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Abstract

Background: The eastern oyster, Crassostrea virginica, is a euryhaline species that can thrive across a wide range of
salinities (5-35). As with all estuarine species, individual oysters must be able to regulate their osmotic balance in response
to constant temporal variation in salinity. At the population level, recurrent viability selection may be an additional
mechanism shaping adaptive osmoregulatory phenotypes at the margins of oyster salinity tolerance. To identify
candidate genes for osmoregulation, we sequenced, assembled, and annotated the transcriptome of wild juvenile
eastern oysters from ‘high’ and ‘low’ salinity regimes. Annotations and candidates were mostly based on the Pacific oyster
(Crassostrea gigas) genome sequence so osmoregulatory relevance in C. virginica was explored by testing functional
enrichment of genes showing spatially discrete patterns of expression and by quantifying coding sequence divergence.

Results: The assembly of sequence reads and permissive clustering of potentially oversplit alleles resulted in 98,729 reftigs
(contigs and singletons). Of these, 50,736 were annotated with 9,307 belonging to a set of candidate osmoregulatory
genes identified from the C. gigas genome. A total of 218,777 SNPs (0.0185 SNPs/bp) were identified in annotated reftigs
of C. virginica. Amino acid divergence between translations of C. virginica annotated reftigs and C. gigas coding sequence
averaged 23.2 % with an average dN/dS ratio of 0.074, suggesting purifying selection on protein sequences. The high
and low salinity source oysters each expressed a subset of genes unique to that group, and the functions for these
annotated genes were consistent with known molecular mechanisms for osmotic regulation in molluscs.

Conclusions: Most of the osmoregulatory gene candidates experimentally identified in C. gigas are present in this C.
virginica transcriptome. In general these congeners show coding sequence divergence too high to make the C. gigas
genome a useful reference for C. virginica bioinformatics. However, strong purifying selection is characteristic of the
osmoregulatory candidates so functional annotations are likely to correspond. An initial examination of C. virginica
presence/absence expression patterns across the salinity gradient in a single estuary suggests that many of these
candidates have expression patterns that co-vary with salinity, consistent with osmoregulatory function in C. virginica.
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Background
The eastern oyster (Crassostrea virginica) builds reefs
that support productive estuarine communities and provide
important ecosystem services [1,2]. However, overfishing,
disease pressure, and environmental stress have led to the
loss of approximately 90% of biomass across the eastern
oyster’s home range since the early 1900’s [3-5]. Two
important topics in oyster biology and restoration are
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the mechanisms by which oysters respond to stress [6,7]
and the ability of oyster populations to either acclimate to
stress through phenotypic plasticity or adapt via selection.
The majority of work on eastern oysters has focused
on immune response to pathogens [8-11] with a few
observational studies on other environmental stressors
[6,12]. Spatial and temporal variation in salinity is a
given for estuaries, and phenotypic buffering of cell
volume through osmolyte control is an essential adapta-
tion for all organisms that live there.
Eastern oysters are found along salinity gradients ranging

from near freshwater conditions (salinity of 5) to oceanic
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salinities (salinity of 35) [13-15]. Their greatest abundance
is typically at intermediate salinities, with the adult physio-
logical optimum posited to be as narrow as salinities of
15–18 [15]. At the margins of this environmental enve-
lope, recent results suggest that post-settlement viability
selection is one important process for sustaining adult
populations [16]. While the genes involved in osmoregula-
tion have not been well characterized in the eastern oyster,
recent studies on the Pacific oyster (Crassostrea gigas)
[17-19] provide valuable tools for investigating the
genetics of osmoregulation. Generating genome-scale
resources such as transcriptome sequences for C. virginica
can facilitate studies of gene expression and the physiology
of osmoregulation in order to better understand responses
to osmotic stress at the individual and population levels.
Oysters regulate cell volume in response to changing

salinity through multiple mechanisms. Oysters are osmo-
conformers with no ability to osmoregulate their extracel-
lular fluid [20]. Salinity fluctuations therefore result in
energetically costly processes to maintain isoosmostic
balance by accumulating or releasing osmotically active
solutes (osmolytes) [20]. These osmolytes include both
inorganic ions such as N+, K+ and Ca2+ and organic sub-
stances such as free amino acids (FAA) and quaternary
amines [21]. Oysters, like many organisms when under
great osmotic stress, primarily use organic osmolytes such
as taurine, alanine, aspartic acid, glycine, and betaine
[21-23]. Organic osmolytes are able to provide osmotic
bulk under high osmotic stress without the direct
physiological trade-offs that inorganic ions would have
[24]. Furthermore, organic osmolytes can stabilize proteins
and protect cells from oxidative stress [20,24]. A variety of
functional classes of enzymes are likely involved in osmo-
regulation, including peptidases to catalyze the hydrolysis
of peptides into amino acids, kinases to phosphorylate
plasma membrane proteins, and transporters to move
molecules across cell membranes [20].
Most molecular physiological studies of osmoregulation

in oysters have focused on the products of single genes,
such as taurine transporter [25,26]. The C. gigas genome
sequence and the initial evaluation of gene expression be-
tween salinity treatments [17] demonstrated differential
expression for hundreds of genes. Genomic studies of C.
virginica gene expression across natural salinity gradients
have also shown many genes responding to this environ-
mental gradient [6]. To enable more focused future
studies on osmoregulation in C. virginica, a first step is
the identification of candidate genes involved in this core
physiological process.
Our objective was to identify genes putatively involved

in osmoregulation in the eastern oyster by sequencing,
assembling, and annotating the transcriptome from low-
and high-salinity source populations of juvenile oysters
by using 454 sequencing technology. Using annotations
and differential expression data from C. gigas, we identified
C. virginica transcripts that are candidates for osmo-
regulatory function. Given that these congeners shared
a common ancestor more than 82 Mya [27], we explored
the functional appropriateness of these annotations in two
ways. First, we quantified the distribution of coding se-
quence divergence and estimated the strength of puri-
fying selection maintaining similar polypeptide sequences
in the two species. Second, we tested for predicted expres-
sion patterns in normalized cDNA libraries from low- and
high-salinity wild oysters. Specifically, we predicted that
transcripts found in one salinity population but not the
other would be enriched for candidate osmoregulatory
genes and for osmoregulation-related gene ontology terms
(GO; www.geneontology.org). Our evaluation of this tran-
scriptome and results of these associated analyses provide
some confidence that these candidate genes are a com-
prehensive starting point for experiments investigating
the physiological and evolutionary responses of eastern
oysters to osmoregulatory challenges in their estuarine
environment.

Methods
Sample collection and archiving
Shell substrate was deployed at a “high” salinity field site
(27°10’58.2”N 80°12’22.2”W; mean salinity = 15.9, max =
33.5, min = 4.6) and at a “low” salinity field site (27°
13’11.2”N 80°13’38.9”W; mean salinity = 8.0, max = 18.2,
min = 1.0) in the St. Lucie River, Florida, on June 2, 2010.
Water temperature, salinity, and percent dissolved oxygen
were recorded every hour at both sites from March 23, 2010
until July 1, 2010 with a Sonde (YSI 600OMS V2). Over this
time interval these two sites were significantly different in
salinity (Figure 1, t = −38.6, df = 1397, p < 0.001). Mean water
temperature was 26.5°C at the high salinity site and 27.4°C at
the low salinity site. Mean dissolved oxygen was 83.1% at the
high salinity site and 86.6% at the low salinity site. The
temperature and dissolved oxygen did not differ significantly
between the sites (p = 0.062, p = 0.091). Juvenile oysters (spat;
4 – 10 mm total length) were collected from the shell
substrate on July 1, 2010. All soft tissue, including gill,
mantle and adductor muscle, was archived for each in-
dividual in RNALaterW (Ambion) after removing the vis-
ible digestive system. Within two weeks, the RNALaterW

was drained and the samples were archived at −80°C.

RNA extraction
Approximately 30 mg tissue from each of four individuals
per site was used for individual RNA extractions using
Qiagen RNeasy Mini Kit (Qiagen, Valencia, CA) follow-
ing the manufacturer's protocol. Total RNA from each
sample was quantified using NanoDrop 8000 (Thermo-
Scientific) and 5 μg from each of four individuals per
site was pooled.

http://www.geneontology.org


Figure 1 Salinity at the ‘high’ and ‘low’ wild juvenile oyster collections sites. A) Maximum, mean, and minimum salinity at low salinity site.
B) Maximum, mean, and minimum salinity at high salinity site.
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454 library prep and sequencing
The construction of two normalized cDNA libraries and
454 pyrosequencing was carried out at the W.M. Keck
Center for Comparative and Functional Genomics, Roy
J. Carver Biotechnology Center, University of Illinois at
Urbana-Champaign. We chose to normalize the libraries
in order to increase the likelihood that rare transcripts
would be sequenced, leading to a more complete tran-
scriptome with limited sequencing effort. For each library,
messenger RNA was isolated from 10 μg of pooled total
RNA with the Oligotex kit (Qiagen, Valencia, CA). The
messenger RNA was then converted to a primary cDNA
library with adaptors compatible with the 454 system
using Multiplex Identifier (MID) tags to distinguish the
two population pools [28]. The libraries were diluted to
1 × 106 molecules/μL, pooled, and sequenced on a full
plate using the 454 Genome Sequencer FLX + system
according to the manufacturer’s instructions (454 Life
Sciences, Branford, CT). Signal processing and base call-
ing were performed using the bundled 454 Data Analysis
Software v2.6.
Transcriptome assembly and clustering
The two barcoded sets of reads were independently
trimmed prior to assembly. Reads were trimmed from
each end using a phred-scale quality score of 20 with
fastq_quality_trimmer (FASTXToolkit). When the trimmer
encountered a base pair with a quality less than 20, the
closest read end was trimmed up to that base. Reads with
less than 70% of the original length remaining were dis-
carded. Trimmed reads were then imported into Newbler
(gsAssembler, 454 Life Sciences, Roche Diagnostics). Any
remaining adapters were trimmed, and reads were filtered
against an E. coli database to remove contaminants. Reads
were then assembled de novo using the default settings
except for a minimum overlap length of 30 bp (default
40 bp). The quality of the initial assembly was evaluated by
comparing assembly statistics to other published molluscan
transcriptomes from 454 sequencing. Newbler reports
consensus “contigs” using the overlap-layout-census (OLC)
approach, which merges reads into contigs when their
alignments overlap. Reads with no alignment overlap with
other reads are denoted as singletons. Because singletons
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may belong to unique genes that were not highly expressed,
they were included in further analysis. We defined a refer-
ence transcriptome as the combined set of 200 bp or longer
contigs (consensus from multiple overlapping reads) and
singletons and hereafter refer to these as “reftigs” (reference
transcriptome sequences).
Large indels, highly polymorphic sequences, and other

de novo assembly challenges can often lead to redundancy
in sequences between singletons and contigs [29]. Particu-
larly in highly polymorphic species such as oysters, alleles
will often assemble into separate contigs or remain as
singletons. This redundancy complicates downstream
applications of the resulting transcriptome, such as gene
expression analyses [30], because reads from some single
copy genes will not map uniquely within the transcrip-
tome and may be discarded. We assumed that the reftigs
from the Newbler assembly included many oversplit loci,
so to improve the transcriptome we consolidated redun-
dant reftigs by clustering. Cd-hit [31] was used to cluster
reftigs with various sequence identity thresholds ranging
from permissive clustering at 80% to conservative cluster-
ing at 99% using a k-mer word size of 5 to 10 increasing
incrementally with the threshold (e.g. word size 5 with
threshold 80%).
Several approaches were used to evaluate whether

clustering improved the transcriptome. For the 80% and
95% clustering results we compared statistics bearing on
transcriptome quality including the percent of reftigs that
were annotated, the distribution of annotation between
contigs and singletons, and the number of osmoregulatory
candidates (identified in C. gigas) recovered.
Additionally, we evaluated the two clustering results

by comparing the proportion of Illumina reads from a
barcoded individual that uniquely mapped to annotated
reftigs based on a pilot RNA-seq experiment. The barcoded
individual was from an oyster reef in Delaware Bay with a
salinity regime ranging from 6.5 to 14.5. The mRNA from
30 mg of gill tissue was extracted using Dynabeads® mRNA
DIRECT™ kit (Life Technologies). The library was prepared
with NEBNext® mRNA Library Pep Reagent Set for Illu-
mina® (New England BioLabs Inc.). The library constituted
16.25% of a single 100 bp Hi-Seq Illumina lane and was
sequenced at the Biotechnology Resource Center Genomics
Facility of Cornell University. The resulting reads were
trimmed following the same procedure as the 454 reads,
and any remaining adapters were clipped using fastx_clip-
per (FASTXToolkit). The remaining reads were then
mapped to the annotated reftigs using BWA [32] with a
mismatch edit distance of 0.005 and SAMtools [33] with
only uniquely mapped reads retained.

Annotation
To annotate the de novo C. virginica transcriptome assem-
bly, reftigs were compared to NCBI's non-redundant (nr)
protein sequence database that included the annotated
proteins deduced from the C. gigas genome (May 2013),
plus the Swiss-Prot and TrEMBL databases from the
Uniprot protein knowledge base, using the BLASTx
algorithm with an e-value cut-off of 10−5. Gene Ontology
(GO; www.geneontology.org) annotation was retrieved
from Uniprot. The annotated and unannotated reftigs were
then compared with respect to the proportion of contigs
and singletons as well as GC content in order to explore if
unannotated reftigs may represent non-oyster contamin-
ation in the 454 sequences. The number of unique genes
represented by the transcriptome was then identified by
grouping reftigs that shared the same GenBank gene
identifier.
We considered genes as osmoregulatory candidates if

they were included in the 1,241 annotated genes found to
be differentially expressed in C. gigas adults in response to
six different salinity treatments when compared to a control
salinity of 30 Table S21 in [17]. Additionally, we quantified
the number of genes in the normalized libraries that were
uniquely represented in one C. virginica population sample
or the other by mapping the trimmed and filtered 454 read
pools from ‘low’ and ‘high’ salinity samples back to the an-
notated reftigs from the 80%-clustered transcriptome
using GSMapper (454 Life Sciences, Roche Diagnostics)
with default settings. Enrichment of functional classes was
tested at the level of genes, based on reftig annotation
results described below, for two subsets compared to
the entire annotated transcriptome: (1) all osmoregulatory
candidates and (2) genes unique to each population. En-
richment tests used a Fisher’s exact test as implemented in
TopGO from Bioconductor [34]. Genes that were unique
to one of the two populations were identified as “asym-
metric.” Results from enrichment tests were depicted in
the context of the hierarchical structure of gene ontology
terms in order to visualize the degree of functional inte-
gration among the most significantly enriched genes.

Sequence comparisons with C. gigas
Simple sequence repeats and low complexity regions of
the annotated reftigs were masked with RepeatMasker
[35], using the rmblast search engine. Reftigs with masked
regions were removed from analysis. The coding sequence
reading frame for each remaining reftig was then predicted
using ESTscan [36]. ESTscan was trained using the EMBL,
RefSeq and UniGene clusters from the mollusk Aplysia cali-
fornica, the most closely related species for which a full set
of references were available at the time of this study. The
matrices from this training were then used to predict cod-
ing sequences for the reftigs using a hidden Markov model
[36]. The predicted coding sequence for each reftig was
then used to analyze sequence divergence from C. gigas.
A local directory of C. gigas coding sequence for pre-

dicted proteins from the C. gigas genome was downloaded
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from http://gigadb.org/dataset/view/id/100030/sort/size and
clustered with Cd-hit using the same parameters as for
reftig clustering (sequence identity threshold = 0.8, word
size = 5). Coding sequences that clustered were assumed
to be paralogs and removed from analysis to reduce the
bias that would occur with comparison of paralogs between
C. gigas and C. virginica. The C. virginica reftigs were then
compared against the C. gigas coding sequences using
tBLASTx with intron linking disabled and an e-value cut-
off of 10−5. Best hits were interpreted as putative ortholog
pairs for analysis. Ortholog pairs were then run through a
custom pipeline to align sequences using ClustalW [37]
and calculate dN/dS ratios using the codeml function
of paml [38]. The distribution of dN/dS values relative
to ClustalW alignment length was evaluated before
choosing to remove alignments less than 60% of the total
reftig length.

SNP discovery
The mapped 454 reads from both population samples
were combined and aligned against the masked, annotated
reftigs with mpileup of SAMtools [33]. SNPs were then
identified using SNAPE-pooled [39] with a base quality
average of 37 or greater, theta of 0.01, divergence of 0.1,
flat prior and folded spectrum, and the SNP density for
each contig was calculated.

Results and discussion
Assembly and clustering results
A total of 1,256,652 raw 454 reads included 718,009
from the high salinity population and 538,553 from the low
salinity population. The raw reads are available through the
National Center for Biotechnology Information Short Read
Archive under accession numbers SRS502377 for the high
salinity population and SRS502378 for the low salinity
population. After trimming and filtering, 1,182,107 reads
remained and were assembled into 28,939 contigs that
contained 86.7% of the reads. The 128,083 unassembled
reads were designated as singletons and included in further
analysis. The combined contig and singleton set consisted
of 157,022 reftigs. The assembly size for contigs alone was
approximately 18,202,631 nucleotide bases, similar to other
molluscan transcriptome assemblies based on 454 se-
quences (Table 1), and had an average contig length of
629.1 bases (N50 = 500 bases) and maximum contig
length of 7,512 bases. The total transcriptome (contigs
and singletons, 157,022 reftigs) was 51,918,466 nucleotides
with an average length of 453.0 bases (N50 = 381 bases).
Given the high degree of polymorphism in oysters

[17], clustering of assembled reftigs was explored as a
method of consolidating alleles that remained apart after
assembly. Consolidating alleles is an important consider-
ation before using a transcriptome assembly as a reference
for RNAseq expression analyses because oversplit alleles
in the assembly will decrease the number of reads that
map uniquely. A total of 136,000 reftigs (86.7%) were
longer than 200 bp and used for clustering at different
sequence identity thresholds. Comparing the change in
total reftig number resulting from increasingly permissive
clustering, the rate of reftig consolidation was initially
rapid based on thresholds from 99% to 95%; then the rate
of change slowed and was nearly constant between 95%
and 80% (Figure 2). As the sequence identity threshold
decreased, the ratio of contigs to singletons increased as
expected if singletons were being clustered with greater
frequency than contigs (Table 2).
Transcriptomes resulting from both the 95% and 80%

sequence identity thresholds were annotated for com-
parison. Both transcriptomes had a similar percentage of
reftigs successfully annotated, with a similar distribution
of contigs and singletons. Likewise, 1,014 osmoregulatory
candidates (see below) were obtained with the 95% thresh-
old and this dropped by only seven candidate genes at the
80% threshold (Table 2). The large percentage (99.4%) of
candidate genes that remain in the transcriptome at the
80% threshold compared to the 95% threshold suggests
that any potential paralog clustering resulted in a minimal
loss in the number of uniquely annotated genes, particu-
larly osmoregulatory candidates.
We mapped 100 bp Illumina RNAseq reads from a

single individual to the 95% and 80% transcriptomes to
test whether oversplit alleles were consolidated by
clustering. Relative to the 95% transcriptome, the 80%
transcriptome had a higher percentage of annotated reftigs
with mapped reads, but the effect was small (Table 2). In
terms of the proportion of Illumina reads that mapped,
two percent more reads mapped uniquely to the 80% tran-
scriptome than the 95% transcriptome. The increase in
the percent of uniquely mapped reads in the 80% tran-
scriptome suggests that consolidation of allelic reftigs was
achieved by clustering, resulting in more reads mapping
uniquely. Based on these results the 80% threshold tran-
scriptome was chosen for further analysis.
In one cluster examined in more detail, an original

contig annotated as Heat Shock 70 kDA Protein 12 was
ultimately clustered with three singletons. Two single-
tons clustered at the 95% threshold. The third singleton
(330 bp) was unannotated at the 95% threshold. With a
similarity of 84.55% estimated by Cd-hit, it was clustered
with the contig and the other two singletons at the 80%
threshold. An alignment between this third singleton
and the original contig showed five indels ranging in size
from 1 to 17 bp and two polymorphisms as the cause for
the 84.55% sequence identity. We suspect these indels
represent 454 sequencing error because they were partially
shared across the three singletons, most of them would
disrupt the reading frame, and they occurred within sim-
ple nucleotide repeats and low complexity sequence. Some

http://gigadb.org/dataset/view/id/100030/sort/size


Table 1 Assembly comparison to other molluscan transcriptomes sequenced using 454 technology

Species Normalized Mean unfiltered
read length (bp)

Unfiltered reads (n) Assembler % of filtered
reads assembled

Contigs (n) Mean contig
length (bp)

Estimated total
assembly (bp)*

Reference

Mytilus edulis No 279 2,393,441 Celera, Cap3 92.0 74,622 645 48,131,190 [40]

Bathymodiolus azoricus Yes 283 778,996 MIRA 74.8 75,407 509 38,382,163 [41]

Hyriopsis cumingii No 296 981,302 Cap3 70.5 47,812 634 30,312,808 [42]

Meretrix meretrix No 413 751,970 Cap3 87.3 35,205 679 23,904,195 [43]

Patinopecten yessoensis Yes/No 313 970,422 Cap3 86.7 32,590 618 20,140,620 [44]

Crassostrea virginica Yes 343 1,256,652 Newbler 86.8 28,939 629 18,202,631 Present study

Ruditapes philippinarum Yes – 457,717 MIRA3 – 32,606 546 17,802,876 [45]

Chamelea gallina Yes 210 298,494 MIRA – 39,750 352 13,992,000 [46]

Laternula elliptica No 369 1,034,155 Newbler 33.9 18,290 535 9,785,150 [47]

Crassostrea angulata No 309 555,215 Newbler 79.9 10,462 723 1,057,026 [48]

Pinctada martensii No 349 434,650 Newbler – 3,574 – – [49]

Pinctada margaritifera No 234 276,738 TGICL 79.2 76,790 – – [50]

The assemblies are ordered in decreasing size of estimated total assembly. *This calculation is from the mean contig length and number of assembled contigs and is provided as a means to compare
transcriptome size.
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Figure 2 Collapsing of reftigs with decreasing sequence
identity threshold in Cd-hit. As sequence identity threshold
decreases in Cd-hit clustering, the number of reftigs decreases. The rate
of reftig consolidation is highest from 1 to 0.95 but remains consistent
from 0.95 to 0.90.
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of the SNPs present in the singletons may also be se-
quencing error but not obviously so; most were not ad-
jacent to indels and they were already represented in the
original contig. Therefore, clustering provided two dis-
tinct transcriptome improvements: (1) oversplit alleles
were consolidated, facilitating downstream mapping to
the transcriptome for RNAseq expression analysis, and
(2) more of the 454 sequencing coverage was used to
call SNPs.
Table 2 Comparison of quality statistics for transcriptome ass
thresholds

Unclustered 95% seq

Composition

Total # Reftigs 136,000 114,716

% Contigs 16.4% 18.9%

% Singletons 83.6% 81.1%

Annotation

Total reftigs annotated 58,811

% Reftigs annotated 51.3%

% of Contigs 62.6%

% of Singletons 48.6%

# of Osmoregulation candidates 1014

Sample illumina reads mapped to
annotated transcriptome

% Reftigs with mapped reads 86.7%

% of Reads mapped uniquely 40.8%

With more permissive clustering, the number of unique sequences in the transcript
increases. The clustering threshold has a trivial effect on the proportion of reftigs an
of Illumina reads uniquely mapping, transcriptomes based on more permissive clus
them as well as a greater percentage of uniquely mapped reads.
The optimum balance between consolidating oversplit
alleles and clustering paralogs or sequence errors is im-
possible to know because it depends on the distribution of
allelic sequence differences relative to paralog differences
in any particular species as well as the sequencing error
rate. The comparative approach used here was ad hoc and
took advantage of computational efficiencies when clus-
tering consensus sequences from an assembly rather than
exploring parameter values in separate assemblies. When
no reference genome is available, this comparative em-
pirical approach can be a valuable method of improving
transcriptome quality.

Annotation results
The BLASTx search against multiple databases provided
annotation for 50,736 reftigs (51.4%) representing 20,249
unique GenBank accessions and 16,392 distinct putative
proteins that we will refer to as genes. Only 0.05% of the
annotations were achieved with a database other than
GenBank nr (Figure 3). Reftigs that did not have a BLASTx
match with an e-value smaller than 10−5 from any database
was designated as unannotated.
Of 16,392 distinct genes, 8,161 are represented by a

single reftig. The number of reftigs per gene ranges from
1 to 470 with only 13 genes represented by 100 or more
reftigs. Gene duplication and large gene families, particu-
larly in the C. gigas genome from which 89% of our anno-
tations were identified, are the primary reasons for the
large number of reftigs per “gene”. For example, the 456
reftigs identified as the gene “tripartite motif-containing
protein 2” from C. gigas were annotated from 201 unique
embly at unclustered, 95% and 80% sequence identity

uence identity threshold 80% sequence identity threshold

98,729

20.5%

79.5%

50,736

51.4%

64.3%

48.1%

1007

88.3%

42.8%

ome (reftigs) decreases and the proportion of non-singleton reftigs (contigs)
notated and the number of osmoregulatory candidates recovered. With 42.8%
tering have a greater percentage of annotated reftigs with reads mapped to



Figure 4 GC content of annotated and unannotated portions of
transcriptome and C. gigas. GC content of the annotated portion of
the transcriptome is higher than in the unannotated portion, suggesting
potential contamination from other species or the presence of other
RNA types in the sequencing. The GC content of the annotated portion
mirrors the GC content found in the coding sequences of C. gigas.

Figure 3 Number of reftigs annotated by each database out of
50,736 total reftigs. The Genbank nr database supplied 99.95%
of annotations.
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GenBank accessions. For C. gigas, these different GenBank
accessions represent different coding sequence locations
within the genome. Therefore, we define a “gene” here
as a protein product, which often represents large gene
families.
Gene Ontology (GO) terms were assigned to 36,924 of

the annotated reftigs, representing 11,583 putative genes,
based on sequence similarity to known proteins in the
UniProt databases. Annotated reftig sequences have been
archived and are accessible through FigShare (http://dx.
doi.org/10.6084/m9.figshare.873865) [51].
A consequence of whole animal extractions and nor-

malizing the libraries was the increased potential to se-
quence non-oyster transcripts, such as bacteria and
algae. Singletons made up ~74% of the reftigs in the
full (annotated and unannotated) 80% transcriptome
and less than half of the singletons were successfully
annotated. Other studies using 454 sequencing also have
described singletons as comprising a large proportion of
their transcriptome (e.g. 81.7% [52]; 58.5% [29]; 55.3%
[53]) with a subset getting annotated. Singletons are the
inevitable consequence of assembling transcripts with low
coverage, so they are not necessarily indicative of contam-
ination. However, here the mean GC content for anno-
tated reftigs was 44% (SD = 5.4%), very similar to the
45.2% (SD = 4.3%) average for C. gigas coding sequences
(Figure 4). In contrast, the unannotated portion of the C.
virginica transcriptome had a significantly different mean
GC content of 34.5% (SD = 5.8%) (Figure 4; t = 266, df =
973455, p < 0.001). The difference in GC content provides
very strong evidence that many of the unannotated reftigs
(both contigs and singletons) came from other organisms
such as prokaryotes or protozoa. Without the benefit of
the C. gigas reference genome for annotation and GC
content comparison, de novo analysis of the eastern oyster
transcriptome generated here would be highly compro-
mised by contaminants.
Osmoregulation candidate genes
Of the 1,241 osmoregulatory candidate genes identified
in C. gigas [17], 1,007 (81.2%) were identified in the C.
virginica transcriptome based on 9,307 reftigs (18.3% of
all annotated reftigs) (Additional file 1: Table S1). The C.
gigas candidates were identified experimentally based on
differentially expressed genes between different salinity
treatments of adult oysters [17], while we obtained these
transcripts in wild juveniles. Thus, life stage is one factor
that could help account for the C. gigas candidates that
were not obtained in our samples. Additionally, C. virginica
and C. gigas have mostly overlapping but slightly different
salinity tolerances with C. virginica having lower mortality
rates than C. gigas at low salinity and vice versa at higher
salinities [54].
Fifty-nine osmoregulatory candidate genes were iden-

tified from only the high salinity population and 56 were
identified from only low salinity, together representing
11.4% of the candidate genes. These asymmetrically
expressed candidate genes were mostly cases with 1x
coverage (1:0 asymmetry), but 3 genes (2.6%) had an
asymmetry ratio of 5:0 or greater.
Ignoring candidate status, 4,053 of the 16,392 annotated

C. virginica genes (24.7%) were identified from only one
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of the two populations. Of these, 2,185 were found only in
the high-salinity population, including 1,431 genes (8.7%)
with 1:0 asymmetry and 74 genes (0.5%) with 5:0 or
greater asymmetry. An additional 1,868 genes were found
only in the low-salinity population, including 1,355 (8.3%)
with a 1:0 asymmetry and 31 genes (0.2%) with 5:0 or
greater asymmetry. A total of 105 genes (2.6%) from the
two populations had 5:0 or greater asymmetry.
The fact that 24.7% of all genes showed asymmetry,

while only 11% of osmoregulatory candidates did so,
suggests that there may be many biological processes
leading to population-specific expression in addition to
the stochasticity expected with low-expression genes.
Also, given that buffering against osmotic stress is a
chronic physiological need for oysters, lower asymmetry
among osmoregulatory candidates might reflect the
proportion of genes within this functional category
that have constitutive expression across salinities.
It is difficult to know how much asymmetry to expect

by chance for genes with a given level of expression in
normalized libraries. However, enrichment of functional
categories within the set of population-specific genes
is not expected from stochastic variation in library
normalization or read coverage. Our prediction was that
among asymmetric genes, annotations related to osmo-
regulatory function should be the most highly enriched
relative to the frequency of functional ontologies in the
overall annotated transcriptome. We initially built a frame
of reference by testing for functional enrichment among
the entire set of osmoregulatory candidate genes in C.
virginica and found 12 cellular component GO terms
and 86 molecular function GO terms significantly enriched
compared to the complete annotated gene set (Figures 5
and 6, Additional file 2: Tables S2 and S3). For cellular
components, the ‘extracellular region’, ‘plasma membrane’
Figure 5 Distribution of level 3 Cellular Component GO terms for the o
parents of GO terms that are significantly enriched in the osmoregulatory can
and ‘membrane’ components were among the significantly
enriched terms (Figure 5 and Additional file 2: Table S2).
At the level of molecular function, ‘catalytic’ activities,
‘binding’ functions, ‘electron carrier’ activities, ‘transporter’
activities and ‘molecular transducer’ activities were among
the significantly enriched terms (Figure 6, Additional
file 2: Table S3). These enriched GO terms serve to
functionally characterize the osmoregulatory candidates
on the whole and therefore might be indicators of
osmoregulatory function in additional enrichment tests
when found in concert.
As predicted, the overall group of asymmetric genes

(24.7% of all genes) showed significantly enriched on-
tologies relating to osmoregulatory function, as indicated
by similarities with enriched GO terms in the total set of
osmoregulatory candidate genes. Interestingly, the enriched
GO terms were only partially overlapping in the low versus
high salinity population, and relative enrichment magni-
tudes shifted among GO terms. In the low salinity popula-
tion at the level of cellular components, the strongest
result among 12 significantly enriched ontologies included
‘integral to membrane’ (GO:0016021, p = 0.00037) and
‘intrinsic to membrane’ (GO:0031224, p = 0.00058), two
ontologies nested within ‘membrane’ components, the
level-three GO term enriched among osmoregulatory
candidates (Additional file 2: Table S4). Transmembrane
channels are important in maintaining cell volume in re-
sponse to hypoosmotic stress. For example, Ca2+ channels
are upregulated in hypoosmotic stress and osmolytes such
as taurine are taken up through high affinity transport
systems that may involve transmembrane proteins [18].
Additional terms such as ‘cell periphery’ (GO:0071944,
p = 0.0033), ‘plasma membrane part’ (GO:0044459, p =
0.00624) and ‘plasma membrane’ (GO:0005886, p =
0.00815) were terms significantly enriched both in the
smoregulatory candidate genes. Black bars indicate the terms or the
didate genes compared to the complete set of annotated genes.



Figure 6 Distribution of level 3 Molecular Function GO terms for the osmoregulatory candidate genes. Black bars indicate the terms or the
parents of GO terms that are significantly enriched in the osmoregulatory candidate genes compared to the complete set of annotated genes.

Eierman and Hare BMC Genomics 2014, 15:503 Page 10 of 15
http://www.biomedcentral.com/1471-2164/15/503
asymmetric low salinity genes and the full candidate
gene set (Additional file 2: Tables S2 and S4). In general,
however, the cellular component terms most strongly
enriched in the full set of osmoregulatory candidates,
extracellular region and its ‘children’ terms, were not
enriched in genes expressed solely at low salinity in C.
virginica.
In contrast to the low population, the most significant

functional enrichment at the level of cellular compo-
nents in the high population was ‘extracellular region’
(GO:0005576, p = 6.4e-08). This term refers to the gene
products that are secreted from the cell but retained in
the interstitial fluid or hemolymph, and it was also the
most significantly enriched for the full osmoregulatory
candidate gene set (Additional file 2: Table S2, Figure 5).
While this parent GO term had the highest level of en-
richment among the C. gigas genes experimentally as-
sociated with salinity treatments [19] (Additional file 2:
Table S2), it is also likely to include immune response
genes responding to the larger disease burden found in
oysters from high salinity [19,55]. Several additional GO
terms were significantly enriched both in the asymmetric
high salinity genes and in the full candidate gene set includ-
ing ‘intrinsic to membrane’ (GO:0031224, p = 6.4e-06) and
‘plasma membrane’ (GO:0005886, p = 1.3e-05) (Additional
file 2: Tables S2 and S5).
At the molecular functions GO level, both the high and

low salinity populations showed the strongest significant
enrichments related to DNA replication and transcrip-
tion/translation (Additional file 2: Tables S6 and S7). For
the low salinity population, many of the other significantly
enriched molecular function ontologies (Additional file 2:
Table S6) were ‘children’ terms of those significantly
enriched both for osmoregulatory genes and for unique
low salinity genes (Additional file 2: Tables S3 and S6,
Figure 6). For example, ‘G-protein coupled receptor activity’
(GO:0004930, p = 6.6e-07) is a ‘child’ term of ‘receptor ac-
tivity’ and ‘aspartic-type peptidase activity’ (GO:0004190,
p = 2.2e-06) is a ‘child’ term of ‘hydrolase activity.’ These
enriched functions match predictions that the phosphoryl-
ation of plasma membrane proteins and the hydrolysis
of peptides are part of the physiological response to os-
motic stress. For the high salinity population, significant
enrichment was found for potential osmoregulatory terms
related to ‘substrate-specific transporter’ and ‘trans-
membrane transporter’ activities such as ‘receptor activ-
ity’ (GO:0004872, p = 7.8e-06), ‘gated channel activity’
(GO:0022839, p = 0.00022), and ‘ion gated channel activ-
ity’ (GO:0022839, p = 0.0022) (Additional file 2: Table S7).
These enrichment results are consistent with expectations
for differential expression of osmoregulatory genes by
juvenile eastern oysters from different salinity regimes.
Furthermore, it confirms the functional relevance in C.
virginica of osmoregulatory candidates identified in C.
gigas.
At the level of reftigs, rather than genes, among those

with annotations linked to osmoregulatory function in
C. gigas (9703 reftigs), 57.3% showed expression in only
one of the two populations. This high frequency of
asymmetry is in striking contrast to the 11% asymmetry
measured at the gene level among osmoregulatory candi-
dates. One possible explanation for this pattern is that
asymmetric reftigs represent differentially expressed splice
variants of genes expressed by both populations. This hy-
pothesis will be testable with the benefit of this transcrip-
tome as a reference for RNA-seq analyses.

SNP Discovery and dN/dS ratio with C. gigas
The transcriptome we present here provides the most
comprehensive estimate of polymorphism to date for
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C. virginica. Among 13,108 annotated contigs, there
was 12,355,575 bp of aligned sequence within which
218,777 SNPs were identified. Average SNP density was
0.0185 per base pair with a standard deviation of 0.0238
(Figure 7). Ninety percent of contigs had at least one
predicted SNP. This SNP density falls within the range
previously reported for the eastern oyster. Quilang et al.
[56] found a rate of 0.0059 SNPs/bp from 4,688 EST
sequences. In contrast, Zhang and Guo [57] estimated
0.042 SNPs/bp based on resequencing 6.8 kb of ESTs.
Similarly, a single gene study of serine protease inhibitor
reported an overall SNP frequency of 0.044/bp [58]. For
comparison, SNP density averaged across all exons in
wild-caught C. gigas was 0.0102 per bp [17]. Our finding
is therefore consistent with previous estimates of nucleo-
tide heterozygosity in C. virginica and tentatively supports
the contention that this species is more polymorphic than
C. gigas [57].
Quantifying genomic patterns of divergence between

C. virginica and C. gigas can help assess the relevance of
discoveries in one species with respect to the other.
Also, the ratio of substitution rates at nonsynonymous
and synonymous sites can help to identify genes under-
going positive selection. After various filtering steps to
remove potential artifacts and paralog gene pairs, 26,102
annotated reftigs from C. virginica were paired with an
ortholog from C. gigas. Estimates for the number of non-
synonymous substitutions per nonsynonymous site ranged
from near 0 to 0.012/bp per ortholog gene pair (Figure 8A)
while the number of synonymous substitutions per syn-
onymous site ranged from 0.0003 to 0.66/bp (Figure 8B).
The mean dN/dS ratio of 0.074 (SD = 0.066, Figure 8C) in-
dicates a pervasive role for purifying selection maintaining
Figure 7 The distribution of SNP density per base pair within
annotated contigs from the 80% clustered transcriptome.
similar amino acid sequences. The mean protein similarity
was 76.8%, and the mean nucleotide similarity was 74.2%.
It is possible that these divergence estimates between the
oyster congeners are biased downward because filtering
steps (see Methods) inevitably removed some more diver-
gent ortholog pairs.
This degree of purifying selection provides some confi-

dence that functional candidate genes identified in C.
gigas will often be applicable to C. virginica, at least as a
starting point. At the same time, transcriptomes in these
two species are probably too diverged to expect C. gigas
genomic reference sequences to help with C. virginica
bioinformatics. A simulation study by Vijay et al. [59]
demonstrated that reference genomes with average nu-
cleotide sequence divergence up to 15% can help improve
transcriptome assemblies while with greater divergence
there was no improvement over a de novo assembly. Simi-
larly, the potential for a heterologous reference genome to
provide improved RNA-seq analyses, relative to a de novo
transcriptome assembly, was determined to be at nucleo-
tide sequence divergences less than 15% [59].

Conclusions
The goal of our study was to assemble and annotate
the C. virginica transcriptome with particular focus on
potential osmoregulatory genes. Largely with the benefit
of the Pacific oyster genome, we assigned provisional
annotations to 50,736 reftigs representing over 16,000
putative proteins. More than 80% of the osmoregulatory
gene candidates identified in C. gigas experiments with
adults were identified here in wild juvenile samples from
different salinities. The low dN/dS between C. virginica
and C. gigas indicates purifying selection in the coding
regions of orthologous genes and provides justification
that genes identified as osmoregulatory in C. gigas are
likely to maintain the same function in C. virginica.
Even stronger justification is reported for a subset of
osmoregulatory candidates that were expressed in only
one of the two different salinity populations. Genes with
an asymmetric expression pattern across the salinity
gradient were significantly enriched for functions that
may be related to osmoregulation, consistent with these
genes having osmoregulatory functions in C. virginica.
Additionally, we have demonstrated that permissive

clustering of contig and singleton sequences may improve
downstream applications of assembled transcriptomes. In
some de novo transcriptome assembly studies, the single-
ton reftigs are discarded and only the contigs are analyzed.
Such a stringent filter, if applied here to C. virginica, would
have eliminated 37,717 singletons that were successfully an-
notated. The goal of clustering is to keep the singletons and
reduce redundancy across reftigs that can result from de
novo assembly challenges due to factors such as sequencing
error and high levels of polymorphism. Several studies



Figure 8 Distribution of (A) dN, (B) dS and (C) dN/dS ratio values. dN and dS show similar distribution shapes with the number of
synonymous substitutions much larger than the number of nonsynonymous substitutions. Most ortholog pairs had a dN/dS ratio below 0.2
indicating a strong role for purifying selection on oyster peptide sequences.
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employing programs such as Cd-hit to cluster sequences
based on similarity used a threshold of 95% similarity
[7,49]. We explored a range of threshold values from
99% down to the lower limit of the algorithm at 80%.
The improvement in uniquely mapped reads may be
beneficial for downstream applications, depending on
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experimental goals. For RNA-seq experiments, a greater
number of uniquely mapped reads means that a greater
percentage of data can be retained for the estimation of
expression. Future development of these clustering proce-
dures should focus on evaluating trade-offs, particularly
with respect to the incorporation of sequencing error at
more permissive clustering thresholds.
Finally, we have provided a valuable set of resources

for eastern oyster research. We have annotated 50,736
reftigs, doubling the 48,183 C. virginica transcriptome
contig sequences provided by Zhang et al. [7]. After
careful filtering of these reftigs, we identified 218,777
candidate SNPs for use in genetic mapping or for
population analyses. The 1,007 candidate genes for osmo-
regulation identified here will provide a reference for
future studies on the molecular basis of osmoregulation in
C. virginica, phenotypically plastic responses to salinity
stress, and patterns of selective differentiation across
heterogeneous environments.

Availability of supporting data
The data sets supporting the results of this article
are available in the National Center for Biotechnology
Information Short Read Archive, accession numbers
SRS502377 (http://www.ncbi.nlm.nih.gov/biosample/SRS50
2377) and SRS502378 (http://www.ncbi.nlm.nih.gov/bio-
sample/SRS502378), and in FigShare (http://dx.doi.org/
10.6084/m9.figshare.873865).
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Additional file 1: Table S1. Annotation of osmoregulatory candidate
transcriptome reftigs from C. virginica. Each row is an osmoregulatory
candidate reftig identified from the C. virginica transcriptome. The
identification as an osmoregulatory candidate is from the match
between the GenBank nr description (column 3) of the annotated reftig
to the description of an osmoregulatory candidate identified by Zhang
et al. [17] in the C. gigas genome. Information provided in the table for
each reftig are the reftig length, GenBank nr description, nr e-value,
UniProt match, UniProt e-value, UniProt ID, KEGG ID, and nucleotide
sequence.

Additional file 2: Table S2. Significantly enriched gene ontologies for
cellular components in osmoregulatory candidate genes. Osmoregulatory
candidate genes were compared to the complete set of annotated
genes, ordered by functional category. The p-value is derived from a
Fisher’s exact test implemented in topGO from Bioconductor. Indentations
represent the ‘parent’:‘child’ tiered relationship of GO terms with deeper
indentations representing more specific terminology relative to the
boldface level-three ‘parent’ terms shown as enriched in Figure 5. Table S3.
Significantly enriched gene ontologies for molecular functions in
osmoregulatory candidate genes. Osmoregulatory candidate genes
were compared to the complete set of annotated genes, ordered by
functional category. The p-value is derived from a Fisher’s exact test
implemented in topGO from Bioconductor. Indentations represent the
‘parent’:‘child’ tiered relationship of GO terms with deeper indentations
representing more specific terminology relative to the boldface
level-three ‘parent’ terms shown as enriched in Figure 6. Table S4.
Significantly enriched gene ontologies for cellular components from
the low salinity population. Significantly enriched gene ontologies in
1:0 asymmetric genes from the low salinity population are ordered by
p-value. The p-value is derived from a Fisher’s exact test implemented
in topGO from Bioconductor. Table S5. Significantly enriched gene
ontologies for cellular components from the high salinity population.
Significantly enriched gene ontologies in 1:0 asymmetric genes from
the high salinity population are ordered by p-value. The p-value is
derived from a Fisher’s exact test implemented in topGO from
Bioconductor. Table S6. Significantly enriched gene ontologies for
molecular function from the low salinity population. Significantly enriched
gene ontologies in 1:0 asymmetric genes from the low salinity population
are ordered by p-value. The p-value is derived from a Fisher’s exact test
implemented in topGO from Bioconductor. Table S7. Significantly enriched
gene ontologies for molecular function from the high salinity population.
Significantly enriched gene ontologies in 1:0 asymmetric genes from the
high salinity population are ordered by p-value. The p-value is derived from
a Fisher’s exact test implemented in topGO from Bioconductor.
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