive by T-KDE are con-
nected to important biological processes.

Discussion
Binding sites that are occupied by a protein regardless of
the cell or tissue type seem likely to have a distinct role
compared to binding sites for the same protein that are
occupied more selectively – the constitutive nature of
the binding should signify something of fundamental im-
port. Our earlier work using motif-based analysis found
that constitutive CTCF binding sites, especially those
near RAD21 sites, are highly enriched in CTCF-
mediated chromatin interactions [33] and those interac-
tions are predominately within topological domains, not



Table 2 Binding sites throughout the entire genome
identified by T-KDE for 22 transcription factors

Protein Available
cell lines

Constitutive
sites

Total sites Proportion

CTCF 55 21,812 142,087 15.35%

RAD21 9 15,337 101,434 15.12%

GABP 9 1,392 19,444 7.16%

CREB1 6 1,069 16,744 6.38%

YY1 11 2,524 52,252 4.83%

NRSF 15 1,794 40,066 4.48%

TAF1 13 1,208 27,842 4.34%

ELF1 7 860 25,991 3.31%

ZBTB33 6 465 14,429 3.22%

USF1 9 1,172 46,829 2.50%

SRF 7 231 10,263 2.25%

Pol II 19 4,733 261,043 1.81%

MAX 10 1,223 84,862 1.44%

EGR1 6 331 29,793 1.11%

SIN3A 9 116 29,446 0.39%

CEBPB 7 70 62,332 0.11%

TEAD4 8 32 58,134 0.06%

SP1 6 29 46,502 0.06%

ATF3 6 4 9,394 0.04%

P300 10 32 118,602 0.03%

TCF12 7 2 66,517 0.00%

JUND 8 2 51,580 0.00%
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between them [4]. Consequently, we hypothesized that
the constitutive CTCF binding sites may be involved in
maintaining and/or establishing chromatin structures
that are common among most human cell types [3].
Those earlier findings indicate to us that constitutive
Table 3 Top ten GO processes for constitutive Pol II
target genes

Biological process Multiple testing
adjusted p-value

Cellular metabolic process 8.2 × 10-177

Primary metabolic process 1.2 × 10-121

Macromolecule metabolic process 2.8 × 10-114

Nitrogen compound metabolic process 8.8 × 10-87

Cell cycle 1.0 × 10-46

Biosynthetic process 6.3 × 10-46

Establishment of protein localization 5.2 × 10-40

Organelle organization 1.4 × 10-37

Cell cycle process 9.1 × 10-35

Ribonucleo protein complex biogenesis 2.5 × 10-33
binding sites for other TFs may have unique biological
roles.
The ENCODE consortium has generated more than

1,000 ChIP-seq protein-binding datasets for more than
100 proteins in multiple cell lines, and the data continue
to expand. Discovering the locations and functions the
genomic loci that are constitutively bound by each of the
proteins is potentially important. However, computational
methods for locating constitutive binding sites when the
protein does not bind directly to DNA are still lacking.
One challenge is that the ChIP-seq peak data are low-
resolution, and the technology is unable pinpoint exact
genomic binding locations.
To fill this gap, we developed an efficient and effective

approach, T-KDE which takes as input locations of peak
centers from multiple ChIP-seq data sets and returns es-
timates of the locations of binding sites and declares
them constitutive or not. T-KDE combines a binary
range tree algorithm, a kernel density estimator, and a
mode finding algorithm. Using data on CTCF binding,
we found that T-KDE was superior at locating constitu-
tive binding sites compared to a naïve approach based
on binning and that T-KDE performed well compared to
the motif-based approach. For example, all motif-based
constitutive CTCF binding sites were included in the
constitutive CTCF binding sites identified by T-KDE.
Furthermore, T-KDE identified additional 4,237 consti-
tutive CTCF binding sites that the motif-based approach
failed to detect. This result highlights a major advantage
of T-KDE compared to both the motif-based and bin-
ning approaches: regardless of whether binding is direct
or indirect and whether an adequate motif model is
known, T-KDE accurately estimates the locations of con-
stitutive binding sites by identifying genomic regions
where the centers of ChIP-seq peaks from multiple data-
sets lie in close proximity. Accurate binding locations
are necessary for subsequent functional analysis and dis-
covery. We applied T-KDE to locate constitutive binding
sites, if present, for 22 TFs that had replicate ChIP-seq
data sets for at least 6 cell lines available from ENCODE,
and we used gene ontology analysis to establish possible
biological functions for some of those TFs.
KDE-based methods different from ours have been ap-

plied to ChIP-seq reads for peak calling [17] and nucleo-
some positioning [18]. Additionally, KDE-based method
has been applied to motif locations for detection of re-
gions locally enriched with transcription factor binding
sites [19]. Our goal is different: we use the locations of
ChIP-seq peak centers from multiple cell lines (from as
few as 6 to as many as 132, in this case) to infer the lo-
cation of constitutive binding sites. In addition, our
method has unique features. Our method first recur-
sively partitions the locations of peak centers into sub-
groups (terminal nodes) using a binary range tree
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algorithm. The partitioning stops whenever either of the
two would-be child nodes contains peak centers from
fewer than 90% (a user-specified choice) of available cell
lines. The KDE analysis and subsequent mode finding is
carried out on each terminal node, one at a time. The par-
titioning guarantees that more than 90% of cell lines are
represented in every terminal node; however, a terminal
node may still contain zero, one or more constitutive
binding sites depending on the spread of the peak centers
present — making KDE and subsequent mode-finding ne-
cessary for localizing modal regions. Binding site locations
are declared at local maxima within modal regions. Our
use of the binary range tree before applying KDE and
mode-finding makes our algorithm novel and efficient.
One reviewer suggested an alternative procedure (in

Additional file 2: Algorithm S3) using the peak-finding
algorithm MACS [34]. The procedure involves applying
MACS in its default parameters to a combined BAM file
from the original ChIP-seq reads data (also in BAM for-
mat) from the multiple cell lines. The peaks with low
variation in log (read count + 1) within ±50 bp from the
MACS summit are considered constitutive. We com-
pared this procedure with T-KDE and a binding-based
method and showed that T-KDE was far superior to
this alternative procedure (details in Additional file 4:
Supplementary text).
Although T-KDE can be applied to ChIP-seq data from

any number of cell lines, caution must be excised when
interpreting a result from only a few cell lines. Because
the property of being constitutive requires binding to
the same locus in a variety of cell types, the number and
diversity (or lineage) of cell lines/types providing data to
the algorithm would be expected to have a strong influ-
ence on the biological trustworthiness of any result.
For N peak centers, KDE followed by mode-finding

has a computational complexity of O(Nlog2N) [28,29].
When N is large as in our CTCF dataset (N = ~ 690, 000
for chromosome 1), the process becomes computation-
ally prohibitive. After initial data partitioning by a binary
range tree into a set of terminal nodes indexed by i, each
with N peak centers, complexity is greatly reduced to
∑ iO(Nilog2Ni). Consequently, T-KDE reduces the com-
putational time for CTCF on chromosome 1 from days
to within an hour. We envision that parallelization of
our T-KDE algorithm at the node level would further re-
duce the computational time. A potential cost is that
partitioning all peak centers onto terminal nodes before
the KDE analysis and mode finding might destroy a con-
stitutive binding site by splitting it between two adjacent
nodes. This problem appears to arise rarely or not at all
as we observed that the performance of T-KDE was
nearly identical to that of KDE omitting the initial parti-
tioning. We attribute this similarity, in part, to our stop-
ping criterion for partitioning.
Generally, the choice of the bandwidth for KDE can
exhibit a strong influence on the shape of the estimated
density: small bandwidths yielding spiky estimates and
large bandwidths yielding overly flattened ones. Yet, in
our comparisons when locating constitutive CTCF bind-
ing sites, bandwidths from 100 to 400 bp uncovered
similar numbers of constitutive CTCF binding sites and
the distribution of the distances from T-KDE-declared
sites to the nearest motif-declared sites did not change
much with bandwidth. We believe that a bandwidth of
100 to 400 bp may be optimal for most TF binding sites
with narrow peaks (100-1,000 bp). Automatic selection
of the optimal bandwidth would be desirable, but opti-
mal bandwidth selection based statistical criteria such as
the mean integrated squared error [26] did not work
well with the CTCF data. That process, which involved
maximizing a “pseudo-likelihood” combined with a
leave-one-out cross-validation approach [28] was com-
putationally expensive and selected a large bandwidth of
1,293 bp that did not locate constitutive binding sites as
well as our preferred 100 bp bandwidth did.
Although designed for identifying constitutive binding

sites for a protein using ChIP-seq data from multiple cell
lines, our method could also be used to identify genomic
loci that have concentrations of different protein binding
sites (“hot spots”), and conversely “cold spots”, using
multiple protein ChIP-seq data for the cell line.
Conclusions
In conclusion, we developed efficient and accurate method,
T-KDE, to locate constitutive protein binding sites using
ChIP-seq peak centers from multiple cell lines. T-KDE
combines a binary range tree algorithm, a non-parametric
kernel density estimator, and a mode finding algorithm.
We showed that, for CTCF data, our method is relatively
robust to the choice of bandwidth and is highly accurate
when compared to the identification of constitutive bind-
ing sites through motif analysis. Application of T-KDE to
22 proteins with ChIP-seq data from multiple cell lines lo-
cated substantial numbers of constitutive binding sites for
some TFs but almost none for others. For TFs with large
numbers of constitutive binding sites, GO analysis suggests
that these sites are biological meaningful. As additional TF
binding sites ChIP-seq datasets become available in more
cell lines and for more TFs, our method will prove to be es-
sential for identifying their constitutive binding sites.
Availability and requirements
Project Name: T-KDE
Project homepage: http://www.niehs.nih.gov/research/

resources/software/biostatistics/t-kde/index.cfm
Operating system: Unix
Programming language: Matlab

http://www.niehs.nih.gov/research/resources/software/biostatistics/t-kde/index.cfm
http://www.niehs.nih.gov/research/resources/software/biostatistics/t-kde/index.cfm
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Other requirements: N/A
License: This work is made available under the GPL v3.
Any restrictions to use by non-academics: none

Additional files

Additional file 1: Supplementary Tables S1-19. Cell lines
contributing ChIP-seq data for each of the 22 transcription factors.

Additional file 2: Outlines of algorithms. T-KDE.

Additional file 3: Supplementary Figure S1. Proportion of TKDE-
declared versus KDE-declared constitutive CTCF binding sites whose
distance from nearest motif-based constitutive CTCF binding site on 23
chromosomesare less than distance d plotted as a function of d for
various bandwidths.Separate curves for T-KDE with bandwidth of 100
bps and for the same density estimation algorithm without the
binary range tree pre-processing.

Additional file 4: Additional results comparing various methods.
T-KDE: A method for genome-wide identification of constitutive protein
binding sites from multiple ChIP-seq data sets.
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