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Abstract

Background: Recent developments in deep (next-generation) sequencing technologies are significantly impacting
medical research. The global analysis of protein coding regions in genomes of interest by whole exome sequencing
is a widely used application. Many technologies for exome capture are commercially available; here we compare
the performance of four of them: NimbleGen’s SeqCap EZ v3.0, Agilent’s SureSelect v4.0, Illumina’s TruSeq Exome,
and Illumina’s Nextera Exome, all applied to the same human tumor DNA sample.

Results: Each capture technology was evaluated for its coverage of different exome databases, target coverage
efficiency, GC bias, sensitivity in single nucleotide variant detection, sensitivity in small indel detection, and technical
reproducibility. In general, all technologies performed well; however, our data demonstrated small, but consistent
differences between the four capture technologies. Illumina technologies cover more bases in coding and
untranslated regions. Furthermore, whereas most of the technologies provide reduced coverage in regions with
low or high GC content, the Nextera technology tends to bias towards target regions with high GC content.

Conclusions: We show key differences in performance between the four technologies. Our data should help
researchers who are planning exome sequencing to select appropriate exome capture technology for their
particular application.

Keywords: Exome capture technology, Next-generation sequencing, Coverage efficiency, Enrichment efficiency,
GC bias, Single nucleotide variant, Indel
Background
In general it remains prohibitively expensive to analyze
whole genomes for population scale study, even though the
cost of whole genome sequencing has fallen significantly
[1]. As an alternative, the targeted resequencing of subsets
of a genome is more feasible. The most widely used ap-
proach captures much of the entire protein coding region
of a genome (the exome), which makes up about 1% of the
human genome, and has become a routine technique in
clinical and basic research [2-5]. Exome sequencing offers
definite advantages over whole genome sequencing: it is
significantly less expensive, more easily understood for
functional interpretation, significantly faster to analyze, and
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an easy dataset to manage. Multiple technologies have sur-
faced for the enrichment of target regions of interest, as the
demand for targeted resequencing has increased over time.
Broadly, these technologies can be classified into two
groups, chip-based exome capture versus solution-based
exome capture. Chip-based exome capture was the first to
be developed [6,7], but required large amounts of input
DNA, and was quickly replaced by more efficient solution-
based capture systems. There are currently four major
solution-based human exome capture systems available:
Agilent’s SureSelect Human All Exon, NimbleGen’s SeqCap
EZ Exome Library [8], Illumina’s TruSeq Exome Enrich-
ment, and Illumina’s Nextera Exome Enrichment [9].
Exome capture involves the capture of protein coding re-
gions by hybridization of genomic DNA to biotinylated
oligonucleotide probes (baits). These technologies use bio-
tinylated DNA or RNA baits complementary to targeted
exons, which are hybridized to genomic fragment libraries.
Magnetic streptavidin beads are used to selectively pull-
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down and enrich baits with bound targeted regions. The
sample preparation methods are highly similar across the
different technologies. The major differences between
the technologies correspond to the choice of their respect-
ive target regions, bait lengths, bait density, molecules used
for capture, and genome fragmentation method (Table 1).
Clark et al. compared three capture technologies and

showed that NimbleGen technology required the least
number of reads to sensitively detect small variants,
whereas Agilent and Illumina technologies appeared to
detect a higher total number of variants with additional
reads [10]. In another study, Sulonen et al. compared
NimbleGen and Agilent technologies, and showed that
there were no major differences between the two
technologies, except that NimbleGen showed greater ef-
ficiency in covering the exome with a minimum of 20x
coverage [11]. Asan et al. compared NimbleGen
Sequence Capture Array, NimbleGen SeqCap EZ, and
Agilent SureSelect, and showed that all three technolo-
gies achieved a similar accuracy of genotype assignment
and single nucleotide polymorphism (SNP) detection,
and had similar levels of reproducibility and GC bias
[12]. In another exome capture comparison study, Parla et
al. showed that both NimbleGen SeqCap EZ Exome
Library SR and Agilent SureSelect All Exon were similar to
each other in performance, and able to capture most of the
human exons targeted by their probe sets. However, they
failed to cover a noteworthy percentage of the exons in the
consensus coding sequence database (CCDS) [13].
During the past few years, substantial updates have

been made to the different capture technologies, includ-
ing new content and improved probe design. For
Table 1 Exome capture technology designs

NimbleGen Agilent

Bait type DNA RNA

Bait length range (bp) NP 114-126

Median bait length (bp) NP 119

Number of baits NP 554,079

Total bait length (Mb) NP 66.48

Target length range (bp) 59–742 114–21,74

Median target length (bp) 171 200

Number of targets 368,146 185,636

Total target length (Mb) 64.19 51.18

Fragmentation method Ultrasonication Ultrasonic

Automation ++ ++

Throughput +++ +++

Flexibility Custom available Custom a

Species Human, mouse, 3 plant species Human, m

Costs $$ $$

Some NimbleGen information was not provided, indicated by NP. Relative automat
indicates easy to automate and higher throughput. Relative cost is indicated by “$”
instance, NimbleGen’s SeqCap EZ exome library v2.0
targets approximately 44 Mb of genome, where as their
next version EZ exome library v3.0 targets 64.1 Mb. The
new Illumina Nextera capture technology has to the best of
our knowledge not been tested extensively vis-à-vis other
technologies.
The lack of a clear consensus from previous studies,

updates in three major capture technologies, and the im-
portant new Illumina Nextera capture technology, using
an entirely different strategy, motivated us to perform a
detailed comparative analysis before initiating a major
exome sequencing project.
We, therefore, systematically compared four exome cap-

ture technologies, NimbleGen’s SeqCap EZ exome library
v3.0, Agilent SureSelect Human all exon V4, Illumina
TruSeq and Illumina Nextera, with respect to features such
as design differences relative to coverage efficiency, GC
bias, and variant discovery.

Results
Distinctive features of four exome capture technologies
There are considerable differences between the four ex-
ome capture technologies, as shown in Table 1. Illumina
TruSeq and Nextera technologies are identical in many
characteristics, except that Nextera uses transposomes
for fragmentation, whereas TruSeq fragments the DNA
by ultrasonication. The Agilent technology uses RNA
molecules as probes, whereas all the other technologies
use DNA as probe molecules. NimbleGen presents the
highest number of probes, being the only technology
with an overlapping probe design, thus giving it the
highest probe density technology of the four. Agilent
Illumina TruSeq Illumina Nextera

DNA DNA

95 95

95 95

347,517 347,517

33.01 33.01

7 2–37,917 2–37,917

135 135

201071 201,071

62.08 62.08

ation Ultrasonication Transposomes

++ +++

+++ +++

vailable Custom available

ouse, 14 other species custom Human Human

$ $

ion and throughput indicated by “+” symbols, higher number of symbols
symbol, higher “$” symbols indicate the higher price.
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probes are non-overlapping, but lie directly adjacent to
one another. On the other hand, the Illumina technolo-
gies, use a gapped probe approach. The technologies
also differ in the regions they target, and in the total
number of bases targeted. For instance, NimbleGen tar-
gets 64.1 Mb, Agilent targets 51.1 Mb, and TruSeq and
Nextera targets 62.08 Mb of human genome.
Figure 1 Venn diagram showing the overlap between different featur
targets. B) Overlap among RefSeq, CCDS, and ENSEMBL protein coding exo
coding exons, D) RefSeq coding exons, E) ENSEMBL coding exons, and F)
Interestingly, only 26.2 Mb of the total targeted bases
are common among all exome capture technologies
(Figure 1A). Of the four, NimbleGen and Agilent technolo-
gies have the most in common, sharing almost 40 Mb of
targeted sequences. Illumina has 22.5 million unique target
bases, followed by NimbleGen with 16.1 million bases, and
Agilent with 7 million unique bases.
es. A) Overlap among Agilent, NimbleGen and Illumina capture
n databases. Coverage of exome capture technology for C) CCDS
RefSeq UTRs.
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Many different RNA databases are available, such as
RefSeq [14] and Ensembl [15], which differ in the num-
ber of non-coding RNAs and total number of exons re-
ported, as well as the start and end coordinates of exons.
Significant portions of the sequences are common
among the different databases (Figure 1B). CCDS con-
tains protein-coding sequences with high quality annota-
tions [16]. RefSeq and CCDS share a greater proportion
of bases with each other, whereas Ensembl possesses
more unique bases (2.19 million) than the other two da-
tabases. We investigated the coverage of RefSeq (coding
and UTR), Ensembl (coding) and CCDS (coding).
Illumina covers a greater portion of coding exon bases

across all the databases, followed by NimbleGen and
Agilent (Figure 1C–E). There are 32.11 Mb common
across the three databases, but only about 24 Mb are
covered by all four technologies. The majority of
Illumina-specific bases (22.5 Mb) target untranslated re-
gions (UTRs) (Figure 1F), whereas NimbleGen and Agi-
lent target UTRs at 9.5 Mb and 5.6 Mb, respectively.

Sequencing, sequence alignment, and read filtering
To evaluate each technology, two independent exome
libraries derived from the tumor tissue of an osteosarcoma
sample were sequenced twice (technical replicates). The
exome library for each technology was prepared according
to each supplier’s recommended protocol. On average,
136.8 million reads were generated for each technology,
varying between 95.8 and 185.1 million reads. There were
also differences in sequencing and alignment rates be-
tween the different technologies. The read alignment rate
varied among technologies: 97.4% for TruSeq, 97.7% for
NimbleGen, 97.6% Agilent, and 98.95% for Nextera
(Figure 2A). Mapped reads from each library were further
Figure 2 Read statistics. A) Bar plot showing percent of initial reads, map
each bar shows the number of reads in millions. B) Stacked bar plot showi
filtered for duplicates, multiple mappers, improper pairs,
and off-target reads. Large variation was observed for the
percentage of pass-filter mapped reads, with Agilent being
the highest at 71.7% retained reads, NimbleGen next at
66.0%, TruSeq at 54.8%, and Nextera at 40.1% (Figure 2A).
We further examined the number of reads filtered out in
each of the four steps (Figure 2B). For all the technologies,
the greatest number of reads lost was due to the number
of reads mapped to non-targeted regions (off-target reads).
Agilent showed a slightly higher percentage of off-target
reads and the fewest reads mapping to multiple sites.

Target coverage efficiency differs among four
technologies
We used the methods described by Clark et al. [10] to
investigate target coverage efficiency. We evaluated
coverage efficiency by calculating base coverage over 1)
all intended target bases, 2) common bases among the
four technologies, 3) Ensembl exons, 4) RefSeq exons,
and 5) CCDS exons, using 50 million randomly chosen
reads for each technology. Target coordinates were
downloaded from the supplier’s websites. It is worth-
while to note that TruSeq and Nextera, both supplied by
Illumina, use the same capture baits. At this level of
reads, the fractions of targets covered at least once var-
ied somewhat, the Agilent technology captured 99.8%,
the Nextera technology captured 98.2%, the TruSeq cap-
tured 96.9%, and the NimbleGen captured 96.5% of the
intended targets (Figure 3A). The 1× coverage number
provides the fraction of the target that can potentially be
covered by the respective designs. Not surprisingly, all
the technologies give high coverage of their respective
target regions, with the Agilent technology giving high-
est coverage (99.8%). The number of intended target
ped reads and reads left after filtering for four different technologies;
ng subgroups of filtered reads.



Figure 3 Coverage efficiency comparison by technology. Coverage efficiency defined as the percent of the total targeted bases covered at
particular depths. A) Coverage efficiency for intended targeted bases for each technology. B) Coverage efficiency for bases, which are shared, by
all four technologies (26.2 MB). Smooth line indicates replicate 1, and dotted line indicates replicate 2.
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bases varies considerably, as the Agilent technology tar-
gets 51.1 Mb, NimbleGen 64.1 Mb, and Illumina
62.08 Mb (Figure 1A), sharing only 26.2 million bases
between technologies. When measured at 1× coverage
on the common bases (26.2 Mb), we observed a similar
trend, where the Agilent technology covers the highest
number of bases, with 99.8%, followed by Nextera with
99.5%, TruSeq with 98.8%, and NimbleGen with 98%
(Figure 3B and Additional file 1: Figure S1). We found
no major difference in coverage efficiency between two
technical replicates, indicating that all four technologies
give high technical reproducibility.
We next evaluated coverage efficiency as a function of se-

quencing depth. We randomly selected filtered reads in 5
million read increments from 5 million to 50 million. The
fraction of the intended target bases, covered at depths of
at least 10×, 20×, 30×, 40×, 50× and 100×, was determined
(Figure 4). The Agilent technology covered a higher percent
of its target bases at all read counts and depth cut-offs com-
pared with the other three technologies. For all the tech-
nologies, 25 million reads were sufficient to cover about
80% of target bases with at least 10× depth, with the
exception of the Nextera technology, which covered only
about 60% of target bases with the same number of reads
(Figure 4A). When using 45 million reads with all the tech-
nologies, more than 80% of target bases were covered
with ≥20× coverage, but the Nextera technology covered
only 58% of the bases at the same depth (Figure 4B). For all
the read counts, Agilent and Nextera covered more bases
with ≥100× coverage than other two technologies, but
showed a considerable difference in coverage (Figure 4F).
Influence of GC content on coverage
Base composition has been shown to bias sequencing
efficiency, thus coverage may be low for sequences with
high GC or AT content [17]. There are two primary ex-
planations for this bias: 1) a polymerase chain reaction
(PCR) amplification bias, where high or low GC content
reduces the efficiency of PCR amplification [18]; and 2)
a reduced efficiency of capture probe hybridization to
sequences with high or low GC content [19]. Whereas
the former bias is inherent of the sequences to be ampli-
fied, the latter is a property of the capture probes, and
may to some extent be compensated by probe design.
To study the GC bias effect, we utilized density plots as
described by Clark et al. [10], where we plotted GC con-
tent against the normalized mean read depth (Figure 5
and Additional file 2: Figure S2). All four technologies
showed bias against very low (<30%) and very high
(>70%) GC content. All the technologies, except Nex-
tera, demonstrated a sharp fall in read depth for GC
contents of 60% or higher. Nextera gave increased cover-
age for sequences with higher GC content, owing to the
preference of the transposon technology used [20]. All
the technologies gave poor coverage for sequences with
less than 25% GC content.

Ability to detect SNVs
An important goal of exome resequencing is to identify se-
quence variants. Therefore, we systematically compared
the efficiency of exome capture for allele detection among
the four technologies. We used UnifiedGenotyper, imple-
mented in the GATK package [21], to investigate the



Figure 4 Coverage efficiency as a function of number of reads. The percent of targeted bases covered at A) ≥10x, B) ≥20x, C) ≥30x,
D) ≥40x, E) ≥50x, and F) ≥100x depths.
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relationship between read counts and total single nucleo-
tide variants (SNVs) detected within different intervals. As
read counts increased, the number of SNVs identified in
their target regions increased initially, and became satu-
rated at approximately 20 million reads (Figure 6A). Very
few additional SNVs were identified beyond 20 million
reads. When considering the SNVs identified on their re-
spective target regions, there is a clear correlation between
the total number of SNVs detected and the number of
bases targeted; NimbleGen detected the highest number of
SNVs followed by TruSeq, Nextera, and Agilent (Figure 6A
and Additional file 3: Figure S3A). A different trend was
clear in the 26 Mb region shared by all four technologies,
where Agilent detected the highest number of SNVs,
followed by Truseq, Nextera, and NimbleGen (Figure 6B
and Additional file 3: Figure S3B). The majority of newly
detected SNVs were common.
We also investigated SNV detection in the regions cov-

ered by the CCDS (Figure 6C), RefSeq (Figure 6D), and
Ensembl (Figure 6E) exome databases. The Illumina tech-
nologies, TruSeq and Nextera, and NimbleGen detected
similar number of SNVs in CCDS and RefSeq. However in



Figure 5 Density plots showing GC content against normalized mean read depth for A) Agilent, B) NimbleGen, C) TruSeq, and
D) Nextera technologies.
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Ensembl regions, NimbleGen detected the highest number
of SNVs. As expected, Illumina technologies detected a
much larger number of SNVs in UTRs. Illumina technolo-
gies also covered the highest number of bases in the UTRs,
followed by NimbleGen and Agilent (Figure 1F). Interest-
ingly, at low read counts, more SNVs were detected by
TruSeq, but at 40 million read counts, Nextera surpassed
TruSeq.
We also investigated whether capture technologies

showed bias in substitution detection, but none of the
technologies showed bias towards specific nucleotide sub-
stitutions (Additional file 4: Figure S4 and Additional file 5:
Figure S5). Transitions were expected to occur twice as fre-
quently as transversions. The transition-transversion (ts/tv)
ratio is a metric for assessing the specificity of new SNP
calls. We assessed the ts/tv ratio on their respective target
regions (including non-exonic segments), and it ranged
from 2.215 in Nextera to 2.257 in Agilent (Additional file
4: Figure S4). Previous studies have shown ts/tv ratios of ≈
2.0–2.1 for whole genome datasets [22]. The Nextera and
TruSeq technologies showed very similar ts/tv ratios,
caused most likely by their identical target regions. Also,
Agilent and NimbleGen had very similar ts/tv ratios. The
difference in ts/tv ratios between Illumina technologies



Figure 6 SNV detection by technology as a function of increasing read counts on A) intended target region, B) regions common
among technologies, C) CCDS exons, D) RefSeq exons, E) Ensembl exons, and F) UTRs. Solid-lines indicate technology specific SNVs,
dashed-lines indicate total number of SNVs, and solid pink lines indicate the SNVs common between the four technologies.
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(TruSeq and Nextera) and non-Illumina technologies (Agi-
lent and NimbleGen) may be because Illumina technolo-
gies target a significantly higher number of UTRs than the
other technologies. We also determined the ts/tv ratio in
CCDS coding exons (Additional file 5: Figure S5). The ts/
tv ratio on CCDS ranges from 3.054 in Nextera to 3.109 in
NimbleGen. It has been previously shown that the ts/tv
ratio is ≈ 3.0–3.3 for exonic variation [23].

Detection of insertions and deletions
Small insertions and deletions (indels) were called using
the UnifiedGenotyper algorithm implemented in the
GATK package [21]. Indel size ranged from −40 to +37
bases in Agilent, −61 to +37 bases in NimbleGen, −66
to +52 bases in TruSeq, and −66 to +90 bases in Nextera.
Most indels were single bases, and more than 90% of the
indels were less than seven bases long; this pattern was
observed for all four technologies (Additional file 6:
Figure S6A). At low read counts, TruSeq and NimbleGen
detected a higher number of indels, followed by Nextera
and Agilent (Figure 7A). At 15 million read counts, TruSeq
surpassed NimbleGen, and at 20 million reads, Nextera sur-
passed Agilent (Figure 7A). Interestingly, at 50 million
reads, Nextera surpassed NimbleGen (Figure 7A). At all the
read counts, a disturbing fact was that very few indels were
common across the four technologies, especially on CCDS,
Ensembl and RefSeq regions.
Figure 7B shows a head-to-head comparison of indel

detection in the regions covered by all four technologies.
At all read counts, Agilent detected the highest number
of indels. At lower read counts, NimbleGen detected
more indels than TruSeq and Nextera; at 15 million
reads, both Nextera and TruSeq surpassed NimbleGen.
Only about 50% of indels were common among four
technologies.
Indel detection in the regions covered by exome data-

bases was also studied (Figure 7C–E). The number of
indels detected in exons was significantly lower, than
indels detected on the respective technology target re-
gions and UTRs. We observed more indels of three or
six bases (Additional file 6: Figure S6B), probably due to
the negative selection of sizes not equal to multiples of
three bases in coding sequences because they cause dele-
terious frame shift mutations.
When compared between replicates, both SNVs

(Additional file 7: Figure S7 and Additional file 8: Figure
S8) and indels (Additional file 9: Figure S9), showed
similar trends in detecting total number of variants and
showed very high overlap in newly detected variants.

Discussion
Continuous advancement in sequencing technologies in-
creases the throughput of DNA sequencing, while at the
same time contributes sharply to decreasing its cost.
Although sequencing costs have fallen, whole genome
sequencing is still quite expensive, and data interpret-
ation remains challenging. Therefore, whole genome se-
quencing is not the most appropriate choice for all
investigations. The ability to target certain regions of the
genome, such as protein and or RNA-coding exons, is
an attractive alternative for many experiments. In recent
times, target enrichment by hybridization technologies
has demonstrated rapid progress in development and
usage by the research and diagnostic community.
We present a comparative study of four whole exome

capture technologies from three manufacturers, designed
to reveal important performance aspects of the tech-
nologies. To address this, we studied six parameters for
each technology: the portion of target bases representing
different exome databases, target coverage efficiency, GC
bias, sensitivity in SNV detection, sensitivity in small
indel detection, and reproducibility.
Although all four exome capture technologies show

very high target enrichment efficiency and cover large
portions of the exome, only a small portion of the
CCDS exome is uniquely covered by each technology
(Figure 1C). Therefore, a researcher who is planning exome
sequencing should assess which technology best covers
the regions of interest to the investigation. Agilent tar-
gets the smallest part of the genome with 51.1 Mb,
followed by Illumina technologies with 62.08 Mb, and
NimbleGen with 64.1 Mb. There are 26.2 Mb of the hu-
man genome shared by all four technologies; the major-
ity of which falls in CCDS exonic regions. Illumina not
only encompasses far more UTRs, but also shows a
higher coverage of RefSeq, CCDS, and Ensembl exome
databases, followed by NimbleGen and Agilent.
Target coverage efficiency differs between the four

technologies. Using pass-filter reads, Agilent shows
higher coverage efficiency than the other technologies,
which may be partially explained by the smaller targeted
region (51.1 Mb) compared with 64.1 Mb and 62.08 Mb
for NimbleGen and Illumina respectively. Among the
Illumina technologies, TruSeq gave a more uniform
coverage than Nextera, but both had inferior efficiency
compared with Agilent. Agilent gives the highest per-
centage of usable reads (pass-filter reads) (71.7%), closely
followed by NimbleGen.
Regardless of high or low target region GC content,

there was a negative correlation between sequencing
coverage and extreme GC content. Preference for
transposon targets with high GC content can help
explain non-uniform coverage for the Nextera
technology.
Most researchers aiming for exome sequencing, espe-

cially in the medical sciences, focus on protein-coding
regions. Therefore, the ability to identify SNVs and
indels in coding regions is critical to many applications.



Figure 7 Indels detection by technology as a function of increasing read counts on A) intended target region, B) regions common
among the technologies, C) CCDS exons, D) RefSeq exons, E) Ensembl exons, and F) UTRs. Solid-lines indicate technology specific SNVs,
dashed-lines indicate total number of SNVs, and solid pink lines indicate the SNVs common between four technologies.
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Figure 8 Overview of the computational pipeline.
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NimbleGen captures the highest number of SNVs,
followed by Illumina technologies and Agilent, when
the total number of SNVs detected are correlated
with technology target size. However, the number of
bases sequenced also has cost and capacity consider-
ations. Our results suggest that Illumina technologies
detect a higher number of SNVs over the other tech-
nologies with regard to SNV detection against the
CCDS and RefSeq exomes, owing to a higher cover-
age of these regions, but Agilent was better at detect-
ing indels. We also observed that Nextera shows a
clear edge over other technologies in the CCDS and
RefSeq exomes, because it covers a larger fraction of
these sequences.
We did not observe significant differences in technical

reproducibility between the four technologies. However,
we could, by comparing performance between replicates
to the differences observed above, conclude that al-
though some differences in SNV and indel detection
were due to random experimental error, the major effect
appears to be due to technological biases.
Since the comparison is based on a tumor sample,

which may contains genomic aberrations that could dif-
ferentially affect the performance of each technology, we
investigated the coverage differences in COSMIC cancer
genes. No significant deviation in coverage was observed
when compared with global coverage (Figure 3 and
Additional file 10: Figure S10).
Another important consideration is exome capture

technologies evolve rapidly. For instance, Agilent re-
cently released their next version of exome capture Sur-
eSelect Human All Exon V5. Although these versions do
differ with regard to the genomic regions they target,
about 84% of target region bases overlap. Illumina also
has a new version, with a smaller targeted panel, just for
exons. It is called Nextera Rapid Capture Exome
(37 Mb), while the larger panel version is now named
Nextera Expanded Exome (62 Mb). Illumina has also im-
proved the Nextera protocol, with the Nextera Rapid kit;
this improvement may reduce the GC bias observed
here.
In total, our data suggest that all four technologies
offer comparable performance. Other factors, such as
the DNA content of the targeted regions, the amount of
input DNA required, the extent of automation in library
construction, and the cost of reagents to reach a certain
depth of coverage, need to be considered before select-
ing the exome capture technology most appropriate for
your particular application.
Readers should keep in mind that this study is based

on one biological sample with two replicates. The ob-
served technical reproducibility is very high and variabil-
ity may be higher when two biological replicates are
compared.
Conclusions
We systematically evaluated the performance of four
whole exome capture technologies, and show that all
the exome capture technologies perform well, but do
exhibit consistent differences. Illumina covers a
greater portion of coding exon bases across all the
databases, followed by NimbleGen and Agilent. All
the technologies give high coverage of their respective
target regions, with the Agilent technology giving
highest coverage (99.8%) followed by Nextera (98.2%),
Truseq (96.9%), and NimbleGen (96.5%) of the
intended targets. Nextera shows a sharp increase in
read depth for GC content of 60% or higher com-
pared other technologies. In common regions covered
by all four technologies, Agilent detects slightly
higher number of SNVs, followed by Nextera, TruSeq
and Nimblegen. At all the read counts very few indels
were common across the four technologies. All tech-
nologies give high technical reproducibility. One
major limitation is that none of the capture technolo-
gies are able to cover all of the exons of the CCDS,
RefSeq or Ensembl databases. Our study should help
researchers who are planning exome sequencing ex-
periments select the most appropriate technology for
their study, without having to perform expensive and
time-consuming comparisons.
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Methods
Sample collection and library preparation
One human osteosarcoma was selected from a tumor
collection at the Department of Tumor Biology at the
Norwegian Radium Hospital. The tumor was collected
immediately after surgery after written informed con-
sent, cut into small pieces, frozen in liquid nitrogen and
stored at −70°C until use.
High quality genomic DNA was isolated using the Pro-

mega Wizard Genomic DNA Purification Kit. One μg of
genomic DNA was used to produce each exome cap-
tured sequencing library for four different technologies:
NimbleGen SeqCap EZ v3.0, Agilent SureSelect XT2
Human All Exome v4.0, Illumina TruSeq Exome Enrich-
ment kit and Illumina Nextera Exome Enrichment kit.
The exome captured library preparation from the last
three technologies was done following the manufac-
turers’ protocols applying pre-capture multiplexing. The
protocol for NimbleGen SeqCap EZ was adapted from
the company’s application note (http://www.nimblegen.
com/products/lit/NimbleGen_SeqCap_EZ_SR_Pre-Cap-
tured_Multiplexing.pdf ). The exome captured sequen-
cing libraries were quality-controlled using an Agilent
2100 Bioanalyzer, and quantified using the Agilent
QPCR NGS Library Quantification Kit (illumine GA)
prior to cluster generation on an Illumina cBot.

Datasets
The human reference genome (hg19), RefSeq, CCDS, and
Ensembl databases were downloaded from the UCSC
genome table browser (http://genome.ucsc.edu/).
Because of Norwegian legal regulations, the ethical ap-

proval for this study and the consent signed by the patient,
we are not able to deposit our dataset in a public repository.
We will provide access to the data if requested.

Sequencing and bioinformatics data analysis
Sequencing of each exome capture library was done at
the Oslo University Hospital Genomics Core Facility,
using an Illumina HiSeq 2000 machine, as pair-end 100-
bp reads, following the manufacturer’s protocols using
TruSeq SBS v3. We developed an in-house pipeline for
analysis, which integrates several existing programs
(Figure 8).
Briefly, initial FASTQ files were subjected to quality control

with the FastQC tool (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Raw reads from each capture
library were aligned to the human reference genome (hg19)
with Novoalign (http://novocraft.com/), using default pa-
rameters. If more than one pair (PE sequencing) had identi-
cal start and end coordinates, they were considered PCR
duplicates and were removed using in-house scripts.
Filtered read counts were normalized to 50 M reads be-
tween all four exome capture sequencing experiments by
randomly selecting 50 M reads from each filtered read set.
These randomly selected sets were further used to select 5–
50 M reads, using an increment of 5 M reads.
SNVs and indels were called with GATK [21]. The

GATK pipeline was independently run on each data set.
We followed the procedure recommended by the GATK
documentation. Reads around indels were realigned. To
remove systematic biases in quality scores, base quality
score recalibration was done. The UnifiedGenotyper al-
gorithm was run using a stand_emit_conf of 10.0 and
stand_call_conf of 30.0. All variants with a Phred-based
quality score <30.0 were called low quality and ignored.
Additional files

Additional file 1: Figure S1. Coverage efficiency shown as a bar plot
for different depths for replicate 1.

Additional file 2: Figure S2. Coverage efficiency on high (>70% GC)
and low GC (<30% GC) regions, as a function of number of reads. The
percent of targeted bases covered at A) ≥10x B) ≥20x C) ≥30x D) ≥40x
E) ≥50x and F) ≥100x depths.

Additional file 3: Figure S3. Comparison of SNVs detection by each
technology at 50 million reads. A) SNVs detected on intended target
regions, and B) SNVs detected on regions shared by all four technologies.

Additional file 4: Figure S4. Mutation spectra by technology on
intended target regions. Bar plots showing relative mutation frequency of
different types of mutations for A) Agilent, B) NimbleGen, C) TruSeq, and
D) Nextera technologies. Transition/Transversion (ts/tv) ratio indicated.

Additional file 5: Figure S5. Mutation spectra from CCDS exonic
regions by technology. Bar plots show the relative mutation frequency of
different types of mutations for A) Agilent, B) NimbleGen, C) TruSeq, and
D) Nextera technologies. Transition/Transversion (ts/tv) ratio indicated.

Additional file 6: Figure S6. Indel size distribution by technology. A)
Size distribution of all the indels that fall within the technology target
regions. B) Size distribution of indels in CCDS coding exons.

Additional file 7: Figure S7. Comparison between two technical
replicates in detecting SNVs, for A) Agilent, B) NimbleGen, C) TruSeq, and
D) Nextera technologies. Smooth lines indicate SNVs detected on
respective target regions, and dotted lines indicate SNVs detected on the
target regions shared by all four technologies. Each figure shows the
total number of SNVs detected by each replicate, common SNVs
between replicates, and technology specific SNVs.

Additional file 8: Figure S8. Comparison of SNVs detection by each
technology at 50 million reads on regions shared by all four technologies
between two replicates for A) Agilent, B) NimbleGen, C) TruSeq, and D)
Nextera technologies.

Additional file 9: Figure S9. Comparison between two technical
replicates in detecting indels, for A) Agilent, B) NimbleGen, C) TruSeq,
and D) Nextera technologies. Smooth lines indicate indels detected on
intended target regions, and dotted lines indicate indels detected on the
target regions shared by all four technologies. Each figure shows the
total number of indels detected by each replicate, common indels
between the replicates, and technology specific indels.

Additional file 10: Figure S10. Coverage efficiency comparison by
technology on cancer genes. The smooth line indicates replicate 1 and
the dotted line indicates replicate 2.
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