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Abstract

Background: Studies have shown the strong association between histone modification levels and gene expression
levels. The detailed relationships between the two can vary substantially due to differential regulation, and hence a
simple regression model may not be adequate. We apply a regression hidden Markov model (regHMM) to further
investigate the potential multiple relationships between genes and histone methylation levels in mouse embryonic
stem cells.

Results: Seven histone methylation levels are used in the study. Averaged histone modifications over
non-overlapping 200 bp windows on the range transcription starting site (TSS) ± 1 Kb are used as predictors, and in
total 70 explanatory variables are generated. Based on regHMM results, genes segregated into two groups, referred to
as State 1 and State 2, have distinct association strengths. Genes in State 1 are better explained by histone methylation
levels with R2 = .72 while those in State 2 have weaker association strength with R2 = .38. The regression coefficients
in the two states are not very different in magnitude except in the intercept, .25 and 1.15 for State 1 and State 2,
respectively. We found specific GO categories that may be attributed to the different relationships. The GO categories
more frequently observed in State 2 match those of housekeeping genes, such as cytoplasm, nucleus, and protein
binding. In addition, the housekeeping gene expression levels are significantly less explained by histone methylation
in mouse embryonic stem cells, which is consistent with the constitutive expression patterns that would be expected.

Conclusion: Gene expression levels are not universally affected by histone methylation levels, and the relationships
between the two differ by the gene functions. The expression levels of the genes that perform the most common
housekeeping genes’ GO categories are less strongly associated with histone methylation levels. We suspect that
additional biological factors may also be strongly associated with the gene expression levels in State 2. We discover
that the effect of the presence of CpG island in TSS ± 1 Kb is larger in State 2.
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Background
As a part of an effort to understand the biological mech-
anism of gene regulation, epigenetic factors have been
studied in conjunction with gene transcription [1]. His-
tone modifications are known as a major gene regula-
tory factor along with transcription factors [1,2]. Studies
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suggest that chemically modified histones, such as methy-
lated or acetylated, contribute to gene regulation by alter-
ing the DNA accessibility of transcription factors. When
the transcription factors bind to a DNA promoter or
enhancer region, they activate or enhance gene tran-
scription, respectively [3]. There have been many studies
for detecting the association between histone modifica-
tions and gene expression levels. In fact, a particular
histone modification is associated with a specific function
[4]. For example, H3K4 monomethylation (H3K4me1) is
associated with gene enhancer activity. H3K4me3 and
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H3K27me3 promotes and represses gene expressions in
mammalian stem cells, respectively.
Recently, in [5], the authors showed that gene expres-

sion levels can be predicted by histone modification levels
using a linear model. As a continuation of the study, it
is proposed in [6] that the association between histone
modification levels and gene expression levels should be
understood in the context of gene functions. They inves-
tigated the effects of histone modification levels in gene
function groups and found that a combination of three
histone modifications suffices to predict the gene expres-
sion levels in most of the gene functions. In [7], the
authors verified the strong association between histone
methylation levels and gene expression levels using sup-
port vector regression. Their studies are mainly aimed
to verify the association between the two factors. Fur-
thermore, a study to understand the effect of histone
modification in conjunction of other regulatory elements
was conducted in [8]. They identified the histone mod-
ification types that regulate gene expression levels in
tissue/cell-specific genes.
Our study is built on the premise that the gene expres-

sion levels are strongly associated with histone modifi-
cation levels but not universally predicted by a single
relationship. Rather, the relationship varies across the
genome. We look for multiple relationships between the
gene expression levels and histone methylation by means
of simple linear regression models in a hidden Markov
model (HMM) framework. Based on the previous study
results that there is a strong association between gene
expression levels and the histone methylation levels, our
further investigation finds state-dependent relationships
between gene expression and histone methylation lev-
els. An HMM is used under the spatial assumption that
expressions of genes in a local cluster are influenced in a
similar way by histone methylation levels.
HMMs have been widely applied in genetics and

genomics [9,10]. We apply a variant, called regression
hidden Markov model (regHMM), that accounts for the
relationship between the two sets of data. In our model,
the response variable is the gene expression levels, and
the explanatory variable is the histone methylation levels.
A regHMM has been used in Engineering and Statistics
[11,12], but to our knowledge it has not been applied to
study differential gene regulation. A regHMM can be con-
sidered a mixture of regression models with the Markov
property in the hidden state, which is determined by
the different associations between predictor and response
variables in terms of regression coefficients and residual
distributions. A regHMM can capture complex patterns
in data while retaining the simple interpretation of stan-
dard linear regression models conditional on states. In
addition, we implemented a distance-dependent transi-
tion probability feature in order to incorporate varying

distances between genes. We compare the characteristics
of the groups of genes splitted into two groups using the
regHMM and find the biological differences.

Results and discussion
We applied a regHMM to understand relationships
between the gene expression levels and histone methy-
lation levels in mouse embrionic stem cells. We used
17020 gene expression levels as the response variable
and the averages of seven histone methylation levels
(H3K4me1, H3K4me2, H3K4me3, H3K9me3, H3K20me3,
H3K27me3, H3K36me3) over 200 bp non-overlapping
windows within the corresponding transcription starting
sites (TSSs) ± 1 Kb as the explanatory variables. Based on
the Bayesian Information Criterion (BIC) (Figure 1), we
separated the genes into two groups of 10211 and 6809
genes using the Viterbi algorithm [13,14]. We refer to the
two groups as State 1 and State 2. See theMethods section
for the regHMM model description, the data processing
procedure, and BIC. We use the significance level α = .05
for statistical testing throughout the article.

Characteristics of the two states
As a first step to explore the difference in two states,
we performed a linear regression analysis for each state.
The histone methylation levels explain about 72% of
the gene expression variation in State 1 but only 38%
of the variation in State 2. When regressing the gene
expression levels on the fitted values using the two-state
regHMM, 61.21% of the gene expression level variation
is explained. In contrast, only 54.13% of the variation
is explained using a single-state linear regression model
to the entire data set. These results are summarized in
Table 1.
As the difference in R2 values in the two states was

noticeable, we compared the proportion of variation
explained by the individual variables for each state and
presented them in Figure 2. For State 1, H3K4me2 and
H3K4me3 are the two most significant factors for explain-
ing the expression variation. Interestingly, H3K4me3 at
TSS + 500 bp explained almost 50% of gene expression
variation by itself in the plot (a) in Figure 2. For State 2,
by contrast, only about 10% of the gene expression vari-
ation was explained by variables in H3K4me2, H3K4me3
and H3K27me3. The amount of gene expression variation
explained by histone methylation levels is much smaller in
State 2 than in State 1, except for H3K27me3.
We also investigated the average differences and cor-

relation of histone methylation levels in the two states.
The plots (a)–(g) in Figure 3 present the average histone
methylation levels for each state. We use the raw-scale in
order to show the histone modification patterns around
TSS. The green circles at the bottom indicate explanatory
variables of which the average differences of the two
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Figure 1 Bayesian Information Criteria. The plot shows the Bayesian Information Criteria values of a single-state regression and the regHMM of 2
to 6 states with 20 independent initial values. The maximum BIC occurs when the model has two states.

states are statistically significant after the Bonferroni cor-
rection. The average differences of the two states are
more apparent in H3K4me1, H3K4me2, H3K4me3 (acti-
vators) and H3K36me3 than the rest. H3K27me3 is higher
on average in State 2 relative to State 1, but the differ-
ence is not statistically significant with α = .05. The plot
(h) in Figure 3 is the box plots of the gene expression
levels for each state. Relative to State 1, the higher aver-
age gene expression levels in State 2 is attributable to
the larger means of activators and enhancers (H3K4me1,
H3K4me2, H3K4me3, and H3K36me3) and the smaller
means of repressors (H3K9me3 and H3K20me3) in State
2. In Figure 4, the correlations of histone modification in
the two states show similar trends in plots (a) and (b). The
difference of the correlations between the two states in
plot (c) in Figure 4 reveals the stronger correlations among
H3K4me1, H3K4me2, and H3K4me3, and between the
three features and H3K27me3 in State 1.

Table 1 The number of genes and R2 for each state

Condition Number of genes R2

State 1 10211 0.7133

State 2 6809 0.3842

Combined State 1 and State 2 17020 0.6121

All (a single regression ) 17020 0.5413

Now we investigate the regression coefficients of all
predictor variables jointly in each state. The condition
numbers given a state are 20.44 and 21.00 for State 1 and
State 2, respectively. See the Methods section for details
on computation of condition number [15]. The coeffi-
cients of the two states are shown in the plots (a) and (b)
and the difference are presented in the plot (c) in Figure 5.
In both states, most of the variables for H3K4me3 are
positively related with gene expression levels and nega-
tively with most of the variables for H3K27me3. Three
significant differences, out of eight, between two regres-
sion coefficients in the plot (c) in Figure 5 occur between
TSS - 400 and TSS - 200. While most of the regres-
sion coefficients are not statistically different from each
other, the intercepts, .25 and 1.15 for State 1 and State 2,
respectively, are notably different (excluded in Figure 5 as
the magnitude of the intercept in State 2 is much larger
than the remaining coefficients). Recall that an intercept
is interpreted as the average gene expression level when
all the histone modification levels are 0. The larger inter-
cept with the larger gene expression averages in State 2,
yet the weaker association with histone methylation lev-
els in State 2, suggests that genes in State 2 may be further
affected by other biological factors.
It is intriguing that the gene expression levels in State

2 are larger on average while having weaker association
with the histone methylation levels. We suspected that
the histone methylation levels in the wider region may
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Figure 2 R2 for individual predictor variables for each state and overall. The R2 multiplied by the sign of the regression coefficient β̂ when
gene expression levels are regressed on the individual predictor variables for each state are presented in (a) and (b) and for overall in (c).

better explain the variation of gene expression levels, so
we repeated the study over an extended region (TSS ±
4 Kb). However, the study results are similar to those on
TSS ± 1Kb and they are summarized in Additional file 1.
A model with two states is chosen via BIC (Additional
file 1: Figure A1) and the state with larger gene expres-
sion levels on average has the weaker association with
histone methylation levels (Additional file 1: Table A2 and
Figure A2).

Biological differences in two states
We considered a collection of the embryonic stem cell-
specific genes selected against genes in differentiated cells
[16] and examined the differences in the two states. We
used 342 embryonic stem cell-specific genes that are both
in our study and in the list of 543 genes (FDR < .025)
in [16]. There are 161 and 181 genes in each state. The
difference in R2 (R2 = .7288 and R2 = .5148 for State 1
and State 2, respectively) is statistically significant with
p-value = .009. See Simulation-based test of the differ-
ence in R2 in Methods section. Due to multicollinearity
issue in the predictor variables for stem cell-specific genes

(the condition numbers were 35.61 and 28.92 for State 1
and State 2, respectively), we did not compare the regres-
sion coefficients from stem cell-specific genes in each
state.
We presented the average histone methylation levels of

the non-stem and the stem cell-specific genes for each
state in Figure 6: the stem cell-specific genes (red and blue
for State 1 and State 2, respectively) and the non-stem
cell-specific genes (orange and cyan for State 1 and State
2, respectively). The green circles at the bottom of the
plots (a)–(g) in Figure 6 indicate variables of which the dif-
ference in the average histone methylation levels of stem
cell-specific genes in two states are statistically signifi-
cant after the Bonferroni correction. For H3K4me2 and
H3K4me3, the average histone methylation levels of stem
cell-specific genes in State 1 shifted much larger than that
of State 2. This may explain the larger increase (by 2.2)
in the average stem cell-specific gene expression levels in
State 1, compared to the increase (by 1.58) in State 2. The
plot (h) in Figure 6 shows the box plots of expression lev-
els of the stem cell-specific and the non-stem cell-specific
genes for each state.
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Figure 3 Average histone methylation levels for each state. The plots (a)–(g) show the average histone methylation levels in 200 bp
non-overlapping windows on TSS ± 1 Kb region for each state. The red solid line and the blue dotted line represent State 1 and State 2, respectively.
The green circles at the bottom indicate variables of which averages are statistically significantly different from 0 after the Bonferroni correction. The
box plots in (h) show the gene expression levels for each state. The gene expression level averages are 0.09 and 1.29 and the medians are 0.07 and
1.46 in State 1 and State 2, respectively.

The average H3K27me3 levels for the stem cell-specific
genes are much smaller than the average of the rest of
the genes for each state, which is consistent with the
repressing role of H3K27me3 [17]. It is interesting that
the average histone methylation levels of H3K20me3 and
H3K36me3 shifted in the opposite directions in most of

the TSS ± 1 Kb range. The average histone methylation
levels for the stem cell-specific genes increased in State 2
but decreased in State 1. We also observed such changes
over TSS ± 200 bp in H3K4me1 and H3K9me3. These
changes toward the opposite directions in the average his-
tone methylation levels, while the consistent increase in
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Figure 4 Correlation of the histonemethylation levels for each state and the difference. The correlation of histone methylation levels for each
state are in (a) and (b). The difference of them (State 1 - State 2) is plotted in (c).

expression levels for the stem cell-specific genes in both
states, support our claim that the relationship between
gene expression levels and histone methylation levels is
not universal.
We tried to understand the difference in the two states

by including CpG islands, which has been found to be

strongly indicative of promoter activities [18]. Also, CpG
islands influence the chromatin structure [19]. We found
that genes in State 2 are more frequently overlapped with
CpG islands on the TSS ± 1 Kb regions than genes in
State 1 (p-value < 2.2 · 10−16, see Table 2). To study the
effect of CpG islands in TSS± 1 Kb on the gene expression
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Figure 5 Regression Coefficients. Regression coefficients for each state are presented in (a) and (b) and the difference (State 1 - State 2) in (c).
The star marks in the plots (a) and (b) represent statistically significant coefficients and those in the plot (c) represent significantly different ones
from each other after the Bonferroni correction. The intercepts (not shown) are .25 and 1.15 for State 1 and State 2, respectively.

levels, we defined a new variable CpG indicating the pres-
ence of CpG islands overlapping with the TSS ± 1 Kb
region (1: presence, 0: absence). We included the CpG
variable in addition to the 70 explanatory variables and
performed regression analyses in each state. The CpG vari-
able improved the model fit with p-values < 2.2 · 10−16

for both states (R2 = 0.7182 and R2 = 0.3938 for State
1 and State 2, increased by .0049 and .0096, respectively,
from the original models). The intercepts changed from
0.25 and 1.15 to −0.05 and 0.73 in State 1 and State 2,
respectively. The regression coefficients of the CpG vari-
able were .48 and .64, respectively, where the effect of CpG

in State 2 was statistically significantly larger than that of
State 1 (p-value = 0.0252).
We also studied if genes that include a TATA motif

(TATA-containing genes) are enriched in one of the state.
There are 1829 TATA-containing genes on TSS-100 bp
to TSS window. Among these, 1200 and 629 are in State
1 and State 2, respectively. There is statistically signifi-
cant TATA motif enrichment in State 1 (p-value = 2.42 ·
10−7). To study the effect of presence of TATA box
in 100 bp downstream from TSS on the gene expres-
sion levels, we defined a new variable TATA indicating
the presence of TATA-box (1: presence, 0: absence) and
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Figure 6 Average histone methylation levels of non-stem cell-specific and stem cell-specific genes for each state. The average histone
methylation levels of the non-embryonic stem cell-specific and the embryonic stem cell-specific genes in State 1 are represented by an orange and
a red curves, respectively, and those in State 2 are represented in a cyan and a blue curves, respectively, in (a)–(g). Box plots in (h) represent the
non-embryonic stem cell-specific and the embryonic stem cell-specific gene expression levels for each state. The green circles at the bottom
indicate variables of which average histone methylation levels of the stem cell-specific genes are statistically significantly different from 0 after the
Bonferroni correction.

added to the 70 explanatory variables to perform regres-
sion analyses in each state. The TATA variable improved
the model fit with p-values = 1.75 · 10−5 for State 1
(R2 = 0.7138, increased by 0.0005 from the original mod-
els) but not for State 2 with p-value = 0.1561. The
TATA-containing gene enrichment in State 1 seem to be
supported by the study results that TATA-less genes in

human are frequently involved in housekeeping functions
while TATA-containing genes are highly regulated [20],
which we will discuss shortly.

Gene Ontology analysis
In [6], they use a combination of three histone modifi-
cations to explain the gene expression variation among
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Table 2 Genes whose TSS± 1 Kb overlaps with CpG island

State 1 State 2

No overlapping with CpG Island 4154 (41%) 2051 (30%)

TSS ± 1 Kb overlaps CpG Island 6057 (59%) 4758 (70%)

genes with the same functional annotations. Similarly, to
explore the attribution of gene functions to the expression
variation, we conducted a Gene Ontology-based (GO-
based) enrichment analysis [21,22]. Genes can have mul-
tiple GO annotations, not only because genes conduct
various functions in cells but also because GO annotations
are hierarchical. There are many genes without GO anno-
tations, too. For State 1 and State 2, we found 2077 and
1217 genes without any GO annotations, respectively.
We calculated the gene frequencies in the same GO

annotations in each state. If there are more than 10 genes
in the GO category in each state, we test if the proportions
are significantly different in the two states. SuchGO anno-
tations (after the Bonferroni correction) are listed in an
increasing order of p-values in Additional file 2: Table A1.
The gene functions enriched in State 1 are related to cel-
lular signal transduction functions. The GO annotations
enriched in State 2 show a broad range of gene activi-
ties. We noticed that the top four GO annotations in State
2 in Additional file 2: Table A1 match to the most fre-
quent housekeeping gene functions (or GO categories) in
Table 3. See the Housekeeping genes in Methods section
for the details. There are 192 and 239 housekeeping genes
in State 1 and State 2, respectively (total 431), and house-
keeping genes are more frequent in State 2 (p-value =
4.693 · 10−11). The housekeeping gene expression vari-
ation explained by histone methylation levels in State 1
and State 2 are R2 = .5104 and R2 = .4066, respectively.
The R2 difference is not statistically significant (p-value
=.298). See Simulation-based test of the difference in R2 in
Methods section.
Additionally, the two R2 from the housekeeping genes

for each state are significantly smaller than the R2 of
random selection of the same number of genes (both p-
values < 0.001). When a set of random genes of size
192 is regressed on the corresponding histonemethylation

Table 3 The six most common GO annotation among
housekeeping genes

GO annotation Count Proportion (Count/528)

Cytoplasm (GO:0005737) 244 0.46

Nucleus (GO:0005634) 228 0.43

Protein binding (GO:0005515) 137 0.26

Membrane (GO:0016020) 123 0.23

Mitochondrion (GO:0005739) 97 0.18

Nucleotide binding (GO:0000166) 92 0.17

levels, the minimum R2 is .5351 (with 1000 repetitions).
Likewise, when 239 random genes were regressed, the
minimum R2 is .5245 (with 1000 repetitions). The R2 of
a single regression of all housekeeping genes on the 70
histone modification levels is only .2677.
From this study, we conclude that housekeeping gene

expression levels are not as well explained as other genes
by the seven histone methylation levels in mouse embry-
onic stem cells using a linear regression model. This may
be due to the fact that genes required to maintain basic
cellular functionsmay be regulated by other biological fac-
tors such as DNAmethylation. This is also consistent with
the study results that housekeeping functions are repre-
sented in high CpG class [23]. Among 431 housekeeping
genes, 407 (94.43%) have CpG island within 1 Kb from
their TSSs.
We explored the gene expression level variations with

the same GO annotations in Additional file 2: Table A1.
The last column shows the gene expression variation
explained by the histone modification levels in the corre-
sponding GO annotation using a linear regression model.
For example, the gene expression variation explained by
histone methylation in G-protein coupled receptor sig-
naling pathway is R2 = .5573 and the simulation-based
p-value is 0.121 (See Simulation-based test of a large or
small R2 in Methods section). The R2 and the test proba-
bility are shown in Additional file 2: Table A1, where the
blank cells are due to the small number of genes in the
GO annotation to conduct a regression analysis. The last
three GO annotations in State 1 and ruffle in State 2 are
not studied for this reason.
In State 1, receptor activity, integral to membrane, and

signal transduction are the only GO annotations in which
the gene expression levels are better explained by histone
methylation levels (than random selection of genes). The
GO annotations more frequent in State 2 in Additional
file 2: Table A1 show consistently lower R2 than random,
except for perinuclear region of cytoplasm.

Prediction
We finally examine the prediction performance of regHMM
using five-fold cross-validation. We divided the data into
training and test data sets in size 13616 (80%) and 3404
(20%), respectively. We applied the regHMM to the train-
ing data and evaluated how well the trained model can
predict the gene expression levels in the test data set. We
repeated the study 15 times and the results were simi-
lar to each other; we thus present one such result. The
training data set is segregated into two states: one has
R2 = .7488 (8062 genes in State 1) and another has
R2 = .3843 (5554 genes in State 2). In conventional hid-
den Markov models, the hidden states of test data are
predicted using both the information the data carry and
the transition probabilities. Meanwhile, our interest is in
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predicting the missing response values in test data. To
predict the gene expression levels, we use the distinctive
histone methylation profile information in the two states
and specified the states in the test data set by the follow-
ing approach. Let the histone methylation levels of the test
data be z1, · · · , zK , where K = 3404 denotes the sam-
ple size of the test data. We evaluated the probability that
zi belongs to state m, pm(zi), assuming that zi follows a
multivariate Normal distribution zi ∼ MVN(X̄m,Vm) for
m = 1, 2, where X̄m denotes the sample mean and Vm
denotes the sample variance of histone methylation levels
in the training data in Statem. Let the proportion of State
1 be φ and the proportion of State 2 be 1−φ. We assigned
a gene in the test data into State 1 if φp1(zi) > (1−φ)p2(zi)
and State 2 otherwise. The test data of 3404 genes were
divided into 1521 genes in State 1 and 1883 genes in State
2. When the true gene expression level is regressed on
the predicted gene expression level in State 1, we obtained
R2 = 0.6065. When a single regression model is applied to
the test data set, the R2 = 0.5234. For the genes assigned
to State 2 in the test data, we obtained R2 = .3405. Note
that knowing that genes in State 2 are not well explained
by the histonemethylation levels, it will not bemeaningful
to try to predict the expression levels in State 2.

Discussion
We looked into the possibility that the models with a
larger number of states may lead to more interesting bio-
logical interpretation. For example, we searched for more
specific classifications of stemness or pluripotency genes
in three-state and four-state models. We found similar
trends in two-state model. Overall, we found exactly 2 out
of 3 (or 4) states in the 3-state (or 4-state) model that have
common GO annotation enrichment with those observed
in the 2 state model, whereas the rest states do not have
significant GO annotation enrichment. In addition, the
states with the lowest R2 show the highest average and
median gene expression levels.We suspect that it is in part
due to the facts that the genes that are annotated with
stemness or pluripotency may not have strong associa-
tion trend with histone methylation levels. The results are
shown in Additional file 3.
About 22% of high CpG promoters in embryonic stem

cells have bivalent domain [24], on which both H3K4me3
and H3K27me3 are catalysed. We obtained a list of genes
on such domain in ESC [24]. Among the 13739 com-
mon RNA accessions, there are 1500 and 918 accessions
out of 8319 (State 1) and 5420 (State 2), respectively. We
tested the enrichment using the Chi-square test and the
two states does not distinguish the genes on bivalent or
non-bivalent domains (p−value = 0.1047). The model we
proposed in this manuscript groups the genes by the rela-
tionships between the seven histone methylation levels
and the gene expression levels. It is noteworthy that the

study results are specific to data we applied, therefore it is
cell-line specific.
The H3K4me1 mark is known as enhancer and affects

the gene expression in distance. The median distance to
the closest gene from the peak of H3K4me1 is 26739 in ES
cell [25] and the minimum is 1008. Suspecting that there
may not be no effect of H3K4me1 near TSS, we compared
the model with and without H3K4me1. There is statis-
tically significant effect of H3K4me1 (p-value < 2.2 ×
10−16). Despite the statistical significance, the changes in
R2 is fairly minor (from R2 = .5323 without H3K4me1
to R2 = .5413 with H3K4me1). Also we see statistically
significantly differences in averages of H3K4me1 in two
states on the bins at least 200 bp away from TSS.
In an effort to improve the correlation for State 2, we

considered including the two acetylation levels (H3K9ac
and H3K27ac). When we included these two addition-
ally, the R2 in State 1 and State 2 increased to .7554
and .479 (from .7133 and .3842, respectively) using the
states obtained using the seven histonemethylation levels.
Further investigation is needed to carefully evaluate the
effects of acetylation on expression on top of methylation,
which is beyond the scope of this manuscript.

Conclusion
It has been known that the gene expression levels are
highly associated with the histone methylation levels [7].
Studies such as [6] and [8] have also tried to understand
gene regulation in specific conditions. Yet, our under-
standing of the biological dynamics of epigenetic marks
on gene expression remains limited. To better understand
the biological mechanism in gene regulation, we investi-
gated the potential multiple relationships between gene
expression levels and histone methylation levels around
TSS ± 1 Kb in mouse embryonic stem cells. The genes
are categorized into two groups, and the gene expression
levels are better explained by histone methylation lev-
els in one group (State 1) than in another (State 2). The
gene expression levels are higher on average in State 2
but the association strength with histone methylation lev-
els is weaker. We suspect that the genes in State 2 may
have different biological dynamics than genes in State 1
in addition to the association of histone methylation and
gene expression levels. This is supported by that observa-
tion that the intercept in State 2 is about four-fold larger
than the intercept in State 1. We also investigated possi-
ble attributions of the presence of CpG islands and the
gene functions in the embryonic stem cells that may be
related to distinct association strengths of the two states.
The presence of CpG island in TSS ± 1 Kb has a signifi-
cantly larger effect on gene expression levels in State 2. By
comparing the GO annotation frequencies in each state,
we found that gene expression may respond differently
to the underlying histone methylation depending on gene
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functions. Genes related to receptor activity, integral to
membrane, and signal transduction are more frequent in
State 1 and have much stronger association with histone
methylation levels. In comparison, genes with GO anno-
tations cytoplasm, nucleus, protein binding, and more are
frequent in State 2 and are not as strongly associated with
histone methylation levels than randomly selected genes.
The gene functions or GO categories enriched in State 2
tend to correlate with those of housekeeping genes. This
leads us to test the association between the housekeep-
ing genes and histone methylation levels, and find that
the housekeeping genes are not as well-explained as ran-
dom genes by histone methylation levels on TSS ± 1 Kb
region. By studying stem cell-specific gene expressions,
we further found interesting changes in the average his-
tone methylation levels in the two states. The average
expression levels of the stem cell-specific genes are higher
than the rest of the genes in both states while the aver-
ages of H3K20me3 and H3K36me3 changed in opposite
directions in the two states.
Using the regHMM model, we found two significantly

different relationships between histone methylation lev-
els and gene expression levels. The DNA structure around
the genes such as CpG islands and the functions of genes
in mouse embryonic stem cells also explained in part how
the two states were different. However, these results are
far from comprehensive understanding towards the com-
plex mechanisms in gene regulation in large. It will be
meaningful to further investigate the effects of histone
modification on the changes of gene expression levels over
time including additional regulation factors into consid-
eration. The current study serves as a proof of concept in
the power of data integration in order to further advance
biological insights.

Methods
Regression hidden Markov model
A regHMM is a variation of a hidden Markov model
in which the emission probability accounts for the rela-
tionship between two variables. The regHMM can be
considered as a mixture of regression models with the
Markov property in the latent state. The model can incor-
porate complex structures of the data with a mixture of
simple regression models and it pertains the simplicity
and interpretability of a simple regression model. Partic-
ularly for the data we analyzed, regHMM incorporates
continuous dependent variables by a regression model as
opposed to a logistic regression model for binary data and
regHMM further incorporates the potential correlation
due to genomic proximity [26] using the hidden Markov
model framework.
Let ti denote time or location at where the data is

observed with t ∈ {t1, · · · tT } (t1 < · · · < tT ). Let q =
(q1, · · · , qT ) denote a vector of unknown states. Given

the number of states M, let si denote the ith state i =
1, · · · ,M. An HMM with non-homogeneous transition
probabilities can be structured by specifying the number
of states M, the initial state probability π , the transition
probability At at time t, t ∈ {t1, · · · tT }, and the emission
probability density. The initial state probability is denoted
by π = (π1, · · · ,πM), where πi = P(q1 = si). The transi-
tion probability from state si at the (t − 1)th time to state
j at the tth time is denoted by aijt = P(qt = sj| qt−1 =
si, dt), where dt denotes the distance between the tth time
and the (t − 1)th time for i and j = 1, · · ·M and t ∈
{t1, · · · , tT }. The emission probability density is denoted
by bi(Ot) = p(Ot|qt = si, λ), where λ is a collection of
emission probability density parameters for i = 1, · · · ,M.
With an assumption on the distribution of the latent

variables, the Baum-Welch algorithm [27], equivalent to
the expectation maximization algorithm [28] for HMMs,
finds the maximizer of the expected log-likelihood over
the latent variables. The joint distribution P(O, q|λ) is

p(O, q|λ) = p(O|q, λ)P(q|λ)

= πq1p(y1|x1, q1, λ)

T∏
t=2

aqt−1qt p(yt|xt , qt , λ).

We consider a regHMM that incorporates two sets of
data. Let Ot = (xt , yt) denote the observation at the tth
time, where yt =

(
y1t , · · · , ydt

)
and xt = (

x1t , · · · , xpt
)

denote the response and the explanatory variables, respec-
tively, and d and p denote their dimensions, respectively.
We denote the emission probability given the state by
p(O|q, λ) = p(y|x, q, λ) · p(x|q, λ). When P(y|x, q) =
1, the model reduces to a usual hidden Markov model.
When p(x|q, λ) = 1, the emission probability depends
only on the relationship between the two variables, which
then reduces the model to the regHMM we applied in
this study. Conditional on the states, we assume that the
explanatory variables are linearly related to the response
variables and the emission probability follows Normal
distributions:

yt| (xt , qt = si, λ) ∼ N
(
x′
tβi,�i

)
,

where βi denotes the regression coefficient vector and �i
denotes the variance for i = 1, · · · ,M.
If the observations are unequally spaced, the transition

probability from one state to another may be affected
by the distance between two adjacent observations. We
implemented the following transition probability [10]:

P
(
qt = sj| qt−1 = si, dt

)

=
⎧⎨
⎩
1 −

∑
i�=j

pij(1 − exp(−dt/D)) if i = j

pij(1 − exp(−dt/D)) if i �= j,
(1)
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where D denotes a predetermined constant. As D gets
larger, the chance of staying in the same state in the
adjacent observations becomes larger. The probabilities
pij are calculated by Baum-Welch algorithm. In [29],
the study only included genes at least 4 Kb away from
each other. In our study, instead, we included all the
genes regardless of their distances, and we allowed
the potential spatial relation between genes using the
non-homogeneous transition probability, with D =
4000 in Eq (1). The program MRHMMs [30] is used for
analysis.
We assumed theMarkov property based on the idea that

genes in proximity may be related to their similar expres-
sion levels [26]. In our data set, the gene expression level
difference of the two adjacent genes is positively corre-
lated with the distances between them. Figure 7 shows the
box plots of gene expression level differences in absolute
value for the distance between the genes. Additionally,
based on BIC, a mixture of regression models in hid-
den Markov framework works better (BIC = -30702.77)
than a mixture of regression models without the Markov
property (BIC = -30752.93).
The Viterbi algorithm [13,14] is used to find the most

likely sequence of hidden states. The number of states are
selected by Bayesian Information Criterion (BIC). Accord-
ing to [31], BIC performs well even in the presence of the
Markov property.

Data
We used seven histone methylation levels (H3K4me1,
H3K4me2, H3K4me3, H3K9me3, H3K20me3, H3K27me3,
H3K36me3) in mouse embryonic stem cells [24,32] as the
explanatory variables and gene expression levels as the
response variable. The gene expression levels are calcu-
lated by [7] using the mapped RNA-seq reads for mouse
ESC from [33] according to the reads per kilobase of exon
per million (RPKM) mapped sequence reads defined in
[34]. The gene expression level data is contributed by the
authors of [33].
We focused our study on the TSS ± 1 Kb regions, at

where the signals showed the most dramatic changes. We
took the average of the histone methylation levels in 200
bp non-overlapping sliding windows over non-masked
regions. As a result, we obtained 10 explanatory vari-
ables for each of the 7 histone methylation data and 70
explanatory variables in total. We standardized the data to
have marginal normal distributions by mapping the quan-
tiles of data to a standard normal quantile. To break ties,
we added a small disturbance to the original data from
N(0, 0.01).
For the 25640 gene expression levels in [7], we as-

signed the corresponding RNA accessions (of the format
NM_123456 or NM_123456789). Their TSS positions are
obtained in mm8 from UCSC genome browser [35]. We
excluded 174 genes that were not listed as RefSeq in UCSC
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Figure 7 Distance between genes and gene expression level differences. Box plots of the expression level differences in two adjacent genes
when the distance 10k−1 ≤ dist < 10k is represented by 10k , for k = 1, · · · , 7.
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Table 4 Data processing procedure

Condition Number in the condition Number left

All 25640 25640

No match with refGene 174 25426

No match in strand
direction

44 25382

Masked regions 5712 19670

Zero expression level 167 19503

Multiple expression levels
with the same TSS

2483 17020

genome browser and additional 44 genes that did not
match to the strand directions listed in the UCSC genome
browser. We excluded 5712 genes whose corresponding
explanatory variables contained at least one masked posi-
tion. We further removed 167 genes whose gene expres-
sion levels were 0. This data process is summarized in
Table 4.
The acetylated histone levels (signal) are obtained from

GSM1000147 and GSM1000099.

Condition number
Let X be a T × pmatrix, where T denotes the sample size
and p denotes the number of explanatory variables. Due
to the correlation between explanatory variables within
the 7 histone methylation levels, there is a potential multi-
collinearity problem. We used the condition number, the
square root of the ratio between the largest and the small-
est eigenvalues of X′X, to detect multicollinearity. If the
value is less than the cutoff 30 [15], we consider it as no
multicollinearity. The condition number of X in our data
was about 20.

Housekeeping genes
We used the list of the housekeeping genes defined in [36].
Among the 622 genes on the website [37], we used house-
keeping genes listed as either Known Genes or RefGenes
in UCSC genome browser [35] to get the corresponding
RNA accessions, and we obtained 528 genes. Genes cate-
gorized as either current or old symbol on [22] were used
to build Table 3.

Simulation-based test of the difference in R2

To test if there is a statistically significant difference in R2

between stem cell-specific and other genes:

1. Randomly sample 161 genes (the number of stem
cell-specific genes in State 1) from the stem
cell-specific genes and evaluate R2

2. Use the rest of stem cell-specific genes to evaluate
another R2

3. Repeat the procedure 1000 times and count the
number of procedures in which the difference

between the two R2s is larger than the observed
difference.

To test if there is statistically significant difference in R2

between the housekeeping genes in State 1 and State 2:

1. Randomly sample 192 housekeeping genes and
evaluate R2

2. Find another R2 using the rest of the housekeeping
genes

3. Repeat the procedure 1000 times and count the
number of procedures in which the R2 difference is
larger than the observed R2 difference.

Simulation-based test of a large or small R2

To test if this R2 is significantly large or small in State 1
and State 2, respectively, in a specific GO annotation:

1. Randomly select the same number of genes in the
GO annotation group. As an example, 671 (549 +
122) in G-protein coupled receptor signaling pathway

2. Evaluate the R2

3. Repeat 1000 times and count the number of
procedures in which the R2 is smaller than the
observed R2.

Bayesian Information Criteria
The number of regression relationships is unknown and is
selected based on the Bayesian Information Criteria [38].
Let M denote the number of states. Let LM(O, q) and NM
denote the log-likelihood and the number of parameters
for model with the number of states M, respectively. The
model that has the maximum of LM(O, q) − .5 · NM ln(T)

is chosen as the best model.

Additional files

Additional file 1: Analysis results on the region TSS± 4 Kb. Additional
file 1 contains the analysis results using regHMMover the TSS± 4 Kb region.

Additional file 2: A table of the more frequent GO annotations in
each state. Additional file 2 contains a table describing the more frequent
GO annotations in each state. The GO annotations are in bold text if the
genes in the same GO annotation are better (or worse) explained by
histone methylation levels in State 1 (State 2) than random genes in the
annotation group of size equal to the number of genes.

Additional file 3: Analysis results for 3-state and 4-state models.
Additinal file 3 contains a table describing the number of genes in each
state and R2, GO analysis results, and average histone methylation levels for
3-state and 4-state models.
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