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Abstract

Background: Population differentiation is the result of demographic and evolutionary forces. Whole genome datasets
from the 1000 Genomes Project (October 2012) provide an unbiased view of genetic variation across populations from
Europe, Asia, Africa and the Americas. Common population-specific SNPs (MAF > 0.05) reflect a deep history and may
have important consequences for health and wellbeing. Their interpretation is contextualised by currently available
genome data.

Results: The identification of common population-specific (CPS) variants (SNPs and SSV) is influenced by admixture
and the sample size under investigation. Nine of the populations in the 1000 Genomes Project (2 African, 2 Asian
(including a merged Chinese group) and 5 European) revealed that the African populations (LWK and YRI),
followed by the Japanese (JPT) have the highest number of CPS SNPs, in concordance with their histories and
given the populations studied. Using two methods, sliding 50-SNP and 5-kb windows, the CPS SNPs showed distinct
clustering across large genome segments and little overlap of clusters between populations. iHS enrichment score and
the population branch statistic (PBS) analyses suggest that selective sweeps are unlikely to account for the clustering
and population specificity. Of interest is the association of clusters close to recombination hotspots. Functional analysis
of genes associated with the CPS SNPs revealed over-representation of genes in pathways associated with neuronal
development, including axonal guidance signalling and CREB signalling in neurones.

Conclusions: Common population-specific SNPs are non-randomly distributed throughout the genome and are
significantly associated with recombination hotspots. Since the variant alleles of most CPS SNPs are the derived
allele, they likely arose in the specific population after a split from a common ancestor. Their proximity to genes
involved in specific pathways, including neuronal development, suggests evolutionary plasticity of selected
genomic regions. Contrary to expectation, selective sweeps did not play a large role in the persistence of
population-specific variation. This suggests a stochastic process towards population-specific variation which
reflects demographic histories and may have some interesting implications for health and susceptibility

to disease.
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Background

The global diversity of human genomes is the outcome of
a series of demographic and evolutionary events including
migration, bottlenecks, admixture, population isolation,
natural selection and genetic drift which occurred in dif-
ferent parts of the world at various time points in history
[1-3]. Genomic signatures of many of these events have
been preserved in the genomes of different populations
and play a pivotal role in uncovering demographic histor-
ies in addition to understanding health and disease [4,5].
In the last decade, two major large consortium based ef-
forts; the HapMap project, the Human Genome Diversity
Project (HGDP), as well as several other studies, based on
genotyping of single nucleotide changes, have attempted
to catalogue the genetic variations that exist between
individuals of a population as well as within different
populations across continents [6-11].

Data from these studies on genetic diversity have been
instrumental in estimating the origin and history of
different contemporary populations as well as shedding
light on the evolutionary relationship between them
[12]. Moreover, the genotype data from these studies have
been subjected to various computational techniques to
derive estimates of population sizes and divergence times
for the major demographic events in human history,
which in many cases have been found to be in agreement
with evidence from existing historical accounts and arch-
aeological records [13,14]. However, these studies were
based on a fixed number of single nucleotide polymor-
phisms (SNPs) which had clear ascertainment bias (the
SNPs included in the genotyping platforms were selected
on the basis of their occurrence and frequencies primarily
in European populations), therefore it was difficult to
reliably assess the nature and extent of genomic diver-
sity that exists among different populations from these
studies [15].

The next major wave of information about genetic and
genomic diversity in human populations came from
studies based on exome and whole genome sequencing
[16-19]. The 1000 Genomes Project, for example, in
addition to identifying millions of novel SNPs and more
than a million short structural variants (SSVs), showed
that rare variants account for a large majority of the exist-
ing genetic diversity between individuals as well as within
populations [17,18]. Moreover, it was suggested that there
is an excess of rare and deleterious mutations in human
genomes, probably resulting from exponential population
growth and weak purifying selection [17,18]. Studies based
on deep sequencing of selected regions from thousands of
individuals further show that the majority of rare coding
variants, with allele frequencies lower than 0.0005, are
also population-specific and potentially deleterious [19].
In addition to thousands of contemporary human ge-
nomes, sequencing of many archaic genomes has also
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been performed recently which has provided evidence
for archaic admixture in non-African genomes [20-22].
Such admixture might also be present in at least some
of the African populations [23,24]. These studies taken
together have not only resulted in a paradigm shift in
our understanding of various aspects of human genomic
diversity but also provided necessary data for addressing
numerous other questions related to human genome
evolution.

SNPs and structural variants are broadly classified into
common and rare based on minor allele frequencies
(MAF). A widely used cut-off for defining rare SNPs
being a MAF of less than 0.05 [17]. However, this cut-
off is pragmatic in nature and does not have any special
biological relevance. Although differences in SNP allele
frequencies might be influenced by various demographic
factors like selection and population size, time is the major
determinant in the rise or fall of allele frequencies.
Mathematical estimates suggest most of the common
SNPs to have originated thousands of years ago and
therefore to have a wider geographic distribution in
contrast to rare variants which are mostly more recent
and geographically restricted [25]. The rare and common
variants therefore allow us to investigate events at dif-
ferent time scales of demographic histories. The rela-
tive phenotypic importance of common and rare SNPs
is highly debated [26]. Nevertheless, while most of the
Mendelian traits and deleterious mutations have been
shown to be rare; several studies suggest some continuous
traits like height might well be explained in terms of com-
mon SNPs [27,28].

SNPs and structural variants are often classified into
‘private’ and ‘shared’ based on their distribution in a single
population or a range of populations. The term private
however might imply different things based on the con-
text, for example, a SNP might be private to an individual
or a family, or to a population (monomorphic in all but
one population; also referred to as ‘population private’) or
to an ancestral group. Therefore, we will use the term
‘population-specific’ for the SNPs that have been found to
occur only in a single population. Although private SNPs
have not been shown to be involved in major phenotypic
traits or common diseases, population-specific SNPs might
well be important in ascribing characteristic phenotypes and
disease susceptibility/protection to a population [29,30].

Population specificity of genetic variants, if the popula-
tion-specific allele is the derived allele, might originate
from two different scenarios: in the first scenario, a variant
allele originates in a single population and remains re-
stricted to the population of its origin. The second sce-
nario is that the variant originated before differentiation of
populations, survives in only a single population, and gets
eliminated from other populations. In cases where the
population-specific allele is the ancestral allele, both the
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alleles are estimated to have evolved far back in evolutionary
history and the derived allele replaces the ancestral allele
in all but one of the populations, probably through select-
ive sweeps. Alternatively, in some cases, the assignment of
ancestral state may be incorrect. The other possible sce-
nario by which population-specific SNPs might originate
is by admixture with populations which are not included
in the study or even populations which are no longer
extant. Therefore, in addition to the functional role of
these SNPs, the population-specific SNPs might also
play an important role in characterizing ancestry and
understanding demographic histories [31,32]. For example,
on a genome wide scale the number of population-specific
SNPs in a population would be expected to be related
to the age of the population and also to reflect demo-
graphic events like bottlenecks, geographical isolation
and admixtures.

Despite their potential significance, population-specific
SNPs have not been studied extensively. Previous HapMap
data based studies on population-specific SNPs have been
able to identify only a small number of population-specific
SNPs due to ascertainment bias of the genotyping plat-
form [6,33-35]. The availability of unbiased whole genome
sequence data from sources like the 1000 Genomes
project, however, has now made the identification and
characterization of population-specific SNPs on a genome
wide scale possible. Moreover, sequencing-based studies
have shown population-specific SNPs to be one of the
major components of genetic diversity within populations
[17-19,36]. A deeper understanding of population-specific
variations, their genomic distribution and potential func-
tional relevance is important.

We have used 1000 Genomes sequence data (release
October 2012), including more than one thousand indi-
viduals from 14 populations spanning Europe, Asia, Africa
and America, to identify SNPs and structural variants that
are private or specific to each population and to study
their genomic distribution and potential functional rele-
vance [17,18]. However, as the population sample sizes are
relatively small (<100) and the sequencing is low coverage
(4X-6X) for most of the 1000 Genomes data, low fre-
quency alleles are harder to accurately identify and may be
incorrectly identified as population-specific [17,18]. We
have therefore focused our study on common population-
specific (CPS) SNPs as higher MAF population-specific
SNPs are expected to be more informative and less likely
to be incorrectly annotated as population-specific in
this dataset. We evaluated the frequency distribution
of population-specific SNPs identified in our study in
the context of the generally accepted model of population
migration and differentiation. We analysed the genomic
distribution of these SNPs using fixed length and fixed
bin window scan based approaches to identify potential
biases in genomic distribution of CPS SNPs. The CPS
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SNP-enriched genomic regions in different populations
were then compared to test whether their preferential
localization has overlaps across different populations.
Analyses of signatures of selection and the distribution
of recombination hotspots were performed in the CPS
SNP-enriched genomic regions to determine the extent
of involvement of these processes in generating CPS
SNP-enriched genomic regions in different populations.
Functional enrichment analysis of genes containing the
CPS SNP was performed and the enriched functional clas-
ses for different populations were compared to identify
possible functional trajectories in population-specific SNP
evolution.

Results and discussion

Identifying SNPs unique to each population

One of the major achievements of the 1000 Genomes
project has been the identification of numerous novel SNPs
across different populations [17,18]. The sequence-based
approach employed in the 1000 Genomes project in
contrast to the previous genotyping-based approaches
like HGDP and HapMap, provides an unbiased estimate
of human genetic variation across many populations glo-
bally [6,7,17,18]. We have used the most recent version
(October 2012) of the 1000 Genomes data to identify
SNPs which are observed to be unique to each of the
individual study populations [18]. These SNPs were
categorized into CPS SNPs and rare population-specific
(RPS) SNPs based on a MAF cut-off of 0.05. SNPs with
MAF >0.05 were considered as CPS SNPs while SNPs
with lower MAFs were considered as RPS SNPs. Although
more than 99% of population specific SNPs in the 1000
Genomes data are RPS SNPs, we have focused our present
study on CPS SNPs because the sample sizes (around
90-100 individuals for each population) and low cover-
age sequencing (around 4X for most of the genomic re-
gions) used for generating the data make it difficult to
reliably ascertain the population specificity of low allele
frequency SNPs. Moreover, as these SNPs have a MAF of
at least 0.05 they are less likely to be personal SNPs or the
result of recent demographic events.

The present 1000 Genomes data contain two African
(YRI (Yoruba in Ibadan, Nigeria), LWK (Luhya in Webuye,
Kenya)), three Asian (JPT (Japanese in Tokyo, Japan), CHB
(Han Chinese in Beijing, China) and CHS (Han Chinese
South)), three American (MXL (Mexican Ancestry in
Los Angeles, CA, USA), PUR (Puerto Ricans in Puerto
Rico) and CLM (Colombians in Medellin, Colombia)),
5 European (IBS (Iberian Populations in Spain), GBR
(British from England and Scotland), CEU (Utah residents
with ancestry from northern and western Europe), FIN
(Finnish in Finland) and TSI (Toscani in Italia)) and
one admixed African (ASW (African Ancestry in SW
USA)) population. The frequencies of common and rare



Choudhury et al. BMC Genomics 2014, 15:437
http://www.biomedcentral.com/1471-2164/15/437

population-specific SNPs in these populations have
been summarized in Figure 1A and Figure 1B, respect-
ively. Although the numbers of common and rare SNP
differ by many folds, there are some broad similarities
in the distribution patterns of the CPS SNPs and RPS
SNPs.

For example, the highest number for both CPS SNPs
and the RPS SNPs was observed in the LWK population
followed by the Japanese (JPT) population. Interestingly,
in contrast to the large number of RPS SNPs observed,
just a few CPS SNPs were found to occur in the Chinese
populations (CHB and CHS). This observation is consist-
ent with the fact that these populations have a similar geo-
graphic origin, and the differentiation between them
probably started little more than a thousand years ago
with the Southward migration of the Northern Han popu-
lation [37-39]. In spite of the pronounced divergence of
these populations, reflected in the high frequency of RPS
SNPs and has also been observed in many previous stud-
ies, the relatively recent divergence has not allowed many
of the population-specific alleles to reach frequencies of
0.05 [37-39]. As our aim was to identify common SNPs
which are unique in different populations, and we know
that these populations have a common recent origin, we
merged the two Chinese populations CHB and CHS into
a single population (named CHINESE for this study). We
recognise that this approach would not be suitable for a
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similar analysis with rare SNPs due to the extent of diver-
gence that these populations have undergone recently.

One of the concerns with using all the current popula-
tions of the 1000 Genomes data for identifying population-
specific SNPs is the inclusion of populations with known
recent admixture, such as ASW and MXL (Supplementary
Figures S4 and S9 from reference 18). The inclusion of
these admixed populations may mask the true population
specificity of SNPs. In order to identify SNPs which are
truly unique to populations, ASW and the three American
populations (MXL, PML and PUR), which are known to
have undergone a significant amount of admixture in the
recent past, were removed from the dataset [18]. It is worth
noting, however, that the MXL, CLM and PUR populations
contain a few hundred common SNPs which were not ob-
served in any other continent/population. As indicated by
previous population structure analyses, these populations
harbour a significant Native American genetic component;
and the order of Native American admixture in these
three populations is approximated by the total number of
population-specific SNPs in these populations (highest in
MXL followed by CLM and then PUR) [18]. It would be
an interesting follow-up study to isolate the population-
specific SNPs of Native American origin and to function-
ally assess their significance in these populations.

The trimming and rearrangement of the popula-
tion datasets resulted in 9 potentially independent and

16000 - MAF>0.05

14000 -
a 12000 -
10000 -
8000 -
6000 -
4000 -
2000

il I |

N & OO RO & & RS
STFCOLE T S SFS

Number of SNI

(@}

40000
35000
30000
25000
20000
15000
10000

5000

MAF>0.05

Number of SNPs

N\
&

populations are shown in blue.

>~}

Figure 1 Population-specific SNPs in the 1000 genomes data. The number of population-specific SNPs for each of the 14 populations for
common (A) and rare (B) SNPs are shown in (A) and (B). As the dataset includes admixed and related populations we removed the four known
admixed populations (ASW, CLM, PUR, and MXL) and merged the two Chinese populations CHS and CHB into a single CHINESE population. The
number of common (C) and rare (D) population-specific SNPs in the remaining 9 populations were retained for further analysis. The European
populations are shown in orange, Asian populations in purple and the African populations in light green. The American and the admixed African

MAF<0.05

Number of SNPs (in millions)

o

Ny

CHPC MR RIS
&>‘<\e&q~®@@&\q§g~v§§\ Q

K

O

w

MAF<0.05

N

Number of SNPs (in millions)
o =
o L, N U w n

N N N
&\ ((\e (;§~ ggv <8 e@‘o § \t‘\% <&
o




Choudhury et al. BMC Genomics 2014, 15:437
http://www.biomedcentral.com/1471-2164/15/437

essentially non-admixed populations for further investiga-
tion in the current study. The distribution of the CPS
SNPs and RPS SNPs for each population was recalculated
considering these 9 populations only, and has been sum-
marized in Figure 1C and D. The list of SNPs which were
observed to be unique to each population along with their
frequencies in the 14 study populations has been provided
in Additional file 1. Although the removal of the admixed
populations significantly increased the count of CPS SNPs
for all the populations, the detected trends, for example
the highest number of SNPs in LWK, followed by JPT, IBS
and FIN, are similar in both sets (Figure 1A, C, B and D).
An interesting exception is the YRI population, where the
number of YRI specific CPS SNPs goes up by folds with
the removal of the admixed African American population.
This result concurs with the known history of recent mi-
gration and admixture of the Western African populations
in North America [40]. However, in spite of this increase
in the number of the CPS SNPs in the YRI, after removal
of admixed populations, they still have only about half the
number of CPS SNPs observed in LWK. This difference
is, however, not surprising in view of the fact that a num-
ber of different populations, which most probably include
the LWK along with other Bantu-speaking populations,
have migrated to East Africa at different time points in
history [41-44]. The migration of several different popula-
tions along with the presence of indigenous East-African
Khoesan-speaking populations in this region, which has
been suggested to have contributed to the population
differentiation in East-Africa, might also explain the
high frequency of CPS SNPs and RPS SNPs observed in
the LWK [41,42].

The relatively high frequency of CPS SNPs as well as
RPS SNPs in the Japanese population is notable. It is well
known that the modern Japanese population contains ad-
mixtures of at least two distinct genetic components; the
old migrants who migrated to the Japanese Archipelago
approximately 30,000 years ago and the new migrants that
reached Japan only about a couple of thousand years ago
[45-47]. It would be interesting to study how far the
unique components of both these, and perhaps other mi-
grating populations, add up to generate the high RPS
SNPs and CPS SNPs observed in the JPT population.

In addition to population histories, the sample size is
also a strong determinant of how many variants and
unique variants are observed in a population. For ex-
ample, the huge increase in the frequency of RPS SNPs
in the Chinese populations after the merger (Figure 1D)
is also an outcome of the increase in sample size due
to merging of the populations. As the sample size for
the population has doubled the frequency of detection
of RPS SNPs has increased proportionately and similar
changes can be expected to be observed in other popula-
tions in the future as more samples from these populations
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are sequenced. Similarly, the lack of RPS SNPs in the IBS
population in comparison to other populations can be
ascribed to the inclusion of only 14 IBS samples in the
current 1000 Genomes data set. It can be expected that
as more samples are sequenced the fraction of RPS SNPs
in this population will be in line with other populations.

We found that three of the European populations (CEU,
GBR and TSI) have only a handful of common SNPs
unique to them in contrast to a few hundred thousand rare
SNPs. While this makes sense in terms of demographics
[48,49] and probable admixtures, it might also be a result of
treating these related or partially admixed populations sep-
arately. Approaches that group these populations together,
based on population histories, might lead to the identifica-
tion of some CPS SNPs in these groups too. While the high
frequency of CPS SNPs in the Finnish population (FIN) can
be interpreted in terms of multiple genetic components
and demographic factors like isolation, migration and ad-
mixture, which is reflected in their distinctive distribution
in the European principal component analysis (PCA) plots
in other studies [18,50,51], the high frequency of CPS SNPs
in the Spanish (IBS) population needs to be treated with
greater caution as the number of individuals sequenced for
this population is only 14. Many of the SNPs which seem
to be common (MAF > 0.05) in the IBS in the present data
might turn out to be rare once other samples from this
population are sequenced.

Although our analysis is focused on SNPs, we studied
the distribution of population-specific short structural
variants (SSVs) to see whether their distribution in differ-
ent populations concurs with that of the SNPs. Figure 2
shows the distribution of the common population specific
structural variants (CPS SSVs) and rare population-specific
structural variants (RPS SSVs). Interestingly, the relative
prevalence of the SSVs across populations shows high
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concordance with that of SNPs. However, the numbers
observed for rare and common SSVs are similar in con-
trast to the few fold difference observed in the number of
common and rare SNPs.

To classify the CPS SNP variant alleles into ancestral
and derived (based on multi-species alignment) the ances-
tral/derived information for alleles in the 1000 Genomes
vcf file was used [18]. As expected, more than 80% of the
population-specific alleles were found to be the derived al-
lele (Figure 3) indicating that most of these alleles likely
arose in the individual populations after their divergence
from other populations.

The relative prevalence of the CPS SNPs (as well as RPS
SNPs and SSVs) across populations, therefore, shows high
concordance with what can be expected on the basis of
the generally accepted model of population divergence
and the relationships between populations. However, as
has been demonstrated, the number of population-specific
SNPs observed in any population, in addition to population
histories, is also influenced by factors like sample size and
number of related and/or admixed populations included
in the study. The removal of the admixed African and
American populations almost doubled the number of com-
mon SNPs which were detected to be population-specific
in the other 9 populations, indicating how important the
detection and control of admixture is for identifying what is
truly population-specific. While the lack of CPS SNPs in
most European populations is not very surprising consid-
ering their population histories, as well as the number of
populations (5 European populations in contrast to only 2
African and 3 Asian population) included in the dataset, it
would be interesting to see how strongly the inclusion of
other populations from Asia and Africa change the num-
ber of population-specific SNPs as new data pour in.
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Genomic distribution of CPS SNPs

The distribution of SNPs has for long been known to be
non-random across the genome [52-55]. Recent studies
have further suggested that the rates of mutations in a
genomic region in addition to the genomic context might
also depend on the presence of repeat sequences and even
existing SNPs in the region [56,57]. Moreover, genomic re-
gions where genomes from different global populations
differ very strongly from each other have also been ob-
served [58]. Given this background it was interesting
to investigate whether the CPS SNPs, as delineated in
our study, also show clustered occurrences across the
genome. To identify possible biases in the distribution
of CPS SNPs in each population and test whether the
enriched regions are similar in different populations
we used a sliding window based scan. Although sliding
window based approaches have been widely used to
identify clusters within genomic regions [59,60], this
approach has been shown to find some false positive
clusters in some cases [61]. Therefore, to minimize such
false positive results we have used two different sliding
windows based approaches and used a conservative
p-value cut-off for delineating clusters of CPS SNPs in
each population.

50-SNP windows

In the first approach, a window was defined as a set of
50 contiguous SNPs and each chromosome was scanned
along the 50-SNP windows (with a slide of 50 SNPs per
step) separately for each population. In each step the
fraction of CPS SNPs in each window was recorded and
compared to an expected value, based on the occurrence
of CPS SNPs on the corresponding chromosome for the
particular population. The statistical significance of the
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observations was estimated using cumulative hyper geo-
metric p-values calculated for each window. The results
clearly identified specific regions of the genome to be
enriched with CPS SNPs in each population. We detected
655 CPS SNP-enriched windows/regions in the 6 popula-
tions (Table 1, Additional file 2). The populations CEU,
TSI and GBR were not analysed due to a paucity of CPS
SNPs. As for the number of CPS SNPs in the population,
most CPS SNP-enriched windows were observed in the
LWK, followed by YRI and JPT. It is interesting to note
that, although both FIN and IBS contain a much greater
number of CPS SNPs in comparison to the CHINESE
population, which contains 24 enriched windows, only
three CPS SNP-enriched windows were detected in the
IBS population and a single such window was detected
in the FIN population. The two highest-scoring win-
dows detected for each population using this scan are
shown in Table 2. In the highest-scoring windows for
both LWK and YRI more than 50% of the SNPs were
found to be CPS SNPs.

5-kb windows

The second approach was to use a sliding window of 5
kilobases (kb). This approach, in addition to identifying
CPS SNP-enriched regions, provides a more direct way
to identify possible overlap within CPS SNP-enriched
windows across populations. Using this scan, 565 5-kb
regions were found to be significantly enriched for CPS
SNPs in the 6 populations (Table 1). For each of the
populations there was a very significant amount of overlap
between the regions identified by the two sliding window
based approaches (Table 1). The comparison of enriched
windows identified using both the sliding window ap-
proaches shows that there is almost no overlap within
the CPS SNP-enriched regions in these six populations
(Figure 4). The second interesting aspect revealed by
both the 50-SNP windows and 5-kb windows based ap-
proaches is that for many genomic regions the run of en-
richment extends far beyond a single or couple of windows.
The regions containing the longest stretches of enriched
50-SNP windows have been summarized in Table 3.
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Interestingly, the longest blocks and the highest scoring
windows show significant overlap in some populations
(Tables 2 and 3). For example, one of the longest blocks as
well as one of the most CPS SNP dense windows was de-
tected near the solute carrier organic anion transporter
family, member 1B1 (SLCO1BI) gene in the YRI popula-
tion. Sequence variants identified in the SLCOIBI gene
have been associated with altered transport activity and it
has been shown that genetic polymorphisms in the gene
have an impact on the inter-individual variability of
the pharmacokinetics and pharmacodynamics of spe-
cific drugs [62,63]. Previous studies have also observed
unique genetic diversity in the SLCOIBI gene between
populations with the greatest diversity among African
populations [62,63]. Similar overlap was also observed
in the RAP1 interacting factor homolog (RIFI) gene in the
CHINESE population. Additional files 2 and 3 contain the
full list of windows identified using these approaches, and
the SNPs included in them. Interestingly, despite fewer
CPS SNPs and the presence of only a few enriched win-
dows, two significantly long stretches of enrichment are
observed in the CHINESE population. Similarly, although
the number of enriched windows in Japanese is less than
one third of that of the YRI, the Japanese population seem
to harbour much longer enriched window stretches in
comparison to the YRI population, and this enrichment
cannot be explained solely on the basis of increased LD in
the Japanese compared to the YRI These observations
taken together indicate that the bias in distribution of CPS
SNPs is largely independent of the size of the datasets and
the enriched windows or window blocks may represent
genomic regions significant in terms of function or popu-
lation histories.

Possible origin of CPS SNP-enriched genomic regions

Clusters of SNPs with highly differentiated allele frequen-
cies, within and between species, have been observed in
numerous previous studies [64-66]. The origin of such
clusters has been ascribed to various demographic factors
like genetic drift and gene flow as well as forces like selec-
tion and local adaptations [67-69]. The CPS SNP clusters

Table 1 Genomic regions enriched in common population-specific (CPS) SNPs identified using 50-SNP and 5-kb window

approaches

Population Sample size CPS SNPs 50-SNP window 5-Kb window Overlap
LWK 97 34390 357 31 237
YRI 88 18809 216 188 138
JPT 89 10326 64 47 41
CHINESE 197 863 24 28 21
FIN 93 3178 1 1 0
IBS 14 5971 3 1 0
Total 73537 665 576 437

The populations CEU, TSI and GBR were excluded from this analysis due to low numbers of CPS SNPs in these populations.
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Table 2 Best common population-specific (CPS) SNP-enriched windows for each population
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Population Chr Start End No. of SNPs P-value Gene or flanking genes
YRI 18 6266587 6271281 26 4.36E-66 L3MBTL4
YRI 12 21347746 21353031 25 9.95E-60 SLCO1B1
LWK 10 26690276 26697294 26 1.19E-59 GAD?2 - APBB1IP
LWK 3 132399187 132404788 25 3.74E-56 NPHP3-ACADT1
JPT 2 38809530 38818371 20 5.77E-46 HNRPLL
JPT 4 187416152 187426671 18 7.30E-44 LOC285441-MTNRTA
CHINESE 2 152284636 152297774 12 8.13E-36 RIF1
CHINESE " 119411414 119420288 1 2.13E-33 LOC100499227- PVRL1
FIN 16 86084552 86093750 4 245E-09 IRF8-LOC146513
IBS 3 68079 77942 5 6.40E-10 na-CHL1
IBS 19 52867878 52878655 4 2.77E-08 ZNF610

Population code, genomic coordinates, number of CPS SNPs, p-values and corresponding genes (if window is exonic or intronic) or flanking genes joined by
a “-" (if the window is intergenic), for up to two best 50-SNP windows for each population.

Intergenic window for which no flanking gene was found is indicated by “na”.
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Table 3 Longest CPS SNP-enriched 50-SNP window stretch for each population

Population Chromosome Start

End Block length Gene or flanking genes

YR 12
JPT 4
LWK 12
CHINESE 2

21343612
187420496
79979498
152268276

21361661 6
187467709 11
80083792 12
152401521 14

SLCo1B1
MTNRITA
PAWR
RIFT

Population code, genomic coordinates; number of 50-SNP windows in the block and the related loci are shown for each population.

No such blocks were observed for the FIN and the IBS populations.

observed in our study are somewhat similar to the clusters
which show high allele frequency differentiation within
populations as they represent genomic regions which vary
widely across populations. However, there is an inherent
difference in that in these regions both the SNP compos-
ition and SNP density is different in a single population
compared to others. Considering this background it was
important to investigate if the factors, which are assumed
to generate clusters of SNPs with highly differentiated
allele frequencies across populations, are also responsible
for generating clusters of CPS SNPs. We used different
computational approaches to test possible involvement of
selection or increased recombination rates in the origin of
these clusters.

Role of selective sweeps

To determine whether the genomic regions enriched in
CPS SNPs have an association with selective sweeps, we
used two different approaches to search for possible signa-
tures of selection in these regions. The first approach was
based on the iHS (integrated Haplotype Homozygosity
Score) statistic, which in principle involves the detection
of unusually long haplotypes of low diversity as signatures
of selection [68]. iHS scores for each SNP in the 50-SNP
windows which were found to be enriched with CPS SNP
were computed using the program iHS_calc [70]. For each
50 SNP window we calculated the proportion of SNPs
with |iHS|>2 which we will call iES (iHS enrichment
score). The background iHS and iES score distributions
were estimated on the basis of the iHS score calculated
from 10,000 random contiguous 50-SNP windows or
blocks for each population. Based on the background
distribution, we then estimated the number of 50-SNP
windows which can be expected to correspond to the top
1%, 5% and 10% of iES scores for each population. The ob-
served number for CPS SNP-enriched windows for each
population which correspond to the top 1%, 5%, and 10%
iES scores were compared with the number of expected
windows and the corresponding p-value for each observa-
tion was then estimated using bootstrap resampling. The
results show that although some of the CPS SNP-enriched
windows show significant iHS score enrichment, the overall
distribution does not indicate any significant association of
selection with these windows (Figure 5A).
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Figure 5 Analysis of potential signatures of selection in the
common population-specific (CPS) SNP-enriched windows.

(A) Expected and observed number of iES (iHS enrichment score)
enriched windows (see Methods for details) in YRI, LWK, JPT and
CHINESE populations. The number which has been appended to the
population code indicates the top n™ percentage of iHS score
considered (1 =top 1%; 5=top 5% and 10=top 10%). The
corresponding p-values for enrichment are shown on the right axis.
(B) Expected and observed occurrences of top 1%, 5% and 10%
population branch statistic (PBS) scores amongst CPS SNP-enriched
windows for YRI, LWK, JPT and CHINESE populations. A three letter
population combination code (say YLJ) has been used to describe
the 3 population set used for calculating the PBS score. The first let-
ter (Y) indicates the population being analysed (YRI in this case). The
CPS SNP-enriched windows are analysed for this population. The
second letter (L) indicates the population to which it was compared
(LWK here) and the third letter (J) indicates the outlier JPT in this
case). The number, appended with an underscore to each three let-
ter dataset name indicates the top n™ percentage of PBS score cut-
off used for analysis (1 =top 1%, 5=top 5% and 10 =top 10%).
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One of the concerns about using a centi-morgan (cM)
based physical map, such as the one used in this study,
is that the signals for signatures of selection might get
underestimated as the threshold of iHS > 2 used by Voight
and colleagues [68] might be too stringent for a ¢cM map
based analysis. Therefore, we ran two independent sets of
analysis in which the iES scores were defined on the basis
of lowered thresholds of iHS > 1.75 and iHS > 1.5, respect-
ively. However, no distinct enrichment of iHS scores was
observed even in the lower threshold sets. Results from
the analysis of the 5-kb windows were also found to be
very similar to that obtained with the 50-SNP windows. It
should, however, be kept in mind that iHS in itself might
not be a very good metric for testing selective sweeps in a
dataset which is known to contain many CPS SNPs of
moderate allele frequencies because, unless on a single
haplotype, these SNPs will have a tendency to disrupt long
haplotype blocks. The results for the iHS scan, neverthe-
less, confirm that the CPS SNPs in CPS SNP-enriched
windows show a complex distribution of SNPs which re-
sult in complex haplotype architectures, and not a single
long haplotype.

To test for selective sweeps on the basis of allele fre-
quency differentiation rather than haplotype lengths we
used the population branch statistic (PBS); which has
been found to be very useful in detecting high altitude
adaptation-related SNPs in Tibetans relative to Han
Chinese and Danish populations, as an alternative ap-
proach for detecting signatures of selective sweeps in CPS
SNP-enriched windows [71]. PBS can be thought of as an
estimate of the allele frequency change at a given locus in
the history of a population since its divergence from an-
other population. The idea behind this analysis is that if
we consider two related populations and an outlier popu-
lation, the allele frequency changes at any locus in these
two populations should be equidistant (or have similar
branch length) from the outlier. Therefore loci which
show high allele frequency differentiation in only one
of the related populations, reflected by high population
branch length (and PBS score), may be potential candi-
dates for selective sweeps.

For each population, the PBS statistic for each CPS
SNP-enriched 50-SNP window was calculated using the
method used by Yi et al. [69]. For the Asian populations
(JPT and CHINESE) and European populations (IBS and
FIN), YRI was used as the outlier population. Similarly,
for the African populations YRI and LWK, the JPT
population was used as the outlier. Although the choice
of outlier for the populations might be questionable
from a population history perspective, the distances within
these populations suggest that this set can still provide rea-
sonable estimates of branch lengths. For each 3-population
set (e.g. YRI-LWK-JPT or JPT-CHB-YRI), we estimated the
background distribution of the PBS scores, using 10,000
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randomly-selected 50-SNP windows. We then identified
score cut-offs based on the top 1%, 5% and 10% of the
background distribution and estimated the number of
50-SNP windows which can be expected to be in the top
1%, 5% and 10% PBS score range for a population. The
number of observed windows in the 1%, 5% and 10%
range was compared to the expected number and the
corresponding P-values were estimated using a bootstrap
analysis. Figure 5B summarizes the PBS score distribution
for the Asian and African populations. None of the win-
dows which were found to be enriched with CPS SNPs in
FIN and IBS were found to be in the top 1%, 5% or 10%
range for the respective populations and hence were not
retained for further analysis. It can be seen that, although
some of the populations have some enrichment of high
PBS scores in the CPS SNP-enriched windows, their lack
of statistical significance as well as the overall distribution
of PBS scores do not suggest that selection is common in
these regions (Figure 5B). Although there are quite a few
other tests for detecting selective sweeps [72,73] which
could have been employed for this dataset and might have
identified a few more CPS SNP-enriched windows to be
under selective sweeps, it is unlikely that they would
change the landscape fundamentally and it can be safely
concluded that selection is not the major factor causing
CPS SNP enrichment in certain genomic regions. How-
ever, the efficiency of existing methodologies for detecting
signatures of selection in datasets like the current 1000
Genomes dataset (which contain a large proportion low
frequency SNPs, sequenced on a low coverage platform) is
an important concern as genome wide variation in error
rates might easily mask true signals and generate false
positive signals of signature of selection. Development of
parameters and efficient quality control measures well
suited for identifying signatures of selection in such a
dataset will significantly contribute to future work in this
direction.

Role of recombination rate

Regions of high recombination have been shown to be
related to higher SNP densities [74,75]. As the SNP
densities in the CPS SNP-enriched windows are higher
in a single population compared to others, we consid-
ered whether there was any relationship between CPS
SNP-enriched windows and higher recombination rates.
To test the association of CPS SNP-enriched genomic
regions with meiotic recombination rates, we obtained
recombination hotspots based on the recombination
maps generated by deCODE [74]. The distribution of
recombination hotspots from the deCODE recombination
map using a SRR (sex-standardized recombination rate)
cut-off of 10 found only a handful of recombination hot-
spots within the CPS SNP-enriched regions in all popula-
tions taken together [76]. However, recombination hotspots
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have been found to vary significantly among popula-
tions [77,78] and as a population-specific perspective
of recombination was key for this study, in addition to
the generalized deCODE recombination map, the linkage
disequilibrium (LD) based HapMap YRI map (hapMapRe-
lease24YRIRecombMap) was used to identify recombin-
ation hotspots and coldspots for the YRI population
[6,33,34]. Similarly the combined HapMap recombination
map (hapMapRelease24CombinedRecombMap) was used
to identify recombination hotspots and coldspots for all
other populations [6,33,34].

We studied the genomic distribution of the recombin-
ation rates from the YRI-specific map and the genomic
regions corresponding to the top 1% recombination rates
were defined as recombination hotspots for YRI. A second
set of hotspots, likewise, were defined on the basis of
the top 5% recombination rates. Similarly, two sets of
coldspots were defined by the lowest 1% and 5% re-
combination rates. Based on the genomic distribution
of recombination rates in YRI we estimated the number of
hotspot sites expected to occur in CPS SNP-enriched
windows for the YRI population. The observed rates
were compared with the expected rates and the statis-
tical significance of enrichment of recombination hot-
spots were estimated at both 1% and 5% levels. The CPS
SNP-enriched regions defined on the basis of both length
(5-kb) and 50-SNP windows were analysed separately. The
frequency of sites with the top 1% and 5% recombination
rates in both sets of YRI-specific CPS SNP-enriched
regions in comparison to the respective background
distributions of genomics regions with the top 1% and 5%
recombination rates has been summarized in Figure 6A. It
is clear that for both kinds of windows and at both levels
(top 1% and 5%) the recombination hotspots were highly
enriched in the population specific SNP-enriched genomic
regions. The analysis of coldspots at both 1% and 5%
levels, on the other hand, show that these sites are highly
under-represented in the CPS SNP-enriched regions. A
similar analysis for other populations using the combined
map (hapMapRelease24CombinedRecombMap) shows that
the trend of very significant enrichment of these hotspots
and significant depletion of the recombination coldspots
is consistently seen in all populations (Figure 6B). A
combined analysis of CPS SNP-enriched windows from
all the populations taken together also shows the same
trend (Figure 6B).

Although this analysis shows a very clear trend, as the
maps used in this study are LD based, further evidence
in terms of experimentally derived data for at least some
of these regions will be required to reliably establish the
relationship between recombination hotspots and CPS
SNP-enriched windows. Nevertheless, the observed en-
richment of recombination hotspots in CPS SNP-enriched
genomic regions hints that high recombination might be
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Figure 6 Recombination rates in common population-specific
(CPS) SNP-enriched regions. A. The expected and observed
number of hotspots (HS), defined on the basis of top 1% and 5%
recombination rates) and coldspots (CS) (defined on the basis of
lowest 1% and 5% recombination rates) in CPS SNP-enriched regions.
(A) Recombination rates for the YRI was estimated on the basis of the
HapMap24 YRI specific map downloaded using the UCSC table
browser. The distribution of hotspots in regions detected by length
based (5-kb) and window based (50-SNP) approaches using the top
1% (indicated with _1) and 5% (shown by _5) recombination rate is
shown (B) The combined recombination map was used to identify
whether the observed pattern of distribution of hotspots and cold
spots in YRl also hold for JPT, LWK and CHINESE population specific
windows (based on top 5% recombination rates). In addition to
individual populations, the CPS SNP-enriched windows for all four

populations taken together (ALL_HS and ALL_CS) are also shown.

one of the factors contributing to the generation of CPS
SNP clusters. The presence of recombination hotspot(s) in
a short genomic region (5 kb or 50 SNP), especially in case
of a genotype based recombination map like the one used
here, clearly indicates the LD architecture to be complex
and the LD blocks to be short within that particular re-
gion. Moreover, as the width of a recombination hotspot
(1-2 kb) is significant with respect to length of the sliding
windows (5 kb or 50 SNP) used in the analysis, the pres-
ence of even a single hotspot can lower the LD of the
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region covered within the window considerably. The
enrichment of recombination hotspots, therefore sug-
gests that LD blocks are probably shorter and that LD
is probably lower in the CPS SNP-enriched regions
compared to average genomic regions. Moreover, in
addition to recombination rate associated SNP density
variations, the high recombination rates also suggest
that the effects of population admixtures will be more
prominent in these regions, which might also be an import-
ant source of the observed CPS SNP clusters. Furthermore,
as recombination hotspots have been found to vary signifi-
cantly among populations [77,78]. Therefore, if recombin-
ation hotspots play a role in generating CPS SNP clusters
the occurrence of these regions at different genomic posi-
tions in different populations becomes explainable.

Functional categories and pathway distribution of CPS SNPs
To study the functional relevance of the CPS SNPs we
analysed their localization with respect to known genes.
As seen in the case of most novel variants identified by
the 1000 Genomes project [17], as well as what can be
expected on the basis of the background distribution of
SNPs, most of the CPS SNPs were found to be either
intergenic or intronic (Figure 7). Despite certain minor
variations, for example in FIN and JPT, the overall dis-
tribution of the CPS SNPs in different major genomic
regions was observed to be similar in all the popula-
tions. Interestingly however, the number of coding non-
synonymous CPS SNPs in these populations (Table 4)
were found be independent of the total number of CPS
SNPs in them. These coding non-synonymous CPS SNPs
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Figure 7 Localization of common population-specific (CPS) SNPs
in genomic regions defined on the basis of gene architecture. The
majority of the CPS SNPs were found to be intergenic and intronic.
The category ncRNA includes various types of non-coding RNAs and
the category “other” includes upstream, downstream and UTR SNPs.
The expected distribution based on overall occurrence of SNPs in
human genome is shown as “Background”.
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were found to occur in roughly equal numbers in YRI,
LWK and JPT, only a single CPS SNP was detected in
the IBS, and were missing in the FIN and CHINESE
populations. The functional impact of these non-syn-
onymous coding CPS SNPs was assessed using a com-
bination of four different SNP function prediction
tools (SIFT, Polyphen 2, LRT, Mutation taster) which
predicted most of these SNPs to have a potential func-
tional impact [79-82]. The list of coding non-synonymous
SNPs along with their predicted functional significance is
summarized in Table 4.

Eleven coding non-synonymous CPS SNPs were ob-
served in the YRI mapping tol0 different genes, 8 of them
were predicted to be functional by at least one of the tools.
Four of the 10 CPS SNPs containing genes were detected
to have known association with a disease, includin [79,80]
g HLCS (holocarboxylase synthetase deficiency), TGM1
(congenital ichthyosis), DIAPh1 (deafness), and PAWR
(which induces apoptosis in certain cancer cells). More-
over, a functional SNP was detected in TRIMS which is a
capsid-specific restriction factor involved in blocking viral
replication early in the life cycle. Additionally, two coding
non-synonymous SNPs were detected in the (/PK3B gene
which plays an important role in AUM-cytoskeleton inter-
action in terminally differentiated urothelial cells.

In the LWK population 12 coding non-synonymous
CPS SNPs in 11 genes were observed, 5 of which are
linked to disease phenotypes. These include ABCA4,
linked to Stargardt disease 1, hereditary macular degener-
ation and retinitis pigmentosa; ATP8B1, associated with
various forms of cholestasis, GHR, which is linked to
Laron syndrome, resulting in growth impairment; MCCCl1,
involved in methylcrotonoyl-CoA carboxylase 1 deficiency,
and two SNPs in NLRPI2 gene, which is associated with fa-
milial cold autoinflammatory syndrome. In the JPT popu-
lation 8 non-synonymous CPS SNPs, all of which were
predicted to be functional, were observed in 8 genes. Some
of these genes were found to be involved in melatonin
activity, melanogenesis, olfaction and hair formation.
Only a single non-synonymous CPS SNP was detected in
the MRP35 gene in the IBS population, whereas none was
found to occur in the CHINESE and the FIN populations.

Additionally, a total of 520 CPS SNPs with probable
consequences for gene regulation, all from RegulomeDB
category 2, which demonstrates direct evidence of a
binding through ChIP-seq and DNase data with either a
matched position weight matrix to the ChIP-seq factor
or a DNase footprint, were identified (Additional file 4)
[83]. Of the putative regulatory variants identified, the
majority are intergenic (234) and intronic (224). Approxi-
mately 3 times as many upstream (24) compared to down-
stream (7) variants were identified, while 3'-UTR variants
were approximately double the number in the 5'-UTR.
The occurrence of these potential regulatory SNPs, in
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Table 4 Coding non-synonymous common population-specific SNPs and potential functional impact

Pop SNP Gene SIFT PolyPhen-2 LRT Mutation Taster
IBS rs34804805 MRPL35 T B N N
JPT rs3749130 ARHGAP25 D P N N
152296151 ASIP T p N N

rs17846992 CCKAR D D N D

1s77945315 CSNK1E D B D D

rs76875855 KRT73 D D D N

rs1800885 MTNRTA T P U D

1541428447 NDUFS2 D B D D

1574548274 OR5D13 T p U N

LWK rs61749435 ABCA4 D B D N
rs34018205 ATP8B1 T B D D

1534744783 C200rf26 D B N N

rs34347250 EGLN3 T B D D

rs6413484 GHR D B N N

1534752664 KCNF1 T B D N

rs35706839 MCCC1 T NA D D

rs76085152 NLRP12 D NA N N

rs104895564 NLRP12 T N N

r1s35651739 NOXO1 D N N

153087400 REV1 T N N

1s34994431 SLC16A11 T D N D

YRI rs35755269 DIAPH1 NA NA N P
1534901743 HDAC3 T D D p

rs1065759 HLCS T p N D

156299 HTR1D D P N P

rs8176804 PAWR T B N N

rs34781001 RPN1 T p D D

152229464 TGM1 T B N D

rs59896509 TRIMS D D D D

rs1799126 UPK3B D NA NA N

rs1799125 UPK3B T NA U N

1534995077 ZNF565 P N N

Functions were assessed using a set of four different tools [79-82]. The predictions D and T for SIFT mean Deleterious and Tolerable respectively. For Polyphen2,
B = Benign; P = Possibly Damaging; D = Probably Damaging and NA refers to SNPs for which no information was found. Similarly for LRT; D = Deleterious
Non-synonymous SNP; N = Neutral; U= Unknown and for MutationTaster; N = Polymorphism; D = Disease Causing; P = Polymorphism automatic.

addition to the potentially functional coding non-syn-
onymous CPS SNPs indicate that in spite of occurring
in a single population, at least some of the CPS SNPs
might play a significant functional role in some of these
populations.

To identify possible functional preference in the distri-
bution of CPS SNPs in different populations we used the
Ingenuity Pathway Analysis tool (IPA) [84] and DAVID
[85] to identify functional classes, metabolic pathways
and regulatory networks enriched in CPS SNPs in each
population. The populations CEU, GBR and TSI, were

excluded from this analysis as they contain too few
CPS SNPs for generating statistically and biologically
meaningful results. The top 5 canonical pathways found
to be overrepresented in the CPS SNPs for each popula-
tion using IPA are shown in Figure 8. We also prepared
an extended gene list for each population which, in
addition to genes for coding and intronic SNPs included
nearby genes for the intergenic SNPs. This set was created
to provide a more inclusive view of the functional prefer-
ence as intergenic SNPs which form large proportion of
CPS SNPs, are completely excluded from the pathway
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Population Pathway name p-value Ners Nror
YRI Axonal Guidance Signaling 1.46E-08 85 471
Cardiac b-adrenergic Signaling 4.39E-06 34 158
Netrin Signaling 2.56E-05 15 57
Protein Kinase A Signaling 2.77E-05 68 401
Synaptic Long Term Depression 2.91E-05 33 160
LWK Axonal Guidance Signaling 5.06E-10 119 471
CREB Signaling in Neurons 2.65E-08 59 206
IL-8 Signaling 3.49E-07 58 208
Neuropathic Pain Signaling In Dorsal Horn Neurons 2.05E-06 36 108
Ephrin Receptor Signaling 2.13E-06 53 203
CHINESE Protein Kinase A Signaling 3.74E-05 15 401
CREB Signaling in Neurons 2.25E-04 9 206
Melanocyte Development and Pigmentation Signaling 4.63E-04 6 93
Corticotropin Releasing Hormone Signaling 4.73E-04 7 138
Synaptic Long Term Potentiation 6.00E-04 7 130
JPT Ephrin Receptor Signaling 2.30E-08 46 203
Axonal Guidance Signaling 9.57E-08 85 471
Protein Kinase A Signaling 1.48E-07 78 401
Neuropathic Pain Signaling In Dorsal Horn Neurons 4.99E-07 30 108
Cardiac b-adrenergic Signaling 5.10E-07 37 158
IBS CREB Signaling in Neurons 3.43E-11 41 206
Protein Kinase A Signaling 2.05E-07 57 401
Synaptic Long Term Depression 6.19E-07 29 160
Neuropathic Pain Signaling In Dorsal Horn Neurons 8.76E-07 23 108
Dopamine-DARPP32 Feedback in cAMP Signaling 9.31E-07 32 186
FIN Synaptic Long Term Depression 2.11E-09 24 160
CREB Signaling in Neurons 6.71E-06 21 206
Cardiac b-adrenergic Signaling 8.39E-06 18 158
Xenobiotic Metabolism Signaling 1.70E-05 27 300
Protein Kinase A Signaling 1.83E-05 33 401
Figure 8 Ingenuity canonical pathways enriched with common population-specific (CPS) SNPs. The 5 most overrepresented pathways for
each population identified using IPA are shown. Ncps denotes the number of CPS SNP containing genes in the pathway and Nyor denotes the total
number of genes in the pathway. Each pathway which was found to occur in two or more populations is shown in bold and a distinct colour.

analysis. The top 5 CPS SNP-enriched canonical pathways
for each population derived using the extended gene
set are tabulated in Additional file 5. As expected, the
pathways that were found using both the approaches
show a significant overlap. Interestingly, there was a
very significant overlap in pathways that were detected to
be enriched in CPS SNPs between different populations.
We also performed an analysis for enrichment of regula-
tory networks in the CPS SNPs and their corresponding
genes. Regulatory networks overrepresented in (a) CPS
SNP containing genes and (b) extended gene list (list of all
genes containing variants, as well as nearest neighbour
genes for intergenic variants), for each population are
summarized in Additional file 6 which also exhibited
significant overlap between different populations.
Using DAVID, we identified a number of CPS SNP-
enriched disease, pathway, and gene ontology (GO) classes
for each population. As observed for the pathways
detected using IPA, the CPS SNP-enriched disease,
pathway and GO classes identified using DAVID over-
lapped between the different populations (Additional
file 7). Moreover, the pathways identified using DAVID
in many cases supported the pathways identified using

the IPA tool. One of the major functional classes/pathways,
which were observed to show significant CPS SNP enrich-
ment in most of the populations and in multiple analyses,
was the axon guidance signalling or axonogenesis path-
way. This observation also supports previous work where
genetic variations in genes involved in axon guidance sig-
nalling have been found to show significantly high levels
of population differentiation [86,87]. Moreover, a recent
study aimed at identifying loci under parallel divergence
(loci that have undergone moderate allele frequency
changes in multiple independent human lineages) found
most parallel divergent genes to occur in this pathway
[88]. This may explain our observation for CPS SNP
enrichment in the corresponding genomic regions in
multiple populations. It is also interesting to note that
several recent studies have shown this pathway to be
one of the major mutational targets in pancreatic and
other cancers [89-91]. It would be an interesting follow up
study to probe whether evolutionary forces, like mutation
rate, might contribute to the observed SNP accumulation
in regions where genes for these pathways occur and
whether this enrichment has any adaptive relevance. Similar
overlap was observed in many other CPS SNP-enriched
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pathways including protein kinase A signalling and CREB
Signaling in Neurons (Figure 8), which points to underlying
functional similarities in the distribution of CPS SNPs in
different populations.

Current functional and pathway analysis is clearly
limited by the state of current knowledge about gene
interactions and functions. Well studied genes and path-
ways tend to contain more complete, validated interaction
and functional data in contrast to less studied genes and
pathways are. As the information around functional gene
networks and regulatory pathways increases, we can
anticipate that there may be additional gene functions
and networks that are identified as being differentially
regulated between populations; so these results can
only represent our findings with respect to the current
state of knowledge

Conclusions

In this study we have highlighted some interesting ob-
servations with regard to population-specific genetic
variation, using an unbiased data set generated by whole
genome sequencing. Firstly, we showed that CPS SNPs are
abundant but are not randomly distributed and can cluster
into regions that can span up to several kilobases. Sec-
ondly we have illustrated that at least some of the CPS
SNPs are likely to have a phenotypic or functional impact.
Thirdly, in terms of mechanism, we were unable to detect
any evidence for selection in the regions of high CPS SNP
density but interestingly, these regions more often associ-
ate with regions of high recombination. The enrichment
of recombination hotspots in a way also indicates that the
LD in the CPS SNP-enriched region is lower than that in
the average genome and rules out any possible role of LD
in generating CPS enriched regions. Finally, functional en-
richment analysis of the CPS SNPs and their associated
genes has highlighted some interesting pathways and
functions over represented in several populations. Particu-
larly, it highlighted possible hyper mutability of genes in-
volved in axonal guidance signalling perhaps suggesting
some evolutionary plasticity in this pathway.

Avenues for future exploration have been highlighted.
However, there are several caveats. Firstly, the number
of individuals per population for whom we have full
genome sequences is presently low (N < 100). Secondly,
the definition of a population in terms of origin and ad-
mixture is at times vague and increased mobility world-
wide leads to elevated levels of admixture. Moreover,
the numbers of variants analysed is only a small subset
(<1%) of all population-specific variants since rare variants
(MAF < 0.05) have not been included. Genome sequen-
cing of global populations is providing data which will as-
sist in teasing out ancestral populations and will shed
further light on population differentiation and adaptation.
The availability of more extensive data along with an
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increased depth of sequencing, which permits the reliable
study of rare genetic variants and structural variants, is
therefore required for a better understanding of the
relationship between unique genotypic variations and
their geographical contexts.

Methods

Data retrieval and processing

The recent version (Phasel, version 3, October 2012) of
the 1000 Genomes vcf files containing phased genotypes
for 36.7 million autosomal SNPs and 1.38 Million auto-
somal SSVs were downloaded from 1000 Genomes Project
ftp server [92]. The ancestral allele information for SNPs
on the basis of multi species alignments, for all variants
was also downloaded from the 1000 Genomes ftp site.
The conversion of the 1000 Genomes data to PLINK
format was performed using the VCF tools [93,94]. Fre-
quency calculations and many other data manipulation
operations were performed using PLINK [94]. The admixed
populations (ASW, CLM, MXL and PUR) were excluded
and the Chinese populations (CHB and CHS) were merged
into a single population using PLINK which we refer to as
“CHINESE”. The SNPs were classified as common in a
population if the MAF was observed to be greater than
0.05 in that population. SNPs with lower MAF were
treated as rare.

Genomic distribution and regional enrichment analysis
Identification of enrichment of CPS SNPs in genomic
regions was performed using custom Perl scripts. We
used two sliding window based approaches. In the first
approach, each chromosome was scanned using sliding
and non-overlapping 50-SNP windows and the frequency
of CPS SNPs in each window was computed. Based on the
overall occurrence of CPS SNPs in the entire chromosome
the cumulative hypergeometric p-value for enrichment of
CPS SNPs in each window was estimated. To correct for
multiple hypothesis testing we used a conservative p-value
cut-off of <5 x 10 ~® for the identification of windows
enriched with CPS SNPs. In the second approach we
employed a similar scan using 5-kb non-overlapping
windows.

Selection scan

Signatures of selection were evaluated using two different
approaches. The haplotype homozygosity based iHS score
was calculated using the WHAMM package [95]. As cal-
culation of iHS requires physical positions to be specified,
we downloaded the combined linkage physical map for
human genome build GrCh37 from Rutgers Map [96] and
incorporated the physical positions into the existing data.
For each population, iHS scores for SNPs occurring in
the 50-SNP windows which were found to be enriched
in CPS SNPs in that population were calculated using
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the iHS_calc script from the WHAMM package. To esti-
mate the background iHS distribution for each population,
we randomly sampled 10,000 50-SNP blocks and calcu-
lated the iHS scores for the SNPs occurring in these
blocks. Based on allele frequency bins derived from the
background, the iHS scores were then standardized. As an
extension of the iHS scores we also defined iHS enrich-
ment scores (iES) scores which is the proportion of SNPs
in each 50-SNP window which has |iHS| >2. Windows
showing the top 1%, 5% and 10% iES scores were respect-
ively selected as three levels for the analysis. For each level
the expected iES distribution in all CPS SNP windows
of a population was estimated and compared to the actual
distribution. Statistical significance of overrepresentation
of iES scores in CPS SNP-enriched windows of a popu-
lation was estimated using a p-value calculated by a
bootstrap resampling analysis. A similar analysis was
also performed for CPS SNP-enriched 5-kb windows in
each population. In addition, a separate set of analyses
were performed for both 50-SNP and 5-kb windows,
considering only SNPs with a minimum MAF of 0.05.
The calculation of PBS was carried out following the
methods proposed by Yi and colleagues [71]. For calculat-
ing PBS scores for the African populations (YRI and LWK),
JPT was used as an outlier. For the Asian populations
CHINESE and JPT, YRI was used as an outlier. Similarly
for the European populations (FIN and IBS) YRI was used
as the outlier. For each three population set (like YRI-
LWK-JPT or JPT-CHB-YRI) we estimated the background
distribution of the PBS scores, using 10,000, randomly se-
lected 50-SNP windows. We then identified score cut-offs
based on the top 1%, 5% and 10% of the background dis-
tribution and estimated the number of 50-SNP and 5-kb
windows which can be expected to be in the top 1% ,5%
and 10% PBS score range for a population. The number
of observed windows in the 1%, 5% and 10% range was
compared to the expected number and the corresponding
p-values were estimated using a bootstrap analysis.

Recombination rate

We retrieved the deCODE recombination map and the
HapMap related recombination maps (hapMapRelea-
se24YRIRecombMap and hapMapRelease24Combine-
dRecombMap) using the UCSC table browser [97]. The
distribution of recombination hotspots from the deCODE
recombination map using a SRR (sex-standardized recom-
bination rate) cut-off of 10 found only a few hotspots in
the gene set and were not analysed further.

The HapMap YRI recombination map (hapMapRelea-
se24YRIRecombMap) was used to identify recombination
hotspots and coldspots in YRI and the combined dataset.
The distribution of recombination rates was studied to
select genomic regions showing the top 1% recombin-
ation rate scores and these regions were designated as
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recombination hotspots. We also used the top 5% recom-
bination rate scores to select a second set of hotspots.
Similarly, the two sets of coldspots likewise were defined
by the lowest 1% and 5% recombination rates. Based
on the genomic distribution of recombination rates in
YRI (hapMapRelease24YRIRecombMap) we estimated
the number of hotspot sites expected to occur in CPS
SNP-enriched windows for YRI. The expected value
was compared to the observed value and a cumulative
hypergeometric p-value was used to estimate the stat-
istical significance of the over and underrepresentation
for recombination hotspots and coldspots in the CPS
SNP-enriched 50-SNP windows and the CPS SNP enriched
5 kb-windows in YRI. Similar analyses were conducted for
all other populations, individually as well as combined to-
gether, using the HapMap combined recombination map
(hapMapRelease24CombinedRecombMap).

SNP function assessment

The genomic contexts of all CPS SNPs were determined
using ANNOVAR [98], which was also used to annotate
potentially functional non-synonymous variants based
on their predicted functional impact at the protein level.
ANNOVAR derives pre-computed functional impact
scores for SIFT [80], POLYPHEN?2 [79], LRT [82] and
Mutation Taster [81]. Non-synonymous variants were con-
sidered to have a functional impact if the recommended
score criteria for any one of the algorithms were met,
SIFT: > 0.95, POLYPHEN2: > 0.85, LRT = 0.5, Mutation
Taster > 0.50.

In order to identify non-coding CPS SNPs that may
have an effect on the binding of regulatory factors, in-
tronic variants and those flanking genes were searched
against the RegulomeDB database [83], which employs a
heuristic scoring system based on the confidence that
the variant lies in a regulatory element and whether it
has known or possible functional consequences such as
alteration of Transcript Factor (TF) binding and changes
in expression patterns of the associated gene(s). dbSNP
[99] variants are classified into 6 categories, with category
1 having highest confidence due to associated eQTL data,
and category 6 the lowest. Only CPS SNPs belonging
to categories 1 and 2 were considered to be regulation-
modifying, since they are the most likely to result in a
functional consequence.

IPA analysis

For each population, two gene lists were generated from
the CPS SNP set. The first contained only genes that in-
cluded selected variants, identified by rs IDs [99]. The
second contained all genes that contained the identified
SNPs, as well as nearest neighbour genes for the SNPs that
were intergenic. By definition, the second list contained
more genes than the first. Ingenuity Pathway Analysis (IPA)
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software was used to analyse gene interaction networks
in the gene lists, as well as enriched ‘canonical’ pathways
describing well characterised and validated regulatory
pathways [84].

DAVID analysis

The Database for Annotation, Visualisation and Integrated
Discovery (DAVID) [85] is an online tool that accepts a
list of genes as input and performs functional analysis on
them. It provides a list of functions enriched in the gene
list, and clusters these functions according to their similar-
ity. Functions include gene ontology (GO) and Swiss-Prot
annotation, InterPro matches, OMIM [100] and other dis-
ease links, as well as KEGG [101,102] and other pathway
database links. The gene-enrichment analysis is based on
the Fisher’s Exact test, which determines whether or not a
given list of genes is enriched for a certain function label
or if this function occurs in the list by chance. A p-value
shows the significance and adjusted p-values are also pro-
vided, after correction for multiple testing. The gene lists
for each population that contained CPS SNPs were run
through DAVID to identify overrepresented pathways and
other functional labels.

Function and disease association of CPS-SNP

containing genes

Potential functions of CPS-SNP containing genes and their
role in various diseases were inferred from the GeneCards
database [103].

Additional files

Additional file 1: List of CPS SNPs for each population according to
the 9 population model.

Additional file 2: 50-SNP windows detected to be enriched with
CPS SNPs.

Additional file 3: 5-kb windows detected to be enriched with
CPS SNPs.

Additional file 4: Potentially regulatory CPS SNPs.

Additional file 5: IPA pathways enriched in CPS SNP associated genes.
Additional file 6: Regulatory networks enriched in CPS SNP
associated genes.

Additional file 7: Functional classes enriched with CPS SNP
associated genes identified using DAVID.
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