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Abstract

Background: Protein subcellular localization is a central problem in understanding cell biology and has been the
focus of intense research. In order to predict localization from amino acid sequence a myriad of features have been
tried: including amino acid composition, sequence similarity, the presence of certain motifs or domains, and many
others. Surprisingly, sequence conservation of sorting motifs has not yet been employed, despite its extensive use for
tasks such as the prediction of transcription factor binding sites.

Results: Here, we flip the problem around, and present a proof of concept for the idea that the lack of sequence
conservation can be a novel feature for localization prediction. We show that for yeast, mammal and plant datasets,
evolutionary sequence divergence alone has significant power to identify sequences with N-terminal sorting
sequences. Moreover sequence divergence is nearly as effective when computed on automatically defined ortholog
sets as on hand curated ones. Unfortunately, sequence divergence did not necessarily increase classification
performance when combined with some traditional sequence features such as amino acid composition. However a
post-hoc analysis of the proteins in which sequence divergence changes the prediction yielded some proteins with
atypical (i.e. not MPP-cleaved) matrix targeting signals as well as a few misannotations.

Conclusion: We report the results of the first quantitative study of the effectiveness of evolutionary sequence

divergence as a feature for protein subcellular localization prediction. We show that divergence is indeed useful for
prediction, but it is not trivial to improve overall accuracy simply by adding this feature to classical sequence features.

succeeds where other features fail.

Nevertheless we argue that sequence divergence is a promising feature and show anecdotal examples in which it

Background

Since proper subcellular localization is a prerequisite for
protein function, there is a high demand for accurate
and complete localization annotation of all proteins [1].
Although proteomics data has allowed large scale deter-
mination of protein localization for model organisms
[2,3], no experimental evidence is available for the vast
majority of organisms. Although sequence similarity can
be a good indicator of identical localization site [4], distant
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similarity is not [5], and thus for many proteins we must
rely on computer prediction.

In cells, the localization of proteins is largely deter-
mined by “zip-code” like sorting signals, encoded in their
amino acid sequence [6]. Unfortunately these sorting sig-
nals seem to be only very loosely determined, accepting
very diverse sequences, subject to some constraints on
their physico-chemical properties [7].

Among those signals, the most well-known sorting signal
is the signal peptide of secretory path proteins. A typical
signal peptide spans 15-30 amino acids near the N-
terminus. Signal peptides typically show three distinct
blocks: the n-region containing positively charged residues,
the h-region mainly consisting of hydrophobic residues,
and the c-region which includes polar uncharged resi-
dues and a weakly conserved cleavage motif [8].
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Similarly, the targeting signals of mitochondria and
chloroplasts are also N-terminally coded [7], and cleaved
after import to their final location. In the mitochondria
matrix, the N-terminal signal is usually cleaved off by the
Mitochondrial Processing Peptidase MPP [9,10], while the
corresponding chloroplast targeting N-terminal signals
are processed by an analogous protease in the chloroplast
stroma [10]. Like signal peptides, these signals are often
poorly conserved and difficult to align properly between
orthologs [11]. Although some consensus motif has been
reported for mitochondrial targeting signals [12,13], it is
information poor and produces too many false positives
to be used for reliable prediction.

To date, an impressive number of methods have been
developed for protein sorting prediction. For exam-
ple, in 2004 a survey already listed dozens of meth-
ods employing fifteen broad categories of features [14];
from commonly used ones such as amino acid com-
position [15-19] (and many more) to rare categories
such as sequence periodicity [20] and mRNA expres-
sion level [21]. Sequence similarity as defined by pro-
grams such as BLASTP has been explored as a feature
for signal peptide detection [22]. Among these features,
amino acid composition is attractive due to its simplicity.
The significant correlation between amino acid com-
position and sub-cellular location is partially causative
and partially due to indirect effects such as adaption of
surface residues to the pH of the protein’s localization
site [23].

The one feature conspicuously missing from this list has
been evolutionary sequence conservation, despite the fact
that it has seen extensive use in sequence analysis from
the prediction of transcription factor binding sites [24], to
short linear motifs in proteins [25] and functional RNA
[26]. Although profile feature methods which indirectly
reflect evolutionary conservation have been employed
[27], sequence conservation per se has not — presumably
because sorting signals are indeed not well conserved at
the sequence level. Here, we propose that instead of look-
ing for sequence conservation of sorting signals, a more
effective approach is to exploit their high evolutionary
sequence divergence.

In this paper we first describe our datasets of yeast,
animal and plant proteins with their orthologs, diver-
gence and other features we used for classification, and
the classifiers we employed. Then, we present a simple
statistical feature analysis followed by performance evalu-
ation of localization prediction for various combinations
of features, classifiers and datasets. Unfortunately, com-
bining other features with our sequence divergence did
not lead to a systematic improvement in overall perfor-
mance. However we show that consideration of sequence
divergence is critical for correct prediction in certain cases
and can sometimes flag non-cleaved or misannotated
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targeting signals. Finally we discuss future directions and
conclude.

Methods

Sorting signal classes

We mainly focused on the two most common N-terminal
sorting signals: Signal Peptides (SP), targeting proteins
to the endoplasmic reticulum and Matrix Targeting
Signals (MTS) which target proteins to the matrix (inner
compartment) of the mitochondria. In the plant dataset,
we also consider Chloroplast Transit Peptides (CTP). All
of these signals reside near the N-terminus but in gen-
eral have different properties and are effectively discrim-
inated by the cell. In some cases however, the N-terminal
“signal” can be ambiguous. In particular many examples
are known in which the same amino acid sequence directs
some copies of a protein to the mitochondria and oth-
ers to the chloroplast [28,29]. Nevertheless these examples
still constitute only a small percentage of proteins and
therefore we simplify the analysis by treating N-terminal
sorting signal identification as a simple three- or four-way
classification problem: {MTS, SP, (CTP), no signal}. Other
types of N-terminal sorting signals exist, for example the
PTS2 signal targeting proteins to the peroxisome [30], but
the number of proteins using such signals is much smaller
than those using the SP, MTS or CTP signals.

The sorting signal class labels we use in our datasets
are partially based on direct experimental evidence. In
the dataset of S.cerevisiae, we used UniProtKB/Swiss-Prot
[31] to assign localization class labels, augmented by MTS
containing proteins determined in the proteomics exper-
iment of Vogtle et al. [32]. Because only a small number
of SP’s have been directly confirmed experimentally, we
also included proteins whose SP is inferred in the database
and predicted positive by SignalP [33]. We used proteins
annotated to localize to the cytosol or nucleus as proteins
without N-terminal signals. To reduce bias in training and
accuracy estimation, we used BLASTClust 2.2.22 [34] to
remove redundant sequences with a setting of 20% iden-
tity. For proteins in human and a few plant species we
adopted the dataset of Predotar [35] and for plants aug-
mented that small number by experimental proteomics
data determined in the mass spectrometry experiment of
Huang et al. [11].

Dataset

Organisms used

We gathered protein sequences from 11 relatively diverse
and well annotated representative species of the three
phylogenetic divisions: yeast, mammal and plant respec-
tively (Table 1). The 11 mammal species and most of
the plant species are annotated reference proteomes in
UniProt, but a few of the plant species are only included in
UniProt as complete, but not fully annotated, proteomes.
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Table 1 List of species used to define orthologs in each phylogenetic category

S. cerevisiae H. sapiens

A. thaliana

Saccharomyces castellii

Saccharomyces kluyveri

Gorilla gorilla

Otolemur garnettii

Glycine max

Ricinus communis

Kluyveromyces waltii Mus musculus Populus trichocarpa
Ashbya gossypii Oryctolagus cuniculus Vitis vinifera

Candida glabrata Sus scrofa Sorghum bicolor
Kluyveromyces lactis Ailuropoda melanoleuca Brachypodium distachyon
Zygosaccharomyces rouxii Myotis lucifugus Oryza sativa
Kluyveromyces thermotolerans Loxodonta africana Selaginella moellendorffii

Saccharomyces bayanus

Kluyveromyces polysporus

Sarcophilus harrisii

Ornithorhynchus anatinus

Physcomitrella patens

Chlamydomonas reinhardtii

The species listed at top are the reference species used to determine the subcellular localization site class labels. In the case of plants, one of G. max, O. sativa and
C. reinhardtii were used as the reference species for proteins for which no annotation was available in A. thaliana.

Note that our “plant” dataset contains the unicellular
green algae Chlamydomonas reinhardtii, which is not
a typical plant but is classified in the “viridiplantae”
kingdom.

In each of the three divisions we designated one species
as the “reference” species. We used information in pro-
teins from the non-reference species only for computation
of sequence divergence (via ortholog multiple sequence
alignments). We chose S.cere., H. sapiens, and A. thaliana
as the reference species for yeast, animals and plants
respectively, because they have the most complete anno-
tation. However for plants even A. thaliana has rather
limited annotation of SPs, so in order to increase the plant
dataset size we used other species as the reference species
in some cases.

Ortholog determination

We performed some experiments on hand curated
ortholog sets downloaded from the Yeast Gene Order
Browser (YGOB) [36], but also computed ortholog sets for
each of the three phylogenetic divisions.

Automatic identification of orthologs is a complex sub-
ject for which many sophisticated methods have been
developed, the most suitable one being application depen-
dent [37]. For this study, we adopted a simple procedure
based on reciprocal best hits (RBHs) [38]. Formally, pro-
teins P and P’ from species S and S’ respectively, are RBHs
if P is more similar to P’ than any other protein in S’ and
P’ is more similar to P than any other protein in S. We
define the ortholog set of a reference species protein as all
of its RBHs. When computing RBHs it is important that
proteins from as many organisms as possible are included;
but in the end we only have use for those ortholog sets
in which the reference species is annotated, so in gen-
eral we discarded the rest. However, in the case of plant,
we attempted to rescue those discarded sequences by also

trying O. sativa, G. max and C. reinhardtii in turn as the
reference species.

In computing the similarity scores for RBH we chose
to use global alignment rather than local alignment. Our
motivation for this was: 1) sorting signals often appear on
the N- or C-terminal region of proteins, so differences in
those regions may indicate a different localization of the
“ortholog”, and 2) for multiple domain proteins, strong
similarity in one domain may not imply the same local-
ization site (or signal). We used the heuristic but fast
USEARCH [39] program with its default parameters to
compute the global similarity scores. Table 2 summarizes
the datasets.

Multiple alignment

We computed multiple alignments for each of the 4
orthologs sets (1 curated and 3 automatic) by aligning
with the MAFFT program [40], using “LINSI”, its most
accurate mode. Hereafter, we denote these alignments
as “orthoMSA” in general, and as “autoOrthoMSA” when
specifically referring to multiple alignments of automati-
cally generated ortholog sets. The number of sequences
in the automatically generated ortholog sets generally dif-
fers from the YGOB based sets, however, it seems that

Table 2 The number of ortholog sets by localization class
in each phylogenetic division

Localization S.cere. curated S.cere. RBH H.sapiens RBH Plants RBH

class orthologs

MTS 179 219 81 61
SP 53 73 169 15
CTP N/A N/A N/A 97
N-signal-free 450 560 415 99

For each ortholog dataset, the number of ortholog sets in each localization class
is listed. RBH orthologs are defined by the reciprocal best hit method.
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the distribution of the divergence score stabilizes when
the number of sequences exceeds three (Figure 1), there-
fore we decided to include ortholog sets with at least four
sequences.

Features for classification

Column entropy score

Several measures have been suggested for scoring evolu-
tionary sequence conservation (or conversely divergence)
[41,42]. Here we adopt a simple Shannon entropy based
score. The Shannon entropy H (i) of the ith column of an
orthoMSA is defined as:

H(i) = =Y F(i,j)log, F(i, ). 1)

jeA

where A denotes the set of 20 amino acid characters plus
gap characters, and F(i,j) denotes the frequency of char-
acter j in column i of an orthoMSA. Note that when
multiple gap characters are present in a column, we con-
sider each to be a unique character. For example, the
entropy of an orthoMSA column {1, L, I, -, -} is com-
puted as one character (the ‘L’) with frequency 0.4 and
three characters with frequency 0.2, because we treat the
two ‘-’ characters as distinct. We adopted this treatment
of gap characters so that the divergence of orthoMSA
columns with many gaps is considered high (we also tried
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using straight entropy, but the results, not shown, were
slightly worse). The range of this divergence score runs
from 0 to log, n, where # is the number of sequences.

Divergence based features

For many orthoMSA’s, the entropy often varies widely
from column to column. Therefore, we defined a number
of evolutionary divergence features based on a smoothed
entropy score, H;;, defined as the average entropy score
for columns in the interval [, j]. For example we define
the local divergence (LD) of an orthoMSA at position k
as Hy_10,+10- Another feature we defined is NCdiff, the
average difference in divergence between in the first 20
residues and residues 80 to 99. Our motivation for this
definition was the hope that subtracting the divergence
from residues 80 to 99 would approximately normalize
the feature when comparing proteins with different over-
all rates of evolution. These features are summarized in
Table 3.

Physico-chemical propensities

To explore the possibility of combining sequence diver-
gence with standard features used in protein localization
prediction, we defined three features computed from the
first 20 or 40 N-terminal residues of each S.cere. protein:
1) the number of positively charged residues (#pos), 2) the
number of negatively charged residues (#neg), and 3) the
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Figure 1 Relationship between mean divergence score and the number of sequence in MSA's. A box plot illustrating the mean, quartiles and
range of the column entropy score for MSA’s in the yeast autoOrthoMSA dataset partitioned by the number of sequences in the MSA.
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Table 3 List of entropy derived features

Feature name Quantity

LD® Hiz10i410

Nraw20 Fi20

Nraw40 Fh 40

Nraw80-99 Hgo.09

i Average of Hyindow for all length w windows
oy Standard deviation of Hyindow for all length w windows
NCdiff Nraw20 — Nyaw80-99

N20 W (z-score normalized)

N40 W (z-score normalized)

N80-99 Nran80-99—1420) (z-score normalized)

920

average hydrophobicity as measured by the Kyte-Doolittle
[43] index (Hphob).

Amino acid composition

Amino acid composition is another standard feature for
protein localization. We tested this feature computed on
the first 20 residues, the first 40 residues, and the entire
protein sequence.

Classifiers

Majority class classifier

The majority class classifier unconditionally predicts all
examples to belong to the most common class. Its accu-
racy is equal to the fraction of examples belonging to the
most common class.

J48

J48 is a version of the C4.5 decision tree induction
algorithm of Quinlan [44,45], implemented in the Weka
software package [46]. We used the default value of 0.25
for the confidence factor, which controls the complexity of
the induced tree.

Support vector machine

The Support Vector Machine (SVM) [47] is perhaps the
most popular classifier in current bioinformatics work. In
its basic form it is a linear, binary classifier, but it has
been extended to non-linear, multiclass classification. In
this project, we used the LIBSVM implementation [48].
We used the Gaussian radial basis kernel function with
default y value (1.0/# number of features). We used 50.0
for the SVM cost parameter C, because with the default
cost parameter (1.0) prediction by RBF kernel failed for
some features. In our study we conducted binary and 3-
class classification. For multiclass discrimination LIBSVM
adopts the “one-versus-one” method, in which a sepa-
rate SVM is learned for each pair of classes, and major-
ity voting among those SVM’s is used when classifying
examples [49].
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Measuring the influence of divergence features As
reported in the Results section, we performed a post-
hoc analysis of proteins for which the divergence features
greatly influenced the prediction outcome. To do this we
needed to compare 6 numbers (three SVM scores {MTS
vs SP, MTS vs none, SP vs none} each computed with and
without the divergence features) into a measure of how
much the divergence features influenced the prediction.
Because the SVM scores are not given directly as prob-
abilities and each individual SVM addresses a different
subset of classes, it is not trivial to derive a well-principled
way to do this. As described in more detail in the
Additional file 1, we chose to define this in terms of expo-
nential loss-based decoding [50]. We do not claim that
this is necessarily the best measure, but it appears to
give reasonable results. Fortunately, for our purposes it
is enough that truly large differences are assigned in a
roughly suitable order.

Quantifying feature importance

We used the so called “information gain” to quantify the
importance of each feature. Information gain is a simple
measure of the predictive power of a feature in isola-
tion (i.e. without consideration of its relationship to other
features), defined as:

I(C,F) = H(C) — H(C|F). @)

where C and F denote class and feature respectively. H(C)
the denotes information theoretic entropy of the overall
distribution of the class labels, while H(C|F) denotes the
conditional entropy of the class label when feature F is
given. A larger information gain indicates greater predic-
tive power. Because the divergence based features have a
large number of possible values, we first binned those val-
ues into a smaller number by the method of Fayyad &
Irani [51].

Classification performance evaluation

Accuracy is not always the most meaningful measure
of performance for skewed datasets (i.e. datasets with a
very uneven number of examples from different classes)
[52]. Therefore we report several measures in addition to
accuracy.

Matthews correlation coefficient

The Matthews correlation coefficient, MCC [53,54], is a
measure of performance for binary classification defined
as follows:

TP x TN — FP x FN

J(TP ¥ EN)(TP + EP)(IN + EP)(IN + EN) ®)

where “T” and “F” stand for “true” and “false”, while “N”
and “P” stand for “negative” and “positive”. Equivalently,
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Figure 2 An example of MTS containing protein. A multiple sequence alignment of the protein mtHSP70 (UniProt accession POCS90) and its
orthologs from five species of yeast. The red box indicates the cleaved MTS in S.cere. Conserved positions are colored by Jalview.
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Figure 3 Local divergence score over N-terminal region. Average local divergence scores are shown for the 100 residue N-terminal region of:
MTS containing, SP containing, and N-signal-free proteins. Top left panel is calculated from orthologs of yeast curated dataset, and the others from
automatically collected orthologs. For the plant dataset, CTP containing proteins are also shown. The error bars denote standard error. For clarity,
error bars are only shown for every fifth position.
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MCC can be defined as the Pearson’s correlation coeffi-
cient of the binary vector of class labels compared to the
binary vector of predicted class labels. MCC ranges from
1.0 for perfect prediction to -1.0 for perfect inverse pre-
diction. Note that the MCC of the majority class classifier
is identically zero, as is the expected value of MCC under
random prediction.

Area under the ROC curve

The Area under the curve (AUC) for a receiver operat-
ing characteristics (ROC) graph is a widely used metric
to evaluate binary classification accuracy [55]. The usual
way to generate an ROC plot is to rank instances by their
predicted scores with increasing threshold values, plot-
ting true positive rate (y-axis) versus false positive rate
(x-axis). AUC ranges from 0 to 1.0, with perfect predic-
tion yielding 1.0 and perfectly wrong prediction 0.0. AUC
can be interpreted as the probability that a classifier is able
to distinguish a randomly chosen positive example from
a randomly chosen negative example [56]. For this task,
the majority class classifier gives no information over coin
flipping and therefore can be considered to yield an AUC
of 0.5.
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Results

Feature analysis

N-terminal sorting signals are evolutionary divergent

It is well known that N-terminal sorting signals exhibit
relatively low sequence conservation [57]. As shown in
Figure 2, this phenomenon is particularly clear for the
mitochondrial heat shock protein, mtHSP70, in which the
main part of the protein is highly conserved but the N-
terminal region is highly divergent. Figure 3 quantifies this
trend for the proteins in the YGOB ortholog set.

Estimate of importance of each feature

As a rough estimate of feature importance, we computed
the information gain for each feature (Figure 4). The two
highest scoring features are the physico-chemical features
#neg and Hphob, but the LD features near the N-terminus
also show information gain significantly greater than zero.

Sequence divergence is not redundant to physico-chemical
trends or amino acid composition

To be promising as a feature for prediction, it is desirable
that evolutionary sequence diversity not be perfectly cor-
related with other features. To investigate this we plotted

0.3 0.4

Information Gain
0.2

0.1

Q
o

I 1

I

Fou

“f” denotes amino acid composition from the full length of the protein.

Feny Feamp Feamprun

Features

Figure 4 Importance of each feature. The importance of each attribute as estimated by information gain is shown for the YGOB ortholog set. At
left, the divergence related scores are shown by light blue color lines. For local divergence features LD(i), only the residue number i is listed. Dark
blue colored lines denote standard features of the N-terminal 40 residues such as physico-chemical properties or amino acid composition. The suffix
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LD(13), the divergence feature with the highest informa-
tion gain, against Hphob, #neg and the arginine compo-
sition (the three highest scoring standard features in the
40 residue N-terminal region) (Figure 5). Although there
may be some relationship, the feature pairs do not appear
highly correlated.

Divergence predicts the presence of N-terminal signals

We tested whether sequence divergence can be used to
distinguish between proteins with an N-terminal local-
ization signal (MTS or SP) and those with none. As
shown in Table 4, for this binary classification task,
sequence divergence alone allows for significantly higher
prediction accuracy than randomized control experi-
ments or the majority class fraction (66.0%) in the yeast
dataset.

Divergence distinguishes SP vs. MTS vs. N-signal-free
Although the sequence divergence profile of SP’s and
MTS’s appear similar when averaged (Figure 3), we found
that sequence divergence is still somewhat effective for
the three-way classification of SP vs MTS vs N-signal-free.
As shown in Table 5 the performance with divergence
features is slightly better than the majority class fraction
(66.0%) and also slightly improves the performance when
added to the physico-chemical features in N-terminal 40
residues or amino acid composition in either N-terminal
40 or full length (Additional file 1).

The ratio of examples in our dataset is 8.5:3.4:1, for
N-signal-free, MTS and SP containing proteins respec-
tively. Skewed datasets are known to complicate both
learning and performance evaluation [52]. Therefore we
also measured performance on a dataset with uniform

class occupancy, created by randomly discarding all but
53 proteins from each class. As shown in Table 6, in
this experiment the divergence feature only performance
(63%) is much higher than the majority class fraction
(33%), and the divergence features also contribute more
to the performance when combined with the standard
features (Table 6).

We further tested the prediction power of divergence
features when combined with classical features computed
on a 20 residue N-terminal instead of 40 (which might
be too long for the SP class). In this experiment, diver-
gence features improved the performance only slightly
when combined with other standard features (Table 7).
We also computed the confusion matrix for this dataset
(Table 8) and the other datasets investigated in the study
(Additional file 1: Tables S14—S25).

Table 4 Performance of N-signal vs N-signal-free protein
binary classification

Mean accuracy Mean AUC Mean MCC
J48 7249+£330  0.68 £0.09 0.40 £ 0.09
- (randomized) 65.85 + 0.66 0504001 0.004003
SVM 74.64 £ 238 0.68 £003 0.40+0.06
- (randomized) 66.19 £ 0.09 0.504+0.00 0.00 £ 0.00
The majority class fraction 65.98% N/A N/A

Three classification performance measures when using only divergence features
are shown for the discrimination of N-signal containing and N-signal-free
proteins (yeast curated ortholog sets). AUC denotes the area under the ROC
curves. (randomized) indicates the values obtained with the localization class
labels randomly shuffled 100 times. For each measure the average and standard
deviation is shown over the 5 folds of the cross-validation, or 500 (5 x 100 trials)
folds in the case of the randomized data.
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Table 5 Performance of 3-way classification using SVM classifier

Divergence Classical features Combination
AUC MCC AUC MCC AUC MCC
MTS 0.67 £ 0.03 0.36 + 0.06 087 +£0.03 0.76 £0.05 087 +£0.03 0.77 £0.03
SP 0.50 £ 0.00 0.00 £ 0.00 0.81 £ 0.08 0.70 £0.11 0.90 + 0.06 083 £ 007
N-signal-free 0.66 £ 0.02 0.36 £0.03 0.85 £ 0.03 0.72 £ 0.05 087 +£0.02 0.77 £0.03
% accuracy 7082 £ 1,61 8724 +1.86 89.30 £+ 0.66

The 5-fold cross-validation performance of an SVM classifier using: divergence features only, classical features only, and the two combined; is shown for three-way
classification on the yeast curated ortholog dataset. Classical features are computed based on the N-terminal 40 residues.

Divergence computed from automatically generated
ortholog sets is consistent with the hand curated dataset.
Although the YGOB based dataset convincingly demon-
strates that the divergence score has discriminative power
for N-terminal signal prediction, it covers only 11 yeast
species and requires hand curation. Thus as described
in the Methods section, in this work we adopted a sim-
ple procedure based on reciprocal best hit relationships
to obtain automatically generated ortholog sets as well
(Table 2).

In yeast, the average divergence score at each posi-
tions is similar to the score from the YGOB ortholog
set, and the overall tendency looks similar for animals
and plants (Figure 3). Interestingly, CTP shows a high
and longer region of elevated divergence, consistent with
previous observations that CTPs tend to be longer than
MTSs [11]. Additionally, we note that the score range of
the human autoOrthoMSAs is significantly different from
those of yeast or plants. This is expected because diver-
gence amongst yeast sequences is at least as large as that
of the chordates [58], so divergence in mammals should
be smaller.

Divergence computed from autoOrthoMSA also predicts
N-terminal signals

First, we confirmed whether or not divergence features
can be applied to a simple binary classification: discrimi-
nation between N-terminal signal containing proteins and
N-signal-free proteins. Although the ratio of positive to
negative examples in each dataset differs, the result of

prediction by divergence features alone is higher than
majority class classifier for all datasets (Table 9).

Next, we tested the predictive power of divergence in
three-way classification on a dataset balanced to have
equal class frequency (Table 10). It is evident that on
balanced datasets, divergence also shows significant pre-
dictive power in distinguishing between the two different
kinds of N-terminal signals, even for the relatively closely
related mammal species.

In plants, the divergence score can also discriminate
between the three possible kinds of N-terminal signals
better than random. However, there are only 15 exper-
imentally validated SPs in this phylogenetic category
(Table 2). Since this small sample size leads to a high sta-
tistical variance, we also computed the performance on
balanced 3-way classification of MTS vs CTP vs N-signal-
free (Table 11).

In the Additional file 1 we list cross-validated per-
formance estimates on various combinations of datasets
and features. From these we draw two conclusions: in
most cases divergence features slightly improve predic-
tion when combined with standard features and in gen-
eral computing standard features on the N-terminal 20
residues leads to higher accuracy than computing on 40
residues.

Post-hoc analysis of proteins for which divergence strongly
influences the prediction result

In this section we discuss proteins for which the use
of divergence features strongly affects the results. The

Table 6 Performance on balanced dataset for MTS vs SP vs N-signal-free protein prediction using SVM classifier

Divergence Classical features Combination
AUC MCC AUC McCC AUC MCC
MTS 0.67 £0.10 0.35£0.20 0.84 £ 0.07 0.68 £ 0.13 0.88 + 0.05 0.78 £+ 0.09
SP 0.71 £ 0.09 041 +£0.16 0.92 £ 0.05 0.85+£0.10 0.94 £+ 0.01 0.88 +0.03
N-signal-free 0.79 £ 0.07 0.60£0.13 0.78 £ 0.09 057+£0.18 0.86 + 0.07 074 £0.13
9% accuracy 62.86 & 5.84 79.92 £5.54 86.19 =467

The 5-fold cross-validation performance of an SVM classifier using: divergence features only, classical features only, and the two combined; is shown for three-way
classification on a balanced dataset (53 proteins from each class, yeast curated orthologs).
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Table 7 Performance of 3-way classification using SVM classifier (feature length 20)

Divergence Classical features Combination
AUC MCC AUC MCC AUC MCC
MTS 0.67 £ 0.03 0.36 £ 0.06 0.89 +0.02 0.80 £ 0.02 0.89 £ 0.01 081 +0.02
SP 0.50 £ 0.00 0.00 £ 0.00 097 £0.03 0.92 +0.07 098 +0.03 097 £ 0.04
N-signal-free 0.66 £ 0.02 036 £ 0.03 0.90 £ 0.01 0.81+£0.02 090 £ 0.01 083 +0.02
% accuracy 70.82 £ 1.61 9149 £ 1.26 9223+ 1.25

The 5-fold cross-validation performance of an SVM classifier using: divergence features only, classical features only, and the two combined; is shown for three-way
classification on our entire yeast curated ortholog dataset. Classical features are calculated from N-terminal 20 amino acids.

ortholog MSA’s of all proteins mentioned in this section
are available in the Additional file 2.

Divergence features may help flag misannotation

Prior to this work, evolutionary divergence has not been
applied systematically to N-terminal signal prediction.
However we expected that it might be able to capture
interesting examples not revealed by other features. To
investigate this, we ranked instances whose SVM pre-
diction changes drastically depending on whether or not
divergence features are used. Because of its rich anno-
tation, we focused on S.cere., using the automatically
defined ortholog set. The prediction result of 43 proteins
changed depending on whether divergence features were
added to conventional features. For these 43 proteins, we
used the SVM numerical scores to rank the size of the
effect as explained in the Additional file 1 (ranked list
in Additional file 3: Table S1). The ortholog set multiple
sequence alignments for these proteins are also available
in the Additional file 2 in html form. In general, pre-
diction differences are observed between the MTS and
N-signal-free classes. The most highly affected protein
is mitochondrial alanine tRNA ligase, ALA1 (P40825),
which is predicted to have an MTS when sequence
divergence features are used. Upon closer inspection we
discovered that the sequence we used for this protein
should in fact have been labeled as an MTS contain-
ing protein, but our dataset based on an earlier version
of UniProtKB/Swiss-Prot contained mistaken annota-
tion which holds for an alternative translation start site.
Thus in this case sequence divergence yields the correct
answer.

PTP1 (P25044) is another protein whose prediction
changes from N-signal-free to MTS when divergence is
considered. Following UniProtKB/Swiss-Prot, we treated
it as a cytoplasmic protein, but there is no reference given
for this annotation. Moreover PTP1 is identified as a mito-
chondrial protein by two large-scale experiments. This is
suggestive that it may have a mitochondrial localization,
although even in that case it would not necessarily have an
MTS. Hopefully future work will clarify if this is another
case in which divergence features flagged misannotations
in our dataset.

Divergence features may help detect mitochondrial proteins
with non-classical MTS signals

FMP52 (P40008) is a protein included in our dataset for
which the SVM with standard features predicts an MTS
but the SVM with divergence features predicts N-signal-
free. As shown in Figure 6, FMP52’s N-terminal region is
not divergent like typical MTS’s, especially very near the
N-terminus. FMP52 is indeed a mitochondrial protein,
but upon closer scrutiny we discovered a previous report
that it strongly associates with the outer membrane [59] —
and therefore is unlikely to have a matrix targeting MTS.
Moreover, FMP52 is one of the non-MTS containing pro-
teins in the yeast proteomic analysis [32]. Swiss-Prot does
annotate FMP52 with an MTS (1-44), but we could not
find a reference or supporting information for this MTS
annotation; therefore, we conclude that it is unlikely to
have MTS. CYM1 (P32898) is another interesting example
which has been reported to localize in the intermembrane
space and not to be processed by mitochondrial proteases
[60]. Since MTS is a cleavable targeting signal for the

Table 8 Confusion Matrix from 3-way classification using SVM classifier (feature length 20)

Divergence Classical features Combination
Predicted — MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free
MTS 83 0 96 148 1 30 144 0 35
SP 16 0 37 0 50 3 1 51 1
N-signal-free 50 0 400 20 4 426 15 1 434

Confusion matrix of the 5-fold cross-validation performance of an SVM classifier using: divergence features only, classical features only, and the two combined; is
shown for three-way classification on our entire yeast curated ortholog dataset. Classical features are calculated from N-terminal 20 amino acids.
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Table 9 Performance of N-signal vs N-signal-free protein
binary classification on automatically collected orthologs
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Table 11 Performance on balanced plant dataset using
SVM classifier on automatically collected orthologs

Yeast dataset Mean accuracy Mean AUC Mean MCC Fpiy Plant 4 classes (15) Fpiy Plant 3 classes (61)

J48 7147 £5.00 0.67 £007 036=£0.12 AUC MCC AUC MCC

SVM 75.35+349 0.71+004 0.44 -+ 008 MTS 062 +0.11 024 4+£0.21 0664008 035+£0.14

The majority class fraction 65.23% N/A N/A SP 078011 058+023 N/A N/A

Human dataset CTP 073£0.16 043+£031 0774£012 0514023

148 6932+410 0.72+007 0.43 £0.09 N-signal-free  080+0.14 0724+020 0814+009 067+0.13

SVM 7228 £595 0.72+006 0.43 £0.12 % accuracy 60.00 £ 9.13 66.22 +10.11

The majority class fraction 62.41% N/A N/A The 5-fold cross-validation performance of an SVM classifier using divergence
features is shown for three-way classification on balanced sets of (automatically

Plant dataset generated) plant orthologs with or without the SP class. The number of
examples is given in parenthesis at top.

148 7941 £6.03 0.754+006 0.55£0.13

SVM 83.47 £401 0.79 £0.04 0.64 £ 0.09

The majority class fraction 63.60% N/A N/A the evidence suggests that MrpL19 may not have an N-

Three classification performance measures when using only divergence features
are shown for the discrimination of N-signal containing and N-signal-free
proteins on automatically collected orthologs. AUC denotes the area under the
ROC curves. For each measure the average and standard deviation is shown over
the 5 folds of the cross-validation.

matrix, the intermembrane space localization and lack
of proteolytic cleavage of CYM1 suggests its N-terminal
signal is not a typical classical MTS.

MrpL19 (P53875) is another case in which sequence
divergence features highlight a ribosomal mitochondrial
protein which does not appear to have a classical MTS
signal. According to both UniProtKB/Swiss-Prot annota-
tion and a large-scale proteomics experiment [32] MrpL19
has an MTS, but the annotated “MTS” is unusually long
and lacks an arginine in position -2, which is normally
observed in MPP cleavage sites [9]. Moreover the N-
terminal sequence of MrpL19 is very well conserved not
only in yeasts but even in bacteria. Indeed the three
dimensional structure of rplK, a homolog of MrpL19 in
E.coli, has been solved and it is evident that the two pro-
teins have a similar structured N-terminal. Taken together

Table 10 Performance for 3-way classification using SVM
classifier on automatically collected orthologs

Fpiy Yeast (73) Fpjy Human (81)
AUC McCC AUC McC
MTS 065+009 031£018 066005 031+0.11
SP 060+£007 019£014 0704+008 040=+0.15
N-signal-free 066+008 035+0.15 0694006 039=+0.11
% accuracy 51.63£7.21 5761 £4.71

The 5-fold cross-validation performance of an SVM classifier using divergence
features is shown for three-way classification on the automatically generated
ortholog dataset for yeasts and mammals. The number of examples is given in
parenthesis at top.

terminal mitochondrial localization signal, but rather be
imported via an alternative pathway.

On the other hand, we also observed ribosomal mito-
chondrial proteins whose N-terminal is poorly conserved.
One example is MrpL32 (P25348), which cannot be pre-
dicted as having an MTS by standard tools such as TargetP
[61] or Predotar [35], nor by our SVM’s trained without
divergence features. MrpL32 shows a high divergence in
its N-terminal region (Figure 7) and is predicted to have an
MTS by our SVM when using divergence features. A lit-
erature search revealed that MrpL32 does indeed have an
MTS, but it is unusual in the sense that it is cleaved by the
protease m-AAA [62,63] instead of MPP. Mrp7 (P12687)
is a similar case. Like MrpL32, Mrp7 is also a compo-
nent of a large ribosomal subunit and is not predicted to
have an MTS by TargetP, Predator, nor by our SVM with-
out divergence features, but is predicted to have an MTS
when divergence features are used. In UniProtKB/Swiss-
Prot, Mrp7 is annotated as having an MTS, and indeed
the processing of Mrp7 by MPP has been reported multi-
ple times [32,64]. So in this case high sequence divergence
allows an MTS to be correctly predicted.

Another case worth discussing is IMO32 (P53219),
which has recently been reported to be processed by the
intermediate protease Oct1 (after MPP) in the matrix [65].
It is unusual in that its inferred MPP cleavage site repre-
sents a rare exception to the almost invariant presence of
arginine at the -2 position. IMO32 is predicted as an MTS
by Predator [35] and our SVM when we use divergence,
but not by our SVM without divergence features, nor by
TargetP [61].

Discussion

Although strong sequence similarity is a widely used indi-
cator of co-localization, characteristically low sequence
conservation in signal sequence regions has not been uti-
lized for prediction. Other authors have noted the low
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sequence conservation of N-terminal sorting signals such
as MTS sequences [66], but our work reported here is the
first investigation of the utility of sequence divergence as
a predictive feature for N-terminal sorting signals.

Our method requires defining an ortholog set for each
gene. The YGOB curated dataset for 11 yeast species
is a reliable way to obtain orthologs, but this kind of
database is not available for most species. We show that
a simple reciprocal best hit method identified orthologs
with sufficient reliability for the purposes of comput-
ing sequence diversity. One avenue for future research
is to relax the requirement of global alignment recipro-
cal best hit designed to find orthologs, and simply use
for (possibly paralogous) homologous sequences. In this
study we chose to focus on orthologs because paralogs
often have distinct localization sites. For example, Rosso
et al. [67] describe the interesting case of the human
glutamate dehydrogenases GLUD1 and GLUD2. These
paralogs result from a gene duplication event, but GLUD1
localizes to both the cytosol and the mitochondria while
GLUD?2 localizes exclusively to the mitochondria. Inter-
estingly, the N-terminal region of GLUD2, which func-
tions as an MTS, has evolved faster than GLUD1 [67].

Since we made a few somewhat arbitrary choices when
defining divergence features, we performed an post hoc
analysis to see if simply tuning those parameters would
significantly affect the prediction accuracy. Namely, we
investigated the effect of the changing the window length

and position of the downstream normalizing window used
to define NCdiff, but found that prediction accuracy is not
strongly dependent on the exact value of these parame-
ters (Additional file 1: Figures $1,52). Another potential
weakness of our method is the simple entropy based defi-
nition we used for sequence divergence, which ignores the
phylogenetic relationship of the species involved. Many
sophisticated measures have been proposed to quantify
the degree of sequence conservation [42]. We did exper-
iment with some of them, such as the Jensen-Shannon
divergence [68] to try to improve prediction, but without
success (results not shown). However we did not exten-
sively explore the possibilities and believe that the simple
entropy score employed here probably can be improved
upon.

On the other hand, we did provide quantitative evidence
that the entropy divergence score has considerable predic-
tive power by itself. The examples ALA1 and FMP52 show
that divergence can flag proteins (typically mitochon-
drial ones) with misannotated MTS information and give
a hint regarding which compartment of the mitochon-
dria they localize to. Examples like MrpL32, show that
when the predictions of standard predictors are inconsis-
tent with the degree of sequence divergence, non-typical
MTS’s, processing proteases or alternative mitochondrial
localization pathways may be indicated.

One weakness in our datasets is that many of our
SP proteins are not experimentally validated, but rather
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Figure 7 MSA of MrpL32 and its orthologs in 11 yeast species. Multiple sequence alignment of MrpL32 in S.cerevisiae and its orthologs in 10
other yeast species. The red boxed region shows MTS of MrpL32. The conserved positions are colored by Jalview.
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annotated as SP proteins due to UniProtKB/Swiss-Prot
annotation and prediction from amino acid sequence with
SignalP [33] in the yeast dataset. This unfortunate circu-
larity (predicting predictions) is unavoidable because: 1)
only a handful of SP’s have been experimentally verified,
and 2) the presence of SP’s cannot be reliably inferred
exclusively from localization site for most S.cere. proteins.
It may be reasonable to assume that secreted proteins all
have SP’, but S.cere. secretes very few proteins (the Swiss-
Prot derived WoLF PSORT [69] dataset lists only six).
Proteins which localize to the E.R. or Golgi body gener-
ally posses SPs, but many proteins annotated as E.R. or
Golgi are non-SP containing peripheral membrane pro-
teins, which localize to the periphery of these organelles.
However, the risk of incorrect conclusion resulted from
employing non-verified SP data is small. First, this prob-
lem only applies to the SP class, as recent proteomics data
has provided direct measurement of many MTS’s [11,32].
Second, given the intense study of S.cere. and the con-
tinued scrutiny of UniProtKB/Swiss-Prot by the research
community, we find it unlikely that a large fraction of the
SP proteins in our dataset are incorrectly labeled. Third,
our argument is not completely circular. SignalP predic-
tion is based on physico-chemical features but not diver-
gence (or conservation) for prediction, and the results
shown in Figure 5 suggest physico-chemical features do
not correlate very closely with sequence divergence.

Conclusion

We find it rather remarkable that the accuracy of bal-
anced 3-way prediction can be improved to more than
50% just by using simply defined sequence divergence fea-
tures, while otherwise completely hiding the amino acid
sequence of the protein. Although we readily admit the
limited scope of this work, it is the first to quantitatively
explore sequence divergence as a feature for localization
signal prediction. We feel confident that our observation
will stand the test of time, as more and more organisms
are fully sequenced.

Note
A preliminary version of this work appeared as a confer-
ence proceedings paper [70].

Additional files

Additional file 1: Supplementary Text. Contains the supplementary text
with tables and figures.

Additional file 2: MSA'’s of proteins for which sequence divergence
changes predicted localization signals. Contains links to ortholog
multiple sequence alignments of each protein in Additional file 3: Table S1.

Additional file 3: List of proteins for which sequence divergence
changes predicted localization signals. A tab separated values file listing
proteins and their prediction scores with and without the use of
divergence features.
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