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Abstract

about this taxonomic order in terms of RNA metabolism.

set of orthologous proteins.

roughly 100 novel ncRNA candidates in this bacterium.

we predict nearly 100 novel ncRNA candidates.

Background: The Aquificales are a diverse group of thermophilic bacteria that thrive in terrestrial and marine
hydrothermal environments. They can be divided into the families Aquificaceae, Desulfurobacteriaceae and
Hydrogenothermaceae. Although eleven fully sequenced and assembled genomes are available, only little is known

Results: In this work, we compare the available genomes, extend their protein annotation, identify regulatory
sequences, annotate non-coding RNAs (ncRNAs) of known function, predict novel ncRNA candidates, show
idiosyncrasies of the genetic decoding machinery, present two different types of transfer-messenger RNAs and
variations of the CRISPR systems. Furthermore, we performed a phylogenetic analysis of the Aquificales based on
entire genome sequences, and extended this by a classification among all bacteria using 16S rRNA sequences and a

Combining several in silico features (e.g. conserved and stable secondary structures, GC-content, comparison based
on multiple genome alignments) with an in vivo dRNA-seq transcriptome analysis of Aquifex aeolicus, we predict

Conclusions: We have here re-analyzed the Aquificales, a group of bacteria thriving in extreme environments,
sharing the feature of a small, compact genome with a reduced number of protein and ncRNA genes. We present
several classical ncRNAs and riboswitch candidates. By combining in silico analysis with dRNA-seq data of A. aeolicus

Keywords: Aquificales, Thermophiles, n\cRNA, Aquificaceae, Desulfurobacteriaceae, Hydrogenothermaceae

Background

Agquificales are gram-negative, non-sporulating bacteria
that are thermophilic to hyperthermophilic [1,2], living in
terrestrial and marine hot springs. They are autotrophs
that primarily fix carbon by the tricarboxylic acid (TCA)
cycle [3-5]. The hyperthermophile A. aeolicus, living
under extreme temperatures of up to 95°C, has been pro-
posed to have adopted 10% of its protein-coding genes
by horizontal gene transfer [6,7] from Archaea. Accumu-
lation of all the special properties of thermophiles (also
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referred to as accumulation profiles [8]) are rarely under-
stood. Special protein-protective mechanisms have been
analyzed [9,10], but we are far away from a comprehensive
understanding of the molecular biology of extremophilic
bacteria. Beyond idiosyncratic features of Aquificales
genomes, our interest focussed on their transcriptomes.
Experimentally, we performed a deep sequencing analysis
on the model hyperthermophile A. aeolicus with the pri-
mary goal of identifying novel ncRNAs candidates. NcR-
NAs are known to have various functions in all domains of
life. Apart from their general importance as gene expres-
sion regulators [11-13], ncRNAs are involved in process-
ing [14] and translation [15] of other genes, in defending
genomes from viral invasion [16], in shaping and main-
tenance of bacterial chromosome architecture [17], and
they can even be multifunctional [18,19]. According to
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16S rRNA analysis, the Aquificales constitute the most
deeply rooted bacterial group [20]. However, protein-
based phylogenetic reconstructions are not in line with
this model [21-26].

We compared the genomes of the three Aquificales
families, i.e. Aquificaceae, Hydrogenothermaceae and
Desulfurobacteriaceae. We have extended the protein
annotation of the mentioned Agquificales and recon-
structed the phylogenetic position of these species based
on 16S rRNAs as well as on a set of orthologous proteins.
Moreover, we have identified ncRNAs based on known
homologs and present a complete set of novel ncRNA can-
didates based on sequence analyses and deep sequencing
data obtained for A. aeolicus. For selected ncRNA loci,
we provide independent experimental evidence for their
expression.

Methods

Genomes

We analyzed the genomes of the following species split
into their respective families:

- Aquificaceae: Aquifex aeolicus VF5 (AAE),
Hydrogenivirga sp. 128-5-R1-1 (HVI),
Hydrogenobacter thermophilus TK-6 (HTH),
Thermocrinis ruber (TRU), Thermocrinis albus
DSM 14484 (TAL), Hydrogenobaculum sp. YO4AAS1
(HBA),

- Hydrogenothermaceae: Sulfurihydrogenibium sp.
YO3AOP1 (SSP), Sulfurihydrogenibium azorense
Az-Ful (SAZ), Persephonella marina EX-H1 (PMA),
and

- Desulfurobacteriaceae: Desulfobacterium
thermolithotrophum DSM 11699 (DTH), and
Thermovibrio ammonificans HB-1 (TAM).

Accession numbers and sources of genomes are listed
in the electronic Supplemental Material http://www.rna.
uni-jena.de/supplements/aquificales/index.html. Whole-
genome alignments were constructed using Pomago
(v.1.0) [27] and TBA (v.11.2) (threaded blockset aligner)
[28] with default parameters. Pomago alignments were
computed separately for each species as reference. The
TBA alignment was projected to each of the reference
genomes. Coverage, alignment quality (Weighted sum-
of-pairs score — WSoP [29]) and gap ratio are given in
Figure 1.

Extension of protein annotation

We used BacProt (publication in progress, see [33]
for details) to complement the present annotation of
protein-coding genes for each Agquificales genome. It
uses a database of groups of orthologous protein-coding
genes present in most bacteria [34]. Matches in the
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genome of interest are annotated, and species-specific
features like codon usage, Shine-Dalgarno sequences,
Pribnow box motifs and Rho-independent terminators
are used to predict additional protein-coding genes. To
actually achieve a de novo annotation, we excluded all
Aquificales genes from the reference database. Alterna-
tive start codons like ATT and CTG were considered as
well [35-37]. Re-annotated and previously annotated pro-
teins (genomic positions and sequences) and statistics
(mono-/di-nucleotide distribution, position and occur-
rence of Shine-Dalgarno sequence motifs and Pribnow
boxes) for each species are provided in the Supplemental
Material.

Annotation of ncRNAs by homology

We used GORAP (v.1.0, publication in progress) to
annotate ncRNAs in the following manner: transfer-
RNAs (tRNAs) were detected by tRNAscan-SE (v.1.3.1)
[38] with the option —B for bacteria. Split tRNAs
were searched using SPLITS (v.1.1) [39]. By applying
ARAGORN (v.1.2), we searched for tRNAs containing
introns [40]. Searches for RNase P RNA were conducted
with Bcheck (v.1.0) [41]. For the detection of puta-
tive CRISPR loci, crt (v1.2) [42] and CRISPRFinder
[43] were used. We searched for cas protein genes by
blast (v.2.2.26, E-value < 10™%) [44] based on known
cas genes (downloaded from UniProt (downloaded Jan.
2013) [45]).

To find further ncRNAs, we used blast and
Infernal (v.1.1rc2) [46]. Seed sequences from the Rfam
(v.11.0) database [47] and European Ribosomal
RNA Database [48] were used as query with an E-
value < 0.001 for blast and the Rfam-provided family
specific noise cutoff® for Infernal.

NcRNAs expected to escape from detection (e.g.
6S RNA) were searched in a second step with rnabob
[49] for short motif search in combination with
RNAsubopt, RNAduplex, RNAcofold, RNAalifold
and RNAup from the RNA Vienna Package (v.2.0)
[50-53]. For verification, we aligned candidates with
ClustalW (v.2.0.10) [54] or Locarnate (v.1.7.7.1)
[55]. Stockholm alignments were adjusted by hand in the
Emacs Ralee mode [56].

Resulting Stockholm alignments are supplied in the
Supplemental Material in the General Feature Format
(gff) as well as in Fasta (fa) and Stockholm (stk) formats.

Phylogenetic reconstruction

Protein-based phylogeny was performed based on the
official NCB1I [57] annotations for 42 bacteria shown in the
Supplemental Material. In addition to eleven Aquificales
species, we included two Archaea as outgroup and a wide
phylogenetic range of 29 bacterial species representing all
bacterial clades.
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Species AAE HVI* HTH TAL TRU HBA PMA SAZ SSP DTH TAM
General Features
Optimal temperature ~ 85°C 72°C 70-75°C 80°C 80°C 58-73°C 73°C 68°C 70°C 70°C 75°C
Genome size (Mb) 1.59 3.04 1.74 1.50 1.52 1.56 1.98 1.64 1.84 1.54 1.76
GC-content 43.3 43.8 44.0 46.9 45.2 34.8 37.1 32.8 32.0 34.9 52.1
MSA Coverage (Mb)
Pomago 1.45 1.72 1.52 1.40 1.41 1.28 1.55 1.51 1.62 1.36 1.40
(90.9%)  (56.5%)  (87.4%)  (93.0%) (92.8%) (81.9%) (78.0%) (91.8%) (88.1%) (87.9%) (79.3%)
TBA 1.38 2.02 1.52 1.40 1.40 1.15 1.57 1.52 1.55 1.31 1.36
(86.5%)  (66.5%)  (87.3%)  (93.3%) (91.7%) (73.9%) (78.9%)  (92.9%) (84.5%) (84.8%) (77.3%)
WSoP
Pomago 4.90 4.54 4.62 4.90 5.06 5.09 4.55 4.59 4.54 4.43 4.43
TBA 4.59 3.81 4.35 4.59 4.60 4.91 4.10 4.00 3.96 4.07 4.10
gap ratio
Pomago 0.130 0.108 0.109 0.105 0.105 0.125 0.120 0.130 0.120 0.118 0.105
TBA 0.091 0.090 0.089 0.092 0.093 0.096 0.093 0.089 0.091 0.085 0.084
de novo Protein Annotation
Homologous ORFs 685 933 749 695 695 672 806 741 752 744 748
Predicted ORFs 570 1394 612 455 499 668 787 686 780 639 495
Min. length (aa) 40 40 40 45 40 40 40 40 40 40 40
Max. length (aa) 1574 1535 1566 1566 1647 1563 1576 1605 1579 1470 1490
Start codons
TTG (%) 6.53 8.77 5.22 4.61 8.04 9.03 13.25 14.65 14.88 13.81 12.55
ATG (%) 82.71 78.51 86.55 84.43 83.25 86.34 83.24 79.12 79.18 76.64 67.34
GTG (%) 10.76 12.46 8.23 10.87 8.54 4.63 3.52 6.17 5.94 9.33 20.03
Stop codons
TAA (%) 49.24 39.32 39.09 32.35 40.20 50.45 50.97 60.62 56.46 58.06 46.98
TAG (%) 13.86 18.74 15.43 12.00 15.24 14.55 20.72 16.05 14.95 19.23 26.07
TGA (%) 36.89 41.94 45.48 55.39 44.56 35.00 28.31 23.34 28.59 22.70 26.95
GC-content 44 46.6 44.4 47.1 45.6 35.2 37.6 33.1 32.3 35.1 52.4
ncRNA Annotation
5S rRNA 2 3 1 1 2 2 2 2 3 2 3
16S rRNA 2 2 1 1 2 2 2 2 3 2 3
23S rRNA 2 2 1 1 2 2 2 2 3 2 3
tRNA 44 57 44 44 44 45 40 39 40 43 46
RNase P 0 0 0 0 0 0 1 1 1 1 1
6S RNA 1 2 1 1 1 1 1 1 1 1?7 1?
tmRNA 1(A) 2(A,B) 1(A) 1(A) 1(A) 1(A) 1(B) 1(B) 1(B) 1(B) 1(B)
SRP RNA 1 1 1 1 1 1 1 1 1 1 1
TPP RS 0 1 0 0 0 0 1 0 1 1 1
MOCO 0 0 0 0 0 0 0 0 0 0 1
Cobalamin 0 0 0 0 0 0 0 0 0 2 2
crcB 0 0 0 0 0 2 0 0 0 0 0
CRISPR 6 12 1 4 6 1 4 13 4 1 8
cas genes 1 1(+41) 1 1 2 0 1(+1) 3 1 0 (1)
GC-content 65.8 62.6 61.2 63.1 63.5 54.7 60.7 57.7 57.2 61.7 63.6
RNAz Coverage
(nt, P>0.5)
Pomago 13574 15712 13317 14213 12476 12533 12067 11960 12356 9969 11377
(0.85%)  (0.51%) (0.76%)  (0.94%) (0.81%) (0.80%) (0.60%) (0.72%) (0.67%)  (0.64%)  (0.64%)
TBA 25686 29909 22950 21126 20751 21702 22765 14022 18612 17287 20367

(1.61%)  (0.98%)  (1.31%)  (1.40%) (1.36%) (1.39%) (1.14%) (0.85%) (1.01%) (1.12%) (1.15%)
RNAz Coverage

(nt, P >0.9)
Pomago 4600 5091 4192 5394 3862 3234 4038 3828 4430 4188 2990
(0.28%)  (0.16%) (0.24%)  (0.35%)  (0.25%)  (0.20%)  (0.20%)  (0.23%)  (0.24%)  (0.27%)  (0.16%)
TBA 14632 16806 11833 10614 10976 13341 14761 6067 11072 10502 14462

(0.91%) (0.55%) (0.67%) (0.70%) (0.72%)  (0.85%) (0.74%) (0.36%) (0.60%)  (0.68%)  (0.82%)

Figure 1 General genome features of the Aquificales. The genome size is given as the total number of nucleotides in the assembly. Multiple
sequence alignments (MSA) were performed by Pomago and TBA. RNAz was applied to the Pomago- and TBA-derived MSAs. De novo protein
annotation is based on statistics from BacProt, neglecting previously reported proteins for Aquificales. Annotation of ncRNAs shows the statistics
for identified ncRNAs of known function. Details of CRISPR cassettes, number of repeats and associated proteins can be found in Figure 9 and in the
Supplemental Material. TmRNAs are classified into two types (Figure 6). The phylogenetic tree shown at the top of the table is based on the whole
genome as well as 165 rRNA analysis of the 11 Aquificales species. It reproduces the results presented in [30-32]. For further information, see
Supplemental Material. AAE — A. aeolicus, HVI — Hydrogenivirga sp., HTH — H. thermophilus, HBA — Hydrogenobaculum sp., TAL — T. albus, TRU - T. ruber,
PMA = P.marina, SAZ - S. azorense, SSP — Sulfurihydrogenibium sp., DTH — D. thermolithotrophum, TAM — T. ammonificans, RS - Riboswitch, WSoP —
Weighted sum-of-pairs score [29], * denotes the Hydrogenivirga sp. genome of unfinished assembly.

Protein sequences were clustered using Protein- a member in a certain species, we applied tblastn
ortho [34] in the blastp+-mode, thus perform- to the respective genome to complement for poten-
ing a pairwise all-against-all comparison of sequences tially incomplete annotations. The highest scoring align-
from different species to derive orthologous relation- ment to an ORF above a fairly high E-value < 10720
ships. Whenever an orthologous group did not have was added to the initial protein annotation. Finally,
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Proteinortho was applied again using the expanded
annotation.

For a high resolution phylogeny within the Aquificales,
we created a whole genome alignment using Pomago.
The alignment was analyzed using RAXML (v.7.4.2) [58]
with a GAMMA model of rate heterogeneity with an esti-
mate on the proportion of invariable sites and 100 rapid
bootstraps.

In an additional phylogenetic analysis we used single-
copy orthologous proteins present in at least 50% of all
species in the set (189 groups in 42 species). Each pro-
tein group was aligned separately using dialign-tx
[59]. Both ends of the group’s alignments were cropped to
remove leading and tailing gaps. The remaining sequences
were concatenated resulting in a 57,260 aa long alignment
and applied to RAXML using the LG substitution model
[60] as well as the GAMMA model of rate heterogeneity with
100 rapid bootstraps.

The 16S rRNA-based phylogeny was computed with
Mafft (v.7.017) [61] using the L-INS-i method with
1000 iterations. We used different approaches: (1) Neigh-
bor Joining with the Kimura correction model [62]
(1000 bootstraps), (2) Bayesian inference with MrBayes
(v.3.1.2) [63] with default parameters, (3) Maximum like-
lihood with RAXML (v.7.2.8) [64] (200 bootstraps) with
the base substitution models (3a) GTRGAMMA (most accu-
rate, 1000 steps) and (3b) GTRCAT for the bootstrapping
phase. For all previously mentioned methods the Archaea
Methanobacterium sp. AL-21 and Archaeoglobus fulgidus
were used as outgroup. As state of the art, we have esti-
mated a tree with (4) Sate (v.2.2.5) [65] (200 iterations).
Related sequences were aligned with Mafft and sub-
sequently merged by Muscle (v.3.7) [66]. The tree was
computed using RAXML.

dRNA-seq of A. aeolicus total cellular RNA

Transcriptome analysis of A. aeolicus was based on
cDNA libraries from a differential deep sequencing
approach (dRNA-seq) [67,68]. A. aeolicus cells, provided
by M. Thomm and R. Huber (Regensburg, Germany),
were grown for 1day (late exponential phase) and har-
vested as described [69]. For preparation of total cel-
lular RNA, we used the hot phenol method [70]: cell
pellets were resuspended in extraction buffer (10 mM
sodium acetate pH4.8, 150 mM sucrose) and incubated
for 10min at room temperature with 0.1 volumes of
lysozyme (20 mg/ml, Roth, Karlsruhe, Germany). SDS was
added to a final concentration of 1% followed by vigorous
vortexing. After addition of 1 volume phenol (preheated
to 65°C) and vortexing, the mixture was incubated for
5min at 65°C, then cooled on ice for 5min, and cen-
trifuged for 30 min at 4°C and 8200 g. Phenol extraction
was repeated, followed by chloroform (1+1) extraction
and ethanol precipitation. Finally, the DNA was digested
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with 10 U Turbo DNase (Ambion, Austin, USA) for 30 min
at 37°C, followed by addition of another 10 U DNase
and incubation for another 30 min at 37°C. Subsequently,
the RNA was subjected to phenol/chloroform extraction
and ethanol precipitation. After redissolving the RNA in
double-distilled water, its concentration was determined
by UV spectroscopy. Before cDNA library construc-
tion, the RNA was split into two fractions; one fraction
was treated with Terminator 5’ P-dependent exonuclease
(Epicentre, Madison, USA) for depletion of transcripts
carrying a 5’-monophosphate. Both fractions were treated
with Tobacco Acid Phosphatase (TAP) before 5'-linker
ligation, poly(A) tailing and conversion into cDNA (ver-
tis Biotechnologie AG, Freising, Germany). The cDNA
libraries were then sequenced on a Roche FLX sequencer
and resulted in the (-)-library with 25,816 reads and
the (+)-library (33,697 reads) containing the enriched
primary transcripts.

Detection of novel ncRNAs

We used the IGB (Integrated Genome Browser) [71]
to visualize the following features of A. aeolicus: (1)
nucleotide sequence; (2) local GC-content (for each
nucleotide 15 nt on both sides were included for the cal-
culation of GC-content); (3) protein genes annotated by
NCBI [72] and BacProt; (4) locally stable secondary
structures: calculation was performed with RNALfold
with options —d2 and —L120 for both strands with a
maximum base-pair span of 120 nucleotides. Sequences
with local structures of fewer than 50 nt were dis-
carded. For the prediction of thermodynamically sta-
ble RNA structures, each sequence was shuffled 1000
times while preserving the dinucleotide frequencies; to
classify extraordinarily stable RNA secondary structures,
we chose to use a Z-score cutoff of —3.0 (~ top 5%
of stable structures); (5) conserved regions among the
Agquificales: with default parameters of TBA and Pomago
we aligned 11 genomes; the TBA alignment was pro-
jected to each of the reference genomes; coverage, WSoP
and gap ratio are given in Figure 1; (6) novel ncR-
NAs: novel ncRNA candidates were predicted using
RNAz. We used rnazWindow.pl -min-segs=4 and
RNAz -n -b -p 0.5 on the alignments of Pomago
and TBA. As rnazWindow.pl assumes lower case
nucleotides to be masked, the alignments were converted
to upper case letters beforehand; (7) dRNA-seq: cDNA
libraries were mapped with segemehl (v.0.0.9.3) [73]
applying the parameters -m 12 -D 1 -e 2 -p 4 -X
8 -A 90 -E 5.0.

Northern blot experiments

Total RNA preparation

Total RNA was prepared from cell pellets using the hot
phenol method as described [74].
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Positive and negative controls

The positive and the negative controls for the Northern
blot experiments were synthesized by in vitro transcrip-
tion using the “TranscriptAid T7 High Yield Transcription
Kit” (Thermo Scientific, Germany), according to the
protocol supplied by the manufacturer. PCR products
generated with the “Long PCR Enzyme Mix” (Thermo
Scientific) served as templates for in vitro transcrip-
tion. As positive controls for the antisense tRNA blots,
chemically synthesized RNA oligonucleotides from
“Integrated DNA Technologies” (IDT, Belgium) were used
(for sequences, see Supplemental Material). RNA
oligonucleotides were 5’-phosphorylated before gel
electrophoresis. The in vitro transcribed full-length sense
tRNAs (generated from PCR products) were used as
negative controls for the Northern blots of antisense
tRNAs.

Digoxigenin and LNA probes

For the Northern blot detection internally digoxigenin-
labeled probes were transcribed using the DIG RNA
Labeling Mix (Roche Diagnostics, Germany) as described
[74]. The antisense tRNA transcripts were detected with
chemically synthesized 5’-digoxigenin-labeled DNA/LNA
mixmer probes (Exiqon, Denmark; for sequences, see
Supplemental Material).

5’-Phosphorylation of RNA oligonucleotides

67 ng/ul RNA oligonucleotide, 2.5 mM DTT, 2mM ATP
and 10 U T4 polynucleotide kinase (T4 PNK; Thermo Sci-
entific) were incubated in 1 x T4 PNK buffer (Thermo
Scientific) in a volume of 15 pul for 1 h at 37°C, followed by
transfer to and storage at -20°C.

Electrophoresis
RNAs were separated on 8% or 10% denaturing (8 M urea)
PAA gel with 1 x TBE as electrophoresis buffer [74].

Blotting, crosslinking, hybridization and detection

RNA blotting, hybridization (EDC crosslinking or bak-
ing at 80°C for 40 min) and immunological detection were
performed as described [74], except that RNA blotting
was carried out at 0.36 mA/cm? overnight. Prehybridiza-
tion and hybridization were performed at 68°C (except
for 50°C in the case of antisense tRNA 44) using 12 ml
hybridization solution. 3.5 ul of in vitro transcribed, inter-
nally digoxigenin-labeled probe were added for overnight
hybridization. 300 pmol of chemically synthesized, 5'-
digoxigenin-labeled DNA/LNA mixmer probe were used
for Northern detection of antisense tRNAs. Blotted mem-
branes were stored at room temperature.

In vitro transcripts, probes and primers
Further details on in vitro transcripts, probes and primers
are listed in the Supplemental Material.
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Results and discussion

Genome analysis — general observations

The genomes of the Agquificales range from 1.50 Mb
(T. albus) to 1.98 Mb (P. marina), thus being at the lower
limit of bacterial genomes ranging in size from 0.14 to
14.38 Mb with a mean of ~ 4 Mb [75]. The current anno-
tation file of Hydrogenivirga sp. contains 3.04 Mb, which
is considerably larger than the genome size of the other
Agquificales, which might be an assembly artefact as dis-
cussed later.

Agquificales are known to be AT-rich with a GC-content
of about 43% [72,76]. In Hydrogenobaculum sp., Sulfuri-
hydrogenibium sp. and S. azorense even only one-third of
the nucleotides are guanine or cytosine. For T. ammonifi-
cans an atypically high GC-content of more than 50% was
observed.

Between 6.5% (S. azorense) and 28.5% (Hydrogenobac-
ulum sp.) of the genomes were found to be unique to
each member bacterium (Figure 1). The comparatively
low coverage of Hydrogenivirga sp. is due to the currently
assembled genome being almost twice as long as those of
other Aquificales. 10.5% to 13.0% of the Pomago align-
ment, resp. 8.4% to 9.6% of the TBA alignment, consist of
gaps. According to the WSoP each nucleotide from the
alignment is conserved on average in slightly less than
half of the other 10 species (4.43 to 5.09 out of 11 and
3.81 to 4.91 out of 11, for Pomago and TBA, respec-
tively) indicating that the genomes diverged relatively fast.
Genomic rearrangements among the Aquificales, under-
lining the diversity, can be seen in an overview of the
Pomago alignment in the Supplemental Material.

Extended annotation of proteins

We extended the original NCBT annotation of proteins of
the Aquificales de novo using BacProt, revealing a num-
ber of additional proteins (Table 1). Since a large fraction
of proteins are hypothetical or of unknown function, we
added for each species a second row which exclusively
depicts those with an associated function. The annota-
tions of NCBI and BacProt were merged to generate an
extended annotation of protein genes in the Aquificales.

We added between 0.7% of H. thermophilus (1352/1343)
and 10.6% of A. aeolicus (1002/897) protein-coding genes
to the NCBTI annotation.

For all proteins annotated by BacProt, we extracted
the Shine-Dalgarno and Pribnow box (-10 box) motifs
(see Figure 2) in order to facilitate the assignment of
novel Agquificales-specific proteins. The Shine-Dalgarno
sequence is rather conserved (GGAGG, but always NGAGN).
In contrast, the Pribnow box is recognizable but less
conserved, indicating more sequence variations among
promoters. With the appropriate covariance models we
searched for species-specific novel proteins and listed
them as predicted proteins in the Supplemental Material.



Lechner et al. BMC Genomics 2014, 15:522
http://www.biomedcentral.com/1471-2164/15/522

Table 1 Protein annotations
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NCBI BacProt Equal Start shifted End shifted NCBI only BacProt only Extended

AAE 1560 1255 954 116 124 366 61 1621
897 685 475 51 54 317 105 1002

DTH 1513 1383 1092 86 105 230 100 1613
1115 744 561 58 74 422 51 1166

HBA 1629 1340 1040 119 126 344 55 1684
1063 672 500 62 68 433 42 1105

HTH 1893 1361 1069 m 129 584 52 1945
1343 749 594 62 84 603 9 1352

PMA 2051 1593 1286 129 122 514 56 2107
1494 806 629 84 76 705 17 1511

SAZ 1723 1427 1190 90 99 344 48 1771
1321 741 601 50 73 597 17 1338

SSP 1722 1532 1225 76 108 313 123 1845
1145 752 573 38 70 464 71 1216

TAL 1593 1145 903 93 127 470 22 1615
1144 691 514 59 85 486 33 1177

TAM 1814 1243 1014 90 99 611 40 1854
1176 748 575 60 63 478 50 1226

HVI 3808 2327 1537 302 306 1663 182 3990
1960 933 595 102 92 m7n 144 2104

Annotations obtained with NCBI (first column, bold font) and those identified with BacProt (second column) lead to an extended current annotation of Aquificales
(last column, bold font). In the second lines, hypothetical proteins were removed. Equal - proteins equally identified by BacProt and NCBTI; Start/End shifted -
proteins identified by BacProt and NCBI vary in length (only 5’ or 3'); NCBI/BacProt only - proteins identified only by NCBI/BacProt. All gff files are available in

the Supplemental Material. Species abbreviations as in Figure 1.

An overview of the codon usage of A. aeolicus is shown
in Table 2. Complete data on all codon usage tables and
mono/dinucleotide distributions are provided in the Sup-
plemental Material. We observe a disproportionate usage
of certain triplets: isoleucine is mostly (63%) encoded by
AUA, tyrosine by UAC (82%) and histidine by CAC (84%).
The four arginine codons with a cytosine at the first posi-
tion of the triplet are rarely used, compared to the two
adenine-containing triplets (9%/91%).

Homology search and annotation of known ncRNAs

A search for ncRNA candidates with RNAz [77] predicted
a relatively constant fraction of the genome to code for
ncRNAs (between 0.36% for S. azorense and 0.91% for
A. aeolicus). Besides the well-known and described rRNAs
and tRNAs, only a handful of other wide-spread ncRNAs
were detected (Figure 1).

rRNA operons

Most of the Aquificales genomes have two rRNA operons
(Figure 1). H. thermophilus and T. albus appear to harbor
only one operon. The genomes of T. ammonificans and
Sulfurihydrogenibium sp. contain three operons, whereas
Hydrogenivirga sp. appears to have two 16S, two 23S and
three 5S rRNA genes.

tRNAs

With the exception of Hydrogenivirga sp. (see below),
tRNAscan identified between 39 (S. azorense) and 46
tRNAs (T, ammonificans) per Aquificales species. With
SPLITS and ARAGORN no split tRNAs were found.

All possible codons are utilized in the Aquificales (see
Table 2 for A. aeolicus, and Supplemental Material for
other Agquificales), but the number of tRNA genes is
reduced to a minimum in contrast to reference bacteria
such as E. coli which encodes multiple copies of many
tRNA isoacceptors.

Figure 3 shows nearly no tRNA with 5-A in the
anticodon and only half of the Aquificales have some anti-
codons with 5’-C, where the non-Aquificaceae apparently
favored the reduction of such tRNA genes (Figure 4).
Important tRNA modification enzymes (TadA — tRNA
adenosine deaminase and TilS — tRNA-Ile lysidine syn-
thetase) are encoded in Aquificales and X-ray structures
of TadA and TilS from A. aeolicus have been reported
[78,79]. TadA converts A residues in the 5’-position of
certain tRNA anticodons to inosine to expand wobble
decoding, and TilS converts the 5’-C residue in the CAU
anticodon of specific tRNA-Ile molecules to lysidine
(2-lysyl cytidine; abbreviated as L or k*C) to decode
5’-AUA (Ile) codons instead of 5’-AUG (Met) codons [80].
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Table 2 Codon usage of A. aeolicus

Codon aa % Fraction Codon aa % Fraction Codon aa % Fraction Codon aa % Fraction
uuu Phe(F) 29 056 ucu Ser(S) 09 018 UAU Tyr(Y) 08 0.18 uGuU Cys(©) 04 049 U
U uuc Phe(F) 23 044 ucc Ser(S) 13 027 UAC Tyr(Y) 34 082 UGC Cys(Q) 04 051 C
UUA Leu() 1.7 0.6 UCA Ser(S) 0.7 015 UAA stop 0.1 049 UGA stop 0.1 037 A
uuG leu(l) 08 008 UCG Ser(S) 04 007 UAG stop 0 014 UGG TrpW) 09 1 G
Cuu Lleu(L) 27 025 Cccu Pro(P) 1.1 026 CAU His(H) 03 0.16 CGU Arg(R) 02 003 U
c cuc leu() 31 03 Ccc Pro(P) 18 042 CAC His(H) 13 084 CGC Arg(R) 0.1 003 C
CUA leu(l) 08 007 CCA Pro(P) 06 0.14 CAA GIn(Q 07 035 CGA Arg(R) 0.1 001 A
CUG leu(L) 14 014 CCG Pro(P) 07 018 CAG GIn(Q 13 065 CGG Arg(R) 0.1 002 G
AUU lle (1) 17 023 ACU Thr(M 1 023 AAU Asn(N) 1.1 03 AGU Ser(S) 08 0.16 U
A AUC lle (1) T 013 ACC Thr(T) 12 027 AAC Asn(N) 25 07 AGC Ser(S) 08 0.17 @
AUA lle (1) 46 063 ACA Thr(T) 09 021 AAA Lys(K) 44 048 AGA Arg(R) 1.9 038 A
AUG Met(M) 18 1 ACG Thr(T) 12 029 AAG Lys(K) 48 052 AGG Arg(R) 26 053 G
GUU Val(v) 3 038 GCU Ala(A) 16 026 GAU Asp(D) 16 037 GGU Gly(G 16 023 U
G GUC Val(v) 09 0.1 GCC Ala(A) 13 021 GAC Asp (D) 2.7 063 GGC Gly(G) 09 012 C
GUA Val(v) 25 032 GCA Ala(A) 17 029 GAA Glu(E) 6.2 065 GGA Gly(G) 34 05 A
GUG Val(v) 1.5 0.9 GCG Ala(A) 14 024 GAG Glu(E) 33 035 GGG Gly(@G 1 015 G
U C A G

Codon usage is based on 1,255 protein-coding genes comprising 431,072 codons. Codon usage of other Aquificales can be viewed in the Supplemental Material.
aa - amino acid; the fraction of a particular amino acid encoded by the respective codon is given (1 for Trp encoded by a single codon).

Aquifex aeolicus 43+1

Hydrogenivirga sp. 56+1

Hydrogenobacter thermophilus | 43+1

. Thermocrinis albus 43+1
Aquificaceae

Thermocrinis ruber 43+1

Hydrogenobaculum YO4AA 1 45+0

Persephonella marina 40+0

Aquificales
— Sulfurihydrogenibium azorense | 39+0

I Sulfurihydrogenibium YO3AOP1 | 40+0
D D. thermolithotrophum 42+1

Thermovibrio ammonificans 45+1

Figure 3 Distribution of tRNAs in the Aquificales. L eft: The total numbers of encoded tRNAs including the absence (+0) or presence (+1) of
selenocysteine tRNA (tRNA-SeC) are given. Phylogenetic tree as in Figure 1; Right: anticodons specified by the following colors: red — tRNA with this
anticodon encoded in all Aquificales; blue — tRNA encoded in the Aquificaceae only. Other colors represent the absence or presence of a tRNA with
this anticodon, as defined in the phylogenetic tree on the left. For example, tRNA-SeC is present in all Aquificaceae except for Hydrogenobaculum sp.,
and is additionally found in the non-Aquificaceae species D. thermolithotrophum and T. ammonificans.
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Figure 4 The distribution of the 5’ (wobble) position of a tRNA
anticodon in all Aquificales (red) versus Aquificaceae only (blue)
is U: 0.75/0.80%, G: 0.93/0.94%, C:0.30/0.78%, A:0.06/0.06%.
Non-Aquificaceae show a low percentage of wobble C.

Without this posttranscriptional modification, decoding
of isoleucine AUA codons would be impossible [81-83].
Selenocysteine-specific tRNAs decoding 5-UGA are
present in the Aquificaceae (except for Hydrogenobaculum
sp.) and in the Desulfurobacteriaceae (T. ammonificans
and D. thermolithotrophum), but are absent from the
Hydrogenothermaceae (P. marina, S. azorense, Sulfurihy-
drogenibium sp.; see Figure 3). The Aquificaceae (except
Hydrogenivirga sp.), in contrast to the other Aquificales or
mesophiles such as E. coli or B. subtilis, encode the lysine
isoacceptor with the anticodon 5’-CUU to decode the ARG
codon.

RNase P

The catalytic RNA subunit of the tRNA processing
endoribonuclease RNase P was previously identified in
P marina and S. azorense [84]. Additionally, RNase P
RNAs were easily identified here with Bcheck in Sul-
furihydrogenibium sp., T. ammonificans and D. ther-
molithotrophum. In the Aquificaceae, RNase P RNA can-
didates were neither detected with Bcheck, rnabob
nor by manual in silico search methods using cDNA
libraries of A. aeolicus. This is consistent with the neg-
ative results of previous searches for RNase P RNA in
A. aeolicus [85,86].

All identified RNase P RNAs lack the P18 element,
which appears to be a general feature of type A RNase P
RNAs in the Hydrogenothermaceae and Desulfurobacte-
riaceae. The Sulfurihydrogenibium sp., T. ammonificans
and D. thermolithotrophum RNAs differ from their
P marina and S. azorense counterparts by a weaker L9-
P1 tertiary contact (L9 5-GYAA tetraloop docking on
an A-U/G-C tandem bp instead of a G-C/G-C tandem
which is a hallmark of RNase P RNAs from thermophiles
[84,87]). Other differences are: (1) very short P12 stems
in T ammonificans and D. thermolithotrophum, (2) par-
ticularly weak P17 stems in Sulfurihydrogenibium sp. and
D. thermolithotrophum, (3) a destabilized L8-P4 inter-
action, a destabilized P14 helix, but a stabilized L14-P8
interaction in T. ammonificans. For details, see RNase P
RNA 2D structures in the Supplemental Material.
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6S RNA

Bacterial 6S RNAs, about 200 nt in length, form a rod-
shaped secondary structure with a central bulge region
flanked by largely helical arms on both sides. Their struc-
ture is thought to mimic the structure of an open DNA
promoter [88,89]. 6S RNAs bind to the housekeeping RNA
polymerase holoenzyme to block transcription at DNA
promoters, primarily upon entry of cells into stationary
growth phase. When nutrients are resupplied (includ-
ing NTPs), RNA polymerase massively synthesizes tran-
scripts (so-called product RNAs — pRNAs) on 6S RNA
as template, which lead to a structural rearrangement of
6S RNA and release of RNA polymerase. Thus, 6S RNA is
a fast riboregulator that makes RNA polymerase instantly
available for a new exponential growth when nutrients are
resupplied [68,90-93].

In A. aeolicus the 6S RNA was clearly identified via an
experimental RNomics approach [85]. 6S RNA candidates
in the other Aquificales were predicted computation-
ally using the Rfam covariance model and, as expected,
vary substantially in primary, but less in secondary struc-
ture. For Hydrogenivirgia we found two copies. Predicted
6S RNAs for T. ammonificans and D. thermolithotrophum
remain candidates since they differ substantially from
those of other Aquificales.

The RNAalifold consensus structure for the 65 RNA
candidates from all other Agquificales analyzed here is
shown in the Supplement. Individual RNAfold predic-
tions (see Supplemental Material for details) support the
notion that they are bona fide 6S RNAs.

In the case of A. aeolicus 6S RNA, we proposed that for-
mation of a “central bulge collapse” helix (Figure 5-Top,
[85]) is the major component of the pRNA-induced rear-
rangement of this 6S RNA structure [90]. If at all, or to
which extent, the adjacent hairpin structure forms in the
PRNA-rearranged structure remains to be investigated.
For the eight other 6S RNA candidates (Figure 5), we pre-
dicted rod-shaped structures with a destabilized central
region that is not necessarily purely single-stranded (see
Supplemental Material for further details). According to
our proposals, pRNAs would start with a G residue in
the Aquificaceae, whereas those of the Hydrogenotherma-
ceae (P. marina, S. azorense and Sulfurihydrogenibium sp.)
would initiate with an A residue.

tmRNA

In bacteria, stalling of translating ribosomes on truncated
mRNAs is rescued through action of the dual-function
transfer-messenger RNAs (tmRNAs) [94,95]. The tRNA-
like domain is present and highly conserved in all Aquifi-
cales. An architectural feature of tmRNAs is their intricate
structure consisting of four pseudoknots. Interestingly,
we found two different types of tmRNAs, introduced
here as type A (present in the Agquificaceae) and B
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Figure 5 Aquificales 6S RNAs: predicted pRNA transcription initiation sites, and pRNA-induced structural rearrangements of 6S RNAs. Top:
A. aeolicus 6S RNA; this 6S RNA was experimentally verified [85] and the pRNA transcription start site identified by deep sequencing (unpublished
results); nucleotides of the central bulge region are marked in blue; during pRNA transcription on 6S RNA as template, the endogenous helix is
disrupted, leading to the formation of new base-pairing interactions. Here, a 6S RNA hybrid with a pRNA 13-mer (red) is shown on the right; the
proposed rearranged structure of the central 6S RNA region [90] has not yet been proven experimentally. Proposed structures of the central bulge
regions and their pRNA-induced rearrangements of the other eight Aquificales 6S RNA candidates: rearranged structures upon duplex formation
with putative pRNA 13-mers; the pRNA initiation sites are proposed on the basis of resemblance to A. aeolicus 6S RNA. For more details, see
Supplemental Material.
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Figure 6 Pseudoknot 1 (pk1) of tmRNAs type A and B. Formation
of the lower stem of pk1 is questionable. Circled nucleotides
represent positions of compensatory mutations. The question mark
shows an unclear interaction of two (in one case three) base pairs.

(specific to Hydrogenothermaceae and Desulfurobacteri-
aceae). This classification is based on the observation that
the lower stem of pseudoknot 1 (pkl) involves 4-5 bp
in type A tmRNAs, but only 2-3bp in type B variants
(Figure 6, Supplemental Material). Pkl is critical for
tmRNA function and binds near the ribosomal decoding
site [95]. Mutational analysis of E. coli tmRNA revealed
that mutations disrupting the upper stem of pkl are not
tolerated, whereas the outer two base pairs of the lower
stem (Figure 6) can be disrupted (resulting in a 3-bp stem)
without loss of function [95]. On the other hand, the
tmRNA of another thermophile, Thermotoga maritima,
has alower pkl stem expanded to 7 bp [96]. This raises the
question if the Aquificales type B tmRNAs, for which only
a 2-bp lower pk1 stem is predicted (Sulfurihydrogenibium
sp., P marina and S. azorense), are still able to form this
pseudoknot, or if the weakness or absence of this stem is
compensated for by e.g. tmRNA ligand interactions that
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are idiosyncratic to the Agquificales encoding a type B
tmRNA.

The messenger RNA-like regions (MLR), which are in
close vicinity of pkl, encode tag preptides of 10 amino
acids, with subphyla-specific signatures (Figure 7). For
example, all Aquificaceae and Hydrogenothermaceae tmR-
NAs code for a proline at the second position, which is ala-
nine in the Desulfurobacteriaceae. The genome of Hydro-
genivirga sp. appears to encode both types of tmRNAs
(type A and B). Whether this reflects a genuine tmRNA
gene duplication rather than a genome contamination or
assembly artefact remains to be clarified (see below).

Furthermore, Hydrogenobaculum sp. carries a 78-nt
hairpin-like insertion in the pseudoknot 4 (pk4) region,
which however is compatible with formation of pk4
(Figure 8). Such a long extension within tmRNAs has been
not reported yet.

CRISPR system

For each member of the Aquificales we could identify at
least one locus of clustered interspaced short palindromic
repeat sequences (CRISPRs), which are involved in an
immunity against viruses and plasmids [97]. Although the
Agquificales have very compact genomes, the number of
identified CRISPR clusters varied from one to thirteen
(Figure 1), indicating the presence of thermostable viruses
in extreme environments as reported for Archaea [98].
The number of CRISPR clusters does not seem to be
clade-specific. Also, the number of repeats in a cluster
varies strongly. For example, in T. albus we found in total
four CRISPR systems containing 36, 41, 57 and 63 repeats,
whereas in A. aeolicus the five CRISPR loci only had
four to five repeats. For some, but not all of the CRISPR
clusters, we could detect associated cas genes (Figure 9).
The exact numbers of detected CRISPR clusters and Cas

were identified in the genome assembly of Hydrogenivirga sp.
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A TRU LPERELALAA
Hydrogenothermaceae
B HVI-B IPEREIAIAA g“’*
—] — PMA IPEREIALAA Bos]
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Figure 7 Proteolysis tags of tmRNA types (A/B). The encoded proteolysis tag as well as a probability logo for each family are shown. Two tmRNAs
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Figure 8 Hydrogenobaculum sp. has a 78-nt insertion
downstream of P10, but pseudoknot 4 (pk4) is still predicted to
form. The region is shown in comparison to T. albus as a
representative of the other Aquificales. Detailed figures of all tmRNAs
can be viewed in the Supplemental Material.

protein cassettes can be seen in Figure 1. In this table
we included only CRISPR clusters that were found by
both approaches (crt and CRISPRfinder). It has to
be kept in mind that the genome of Hydrogenivirga sp.
is in an unfinished state, so it is possible that some
CRISPR loci and especially associated cas genes escaped
detection.
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Other ncRNA

SRP RNA was found once per genome being highly
conserved in sequence and structure (see Supplemental
Material). Additionally, we show some riboswitch candi-
dates: TPP, MOCO, Cobalamin and crcB (see Figure 1).
The MOCO riboswitch found in T. ammonificans and
the two crcB riboswitches identified in Hydrogenobacu-
lum sp. conform well to the Rfam conservation model (see
Supplemental Material). Riboswitches were only found
sporadically among the Aquificales.

Novel ncRNAs in A. aeolicus

Besides the annotation of ncRNAs with known functions,
we additionally aimed to detect novel ncRNAs, as they
often regulate transcription or play an important role as
posttranscriptional regulators. Here we combined in sil-
ico analysis of the A. aeolicus genome and dRNA-seq data
from the same organism to identify novel ncRNA can-
didates, some of which were subsequently analyzed by
Northern blot analysis.

In the in silico search, small ncRNAs (sSRNAs) were dis-
tinguished from proteins by the following analysis steps:
(1) The GC-content of the A. aeolicus genome is 43%.
However, the ncRNAs described above show an aver-
age GC-content of 66%. We associated each nucleotide
with a local GC-value. (2) The function of small ncR-
NAs, e.g. 6S RNA, is often determined by their stable
secondary structure. To each position in the genome,
we assigned the minimum free energy of the most sta-
ble local secondary structure including this nucleotide,
using RNALfold. (3) Most ncRNAs are conserved among
closely related organisms. We calculated genomewide

Aquifex aeolicus

crm2 cmr3 cmr4 cas6é  cmr4 MJ1666 DevR  cst1  cas3 cast
cmr5  RAMP  cmré csx3 cas5 cas4 cas2

Hydrogenivirga sp.

casé csh2 cas5 HD  cas4 casl cas2
T™M1802 cas2 cas1
cas6 cmr2 cmr3  cmr5 DevR cst!  cas3 cas4 cas2
cmrl cmrd cmré cass cas3 cas1

Hydrogenobacter thermophilus (NC_017161)

cas6 csh2 HD cas4 cas1
TM1802  cas5 cas2

Hydrogenobacter thermophilus (NC_013799)

casé csh2 HD cas4 cast
TM1802 cas5 cas2
Thermocrinis ruber
cmrl crm2  cmr3 cmr5  MJ1666 DevR  cst1 cas4 cas2
cmrd  cmré cas5 cas3 cas1 cas6
casé cas5 HD

are not displayed here.

Persephonella marina

cas6é cst! DevR cas5 cas3 cas4 cast
cas2
Sulfurihydrogenibium azorense
cas6 cstl cas5 cas3 cas4 cas2
DevR cas1
TM1802 cas5 HD  cas4 cas2 casé csx11 cmrd
csh2 cas1 cmrl
cas6 csm1 csm3 csmb
csm2  csm4
Sulfurihydrogenibium YO3AOPI
cmrl crm2  cmr3  cmr5 cas6 cstl DevR cas3 cas4 cas2
cmrd  cmré cas5 cas1
Thermovibrio ammonificans
cast
cas2
Thermocrinis albus
cas6 crm2 cmr3  cmr5 MJ1666 cas5 cas3
cmr1 cmr4 cmr6 DevR cst1

Figure 9 CRISPR clusters and associated cas protein genes in the Aquificales. Shown cas genes and CRISPR clusters (black filled boxes) are
proportional in size. As only CRISPR clusters with associated cas genes are displayed in this figure, Hydrogenobaculum sp. and D. thermolithotrophum




Table 3 Selection of highly potential novel ncRNA candidates of A. aeolicus

ID Location GC cDNA Annotation Structure and Sequence Remarks
5" boundary 3’ boundary Strand (+/-) (NCBI/BacProt) RNALfold Cons_p Cons_t RNAzZ p RNAz t
Known ncRNAs
45 567675 567915 - 0.53 2237/899 murF/UDP -3.89 11 7 No 0.9990 Downstream of 55 RNA
74 1153499 1153856 - 0.65 83/31 tmRNA/no -5.04 6 11 No 0.9996 tmRNA
78 1219679 1219903 0.55 382/1384 pheT/pheT -6.59 1M " No No 6S RNA
85 1303758 1303875 0.57 5239/456 No/no -4.15 1 Il No 0.7085 SRP RNA
Putative Novel ncRNAs
2 15301 15474 + - 0/0 No/no -3.66 No 5 No No Plasmid region
6 69101 69198 - 0.37 809/545 No/no -4.71 1 M No No
25 328934 328995 + 0.37 582/250 No/no No 9 9 No No
48 620054 620211 - 0.44 41/71 No/no -3.13 1 9 No No
58 739705 739811 0.44 41/144 No/no -3.92 1 M No No
68 989704 989840 0.50 476/756 ag_1392/permease -4.53 2 No No Aae-65 [85]
74 1153547 1153769 0.65 326/51 No/no -5.04 1 No 0.9996
75 1168974 1169071 - 0.55 158/79 ag_1666/no -3.84 3 3 No No
80 1231909 1232006 + 0.38 860/2339 No/no -3.74 1 2 No No
97 1491199 1491559 - 0.40 10/297 rfaG/glycosyltransferase -4.60 1 11 No No
Tail to tail Transcripts (T2T)
t2t10 608075 608182 + 0.52 60/20 aq_880/no -3.70 11 11 No No
608075 608308 - 048 22/12 ag_881/DOXP synthase -3.70 11 11 No No

t2t17 1336433 1336708 + 046 380/87 aq_1896/predicted No 11 11 No No

1336544 1336642 - 0.51 100/55 folD/folD No 1 M No No
12120 1479248 1479345 + 044 180/117 prmA/prmA No 1 8 No No

1479168 1479508 - 043 12/62 acs'/predicted -3.19 11 8 No No

tRNAs with sense transcripts only
106;43 383154 383390 - 0.52 9/2 recN; tRNA/predicted -3.53 1 10 No 0.9943
tRNAs with sense and various antisense transcripts

t34;15 1356464 1356743 + 0.64 23/5 tRNA/no -543 M 10 0.9996 0.9992

1356461 1356575 - 0.60 61/15 No/no -543 1 9 0.9996 0.9992
t44;20 1531016 1531131 + 0.58 1141/437 ihfB/no -4.33 7 9 No 0.9951

1531004 1531130 - 0.56 335/136 tRNA/no -4.33 7 9 No 0.9951

The genomic locations and GC-content are listed in columns 2-4. cDNA - the maximal number of observed read counts in the (+)- and (-)-library; Annotation - overlap to predicted proteins by NCBI and BacProt;
RNALfold - energy in kcal/mol of locally stable RNA secondary structure predicted by RNALfo1d; Cons_p and Cons_t — number of species with homologous regions aligned by Pomago and TBA; RNAz - probabilities >0.5
(based on multiple sequence alignments calculated by Pomago (p) or TBA (t)). Further observations, for example that Age-65 was described earlier in [85], are noted in the last column. A complete list of novel ncRNA
candidates, and tRNAs can be found in the Supplemental Material.
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multiple sequence alignments (MSA) with TBA and
Pomago of all Aquificales genomes, which can be viewed
in the Supplemental Material. (4) Based on the MSAs
we performed a novel ncRNA prediction with RNAz and
displayed their probability.

All ncRNA candidates with a minimum length of 25 nt
and not overlapping protein-coding sequences, rRNA
operons or tRNAs, were summarized in a full candidate
table, containing all properties mentioned above (see Sup-
plemental Material). A subset of these genes can be seen in
Table 3. We identified 99 putative loci for ncRNAs, abbre-
viated nl to n99. All above annotated ncRNAs, such as
tmRNA (n74) or SRP RNA (n85) were mutually confirmed
by our dRNA-seq and i silico approaches. Interestingly,
known ncRNAs as well as novel ncRNA candidates show
a significant level of antisense transcripts (see examples
in Figures 10 and 11). For unknown ncRNAs the sense
direction is not assignable. Putative ncRNAs, referring to
one genomic location and having comparable numbers of
cDNA read counts on both strands, are described with the
same ID.

For comparison reasons, we also added tRNAs to
our table of ncRNAs, which show the feature of sense-
antisense (s/as) expression. To exclude the possibility of
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mapping or other artefacts, we confirmed the presence
of antisense transcripts exemplarily by Northern blots for
tmRNA and tRNA 44 (Pro-TGG) (Figure 10).

Furthermore, Northern blots were conducted for the
loci encoding candidates n25 and n75, for which the
dRNA-seq data indicated sense and antisense transcrip-
tion each differing between the (+)- and (-)-library
(Figure 11). For n25, we found most transcripts on the
plus strand in the (+)-library (582), whereas less than half
as many transcripts (250) were detected in the (-)-library.
Interestingly, an inverse relation was observed for the
minus strand (50/361). For n25, Northern blot detection
revealed a signal somewhat shorter than the one expected
from the cDNA read boundaries, whereas no signal could
be detected for antisense transcripts (Figure 11, top). This
finding suggests that the sense transcript is the major one.
In the case of n75, both sense and antisense transcripts of
comparable intensity were detected, the major signals of
the Northern blot representing RNAs larger and smaller
than anticipated from the read boundaries (Figure 11,
bottom). Thus, the polarity of the putative ncRNA gene
remains unclear.

Interestingly, very high transcription levels are found
in overlapping 5’-upstream regions of two protein-coding

neg positive control total RNA neg positive control  total RNA positive control neg total RNA
\ng15 15 05 0.4 15,000 Wg1 102 04 15,000 \ng 20 15 10 20 25,000
nt nt nt
w e 190 -
190 - N
190 - - 75:
49 -
e 93 -
75 - 21-
93 . 49 - a e +
’ e -
49 -
sense antisense antisense
o = e ypotheticsl protein
i BacProt .|
(=) =-library (-)-library
S ——— — ""“
genomic sequence genomic sequence
OR L e
(C'O)R-\'.Plbr-'lry (-)=-library Loma ]
BacProt |
mRNA ribosomal protein ——
Figure 10 cDNA read profiles (bottom) and Northern blots (top) of selected ncRNAs. Read profiles left: tmRNA (350 counts); right: tRNA 44
(1000 counts); The upper half of each read profile represents the plus strand and the lower one the minus strand. Annotation by RNAz (blue),
RNALfold (rose) and NCBI/BacProt (green), cDNA reads of the (+)-library (orange) and of the (-)-library (red) and ncRNA annotation by GORAP
(pink); colors of genomic sequences represent nucleotides A (green), C (red), G (orange) and T (blue); counts - scale of read display adapted to the
maximal number of detected reads (see Table 3). For Northern blots, see Methods; -p — with 5-OH ; + p — with 5" monophosphate.
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Figure 11 cDNA read profiles (bottom) and Northern blots (top) of selected ncRNAs. Read profiles left: n25 (600 counts); right: n75 (250
counts). Details as in Figure 10. For Northern blots, see Methods.

genes located on opposing strands (Table 3). Beside these
so-called head-to-head (h2h) transcripts we furthermore
observed tail-to-tail overlaps (t2t, two 3’-untranslated
regions overlapping on opposing strands) that are rep-
resented by very high read coverage (Supplemental
Material). If these are real transcripts with a certain func-
tion or artefacts remains unclear.

Conclusion

With the advent of a growing number of Agquificales
genome sequences in public databases, we have re-
analyzed this group of bacteria thriving in extreme envi-
ronments. The Aquificales share the feature of a small,
compact genome with a reduced number of protein and
ncRNA genes. The genes for tRNAs are reduced to a
minimum but retain the capacity to decode all types
of codons, and rRNA genes are confined to 2-3 copies
each. Several classical ncRNAs are present, such as SRP
RNA, tmRNA, 6S RNA, RNase P RNA (except for all
Agquificaceae) and riboswitch candidates in some Aquif-
icales. Furthermore, by combining in silico analysis with
dRNA-seq data of A. aeolicus, we were able to predict
nearly 100 novel ncRNA candidates, some of which might
be specific to the Aquificales. Finally, CRISPR systems of
bacterial immunity were identified.

Re-annotation of protein genes using BacProt re-
vealed novel proteins with unknown function, some of
which might turn out to be specific to the Aquificales as
well. On average, 63 additional proteins were found that
were missing in the respective original annotation.

In our ¢cDNA libraries of A. aeolicus, we observed mas-
sive amounts of antisense reads with similar patterns
(length and amount) at putative ncRNA loci and terminal
regions of mRNAs. Examples of transcripts antisense to
tmRNA and tRNA are illustrated in Figure 10.

We compared 40 bacterial and 2 archaeal genomes (see
Supplemental Material), and the presence or absence of
proteins was used to determine their position in the phy-
logenetic tree of bacteria. Both Archaea form a clear
outgroup. Thermodesulfatator indicus branches first in
the group of Bacteria, followed immediately by the Aquif-
icales, while other bacterial branches diverge later. In an
additional protein-based analysis, we took the sequences
of single-copy orthologs that were present in at least 50%
of all species (concatenated 57,260 aa) (see Supplemental
Material). In contrast to the protein presence/absence
tree, neither the Aquificales nor T. indicus were placed at
a basal position here. However, the two groups are still
in close vicinity to each other. This analysis not neces-
sarily excludes the possibility of the Aquificales being a
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basal clade. The selection of orthologs being present in
at least 50% of the species leads to a lower coverage of
orthologs present in Archaea species and therefore may
favor long branch attraction [99]. The idea behind select-
ing frequently occurring single-copy orthologs was to
produce phylogenetic trees being less influenced by hori-
zontal gene transfer. However, proteins shared by Archaea
and Agquificales only are not part of the selected “50%
group” of proteins and are therefore not considered in this
analysis.

Both protein-based phylogenetic trees disagree with a
previous study [3] where Desulfobacterium autotroph-
icum HRM2, a §-proteobacterium, was added to the
Desulfurobacteriaceae family based on 16S rRNA anal-
ysis. We assume that this was an artefact of the high
GC-content of rRNAs due to the high environmental
temperatures. Regarding their proteomes, Aquificales and
D. autotrophicum are not significantly related.

The results of the 16S rRNA phylogenetic analysis did
not show a clear picture. Depending on the method used
for reconstruction, the Aquificales were either placed near
the root of the bacterial tree (MrBayes and RAXML with
GTRGAMMA substitution model) or not (NJ and RAXML
with GTRCAT) (see Supplemental Material). In accordance
with the results of [26], the Aquificales were always placed
close to the Thermotogales and Thermales-Deinococcales,
Archaea were more closely related to the Aquificales than
to the Thermotogales.

We identified two 6S RNA and two tmRNA candi-
date genes in Hydrogenivirga sp., rather than a single
one as in the other Agquificales. Likewise, Hydro-
genivirga sp. has a comparatively high amount of tRNA
copies and CRISPR loci and its genome is estimated
to be of roughly double the size of the other Aquif-
icales genomes. Combined, these observations support
the notion that the Hydrogenivirga sp. genome assem-
bly is erroneous or two genomes of related bacte-
ria (one type from Hydrogenothermaceae) have entered
the sequencing project, being in agreement with [32].
Based on the tmRNA tag peptides identified in the
Hydrogenivirga sp. assembly, the second one (Hydro-
genivirga sp.-B: IPEREIAIAA) matches the sequence
exclusively found among the Hydrogenothermaceae,
although Hydrogenivirga sp. belongs to the Aquificaceae
(see Figure 7). This suggests that the Hydrogenivirga sp.
assembly is a blend of sequences from a member of the
Aquificaceae and a member of the Hydrogenothermaceae.

Endnote

*Noise cutoff is the highest observed false positive bit
score for a potential gene which does not belong to the
seed model.

Competing interests
The authors declare that they have no competing interests.

Page 16 of 18

Authors’ contributions

Bioinformatical analysis: ML, SW, KR, BMB, NW, and MM. Experimental
validation: AIN and RKH. Analyzed data: all. Wrote, read and approved the final
manuscript: all.

Acknowledgements

We thank Markus Fricke for tmRNA structure visualization, Brice Felden for
tmRNA discussion, J. Sugahara for the SPLITS run in A. aeolicus, Jorg Vogel
and Cynthia Sharma from the University of Wirzburg for help with differential
RNA-Sequencing. MM was funded by the Carl-Zeiss-Stiftung. This work was
supported by the DFG-Graduiertenkolleg 1384 "Enzymes and multienzyme
complexes acting on nucleic acids” (BMB, ML, MM, RKH, SW), and DFG project
MA-5082/1 (MM, SW).

Author details

VInstitut fur Pharmazeutische Chemie, Philipps-Universitat Marburg,
Marbacher Weg 6, 35032 Marburg, Germany. *Faculty of Mathematics and
Computer Science, Friedrich-Schiller-University Jena, Leutragraben 1,07743
Jena, Germany. 3IEacuIty of Mathematics and Informatics, University of Leipzig,
Augustusplatz 10, 04109 Leipzig, Germany. 4IRI for the Life Sciences, Molecular
Infection Biology, Humboldt University Berlin, Philippstr. 13, 10115 Berlin,
Germany.

Received: 29 November 2013 Accepted: 8 May 2014
Published: 25 June 2014

References

1. Setchell WA: The upper temperature limits of life. Science 1903,
17(441):934-937.

2. Reysenbach AL, Wickham GS, Pace NR: Phylogenetic analysis of the
hyperthermophilic pink filament community in Octopus Spring,
Yellowstone National Park. App/ Environ Microbiol 1994,
60(6):2113-2119.

3. Hugler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM: Autotrophic
CO2 fixation via the reductive tricarboxylic acid cycle in different
lineages within the phylum Aquificae: evidence for two ways of
citrate cleavage. Environ Microbiol 2007, 9:81-92.

4. Reysenbach AL: Class I: Aquificae class. nov. Bergey's Manual of
Systematic Bacteriology. Edited by Garrity GM, Boone DR, Castenholz RW.
New York: Springer-Verlag; 2001:359-367.

5. Bonch-Osmolovskaya E: Aquificales. Chichester: Encyclopedia of Life
Sciences (ELS). John Wiley & Sons, Ltd; 2008.

6. Aravind L, Tatusov RL, Wolf Y1, Walker DR, Koonin EV: Evidence for
massive gene exchange between archaeal and bacterial
hyperthermophiles. Trends Genet 1998, 14(11):442-444.

7. Eder W, Huber R: New isolates and physiological properties of the
Aquificales and description of Thermocrinis albus sp. nov.
Extremophiles 2002, 6(4):309-318.

8. Santos H, Lamosa P, Borges N, Goncalves L, Pais T, Rodrigues M:
Extremophiles Handbook: Organic Compatible Solutes of Prokaryotes that
Thrive in Hot Environments: The Importance of lonic Compounds for
Thermostabilization: Springer Japan; 2011. [http://dx.doi.org/10.1007/978-
4-431-53898-1_23]

9. Scholz S, Sonnenbichler J, Schafer W, Hensel R:
Di-myo-inositol-1,1’-phosphate: a new inositol phosphate isolated
from Pyrococcus woesei. FEBS Lett 1992, 306(2-3):239-242.

10. Jorge CD, Lamosa P, Santos H: Alpha-D-mannopyranosyl-(1-2)-alpha-
D-glucopyranosyl-(1-2)-glycer ate in the thermophilic bacterium
Petrotoga miotherma-structure, cellular content and function. FEBS J
2007,274(12):3120-3127.

11. Brosnan CA, Voinnet O: The long and the short of noncoding RNAs.
Curr Opin Cell Biol 2009, 21(3):416-425.

12. Collins LJ: The RNA infrastructure: an introduction to ncRNA
networks. Adv Exp Med Biol 2011, 722:1-19.

13. dela Fuente M, Valera S, Martinez-Guitarte JL: ncRNAs and
thermoregulation: a view in prokaryotes and eukaryotes. FEBS Lett
2012, 586(23):4061-4069.

14. Marz M, Stadler PF: RNA interactions. Adv Exp Med Biol 2011, 722:20-38.

15. Erdmann VA, Barciszewska MZ, Hochberg A, de Groot N, Barciszewski J:
Regulatory RNAs. Cell Mol Life Sci 2001, 58(7):960-977.


http://dx.doi.org/10.1007/978-4-431-53898-1_23
http://dx.doi.org/10.1007/978-4-431-53898-1_23

Lechner et al. BMC Genomics 2014, 15:522
http://www.biomedcentral.com/1471-2164/15/522

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34

35.

Barrangou R: CRISPR-Cas systems and RNA-guided interference. Wiley
Interdiscip Rev RNA 2013, 4(3):267-278.

Macvanin M, Edgar R, Cui F, Trostel A, Zhurkin V, Adhya S: Noncoding
RNAs binding to the nucleoid protein HU in Escherichia coli.

J Bacteriol 2012, 194(22):6046-6055.

Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T,
Vandenesch F, Romby P: Staphylococcus aureus RNAIII binds to two
distant regions of coa mRNA to arrest translation and promote
mRNA degradation. PLoS Pathog 2010, 6(3):e1000809.

Rice JB, Balasubramanian D, Vanderpool CK: Small RNA binding-site
multiplicity involved in translational regulation of a polycistronic
mRNA. Proc Natl Acad Sci U S A 2012, 109(40):2691-2698.

Pitulle C, Yang Y, Marchiani M, Moore ER, Siefert JL, Aragno M, Jurtshuk P,
Fox GE: Phylogenetic position of the genus Hydrogenobacter. Int J
Syst Bacteriol 1994, 44(4).620-626.

Brown JR, Doolittle WF: Root of the universal tree of life based on
ancient aminoacyl-tRNA synthetase gene duplications. Proc Nat/
Acad SciUS A 1995, 92(7):2441-2445.

Bocchetta M, Gribaldo S, Sanangelantoni A, Cammarano P: Phylogenetic
depth of the bacterial genera Aquifex and Thermotoga inferred
from analysis of ribosomal protein, elongation factor, and RNA
polymerase subunit sequences. J Mol Evol 2000, 50(4):366-380.

Olsen GJ, Woese CR, Overbeek R: The winds of (evolutionary) change:
breathing new life into microbiology. J Bacteriol 1994, 176:1-6.
Baldauf SL, Palmer JD, Doolittle WF: The root of the universal tree and
the origin of eukaryotes based on elongation factor phylogeny. Proc
Natl Acad Sci U S A 1996, 93(15):7749-7754.

Wetmur JG, Wong DM, Ortiz B, Tong J, Reichert F, Gelfand DH: Cloning,
sequencing, and expression of RecA proteins from three distantly
related thermophilic eubacteria. J Biol Chem 1994,
269(41):25928-25935.

Oshima K, Chiba Y, Igarashi Y, Arai H, Ishii M: Phylogenetic position of
Aquificales based on the whole genome sequences of six
Aquificales species. Int J Evol Biol 2012, 2012:859264-859264.

Wieseke N, Lechner M, Ludwig M, Marz M: POMAGO: Multiple
Genome-Wide Alignment Tool for Bacteria. In Bioinformatics Research
and Applications, Volume 7875 of Lecture Notes in Computer Science. Edited
by Cai Z, Eulenstein O, Janies D, Schwartz D: Springer Berlin Heidelberg;
2013:249-260. [http://dx.doi.org/10.1007/978-3-642-38036-5_25]
Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R,
Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W: Aligning
multiple genomic sequences with the threaded blockset aligner.
Genome Res 2004, 14(4):708-715.

Rose D, Hertel J, Reiche K, Stadler PF, Hackermuller J: NecDNAlign:
plausible multiple alignments of non-protein-coding genomic
sequences. Genomics 2008, 92:65-74.

Nakagawa S, Nakamura S, Inagaki F, Takai K, Shirai N, Sako Y:
Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely
thermophilic, hydrogen- and sulfur-oxidizing bacterium from a
coastal hydrothermal field. Int J Syst Evol Microbiol 2004,

54(Pt 6):2079-2084.

Nunoura T, Miyazaki M, Suzuki Y, Takai K, Horikoshi K: Hydrogenivirga
okinawensis sp. nov., a thermophilic sulfur-oxidizing
chemolithoautotroph isolated from a deep-sea hydrothermal field,
Southern Okinawa Trough. Int J Syst Evol Microbiol 2008,

58(Pt 3):676-681.

Gupta RS, Lali R: Molecular signatures for the phylum Aquificae and
its different clades: proposal for division of the phylum Aquificae
into the emended order Aquificales, containing the families
Aquificaceae and Hydrogenothermaceae, and a new order
Desulfurobacteriales ord. nov., containing the family
Desulfurobacteriaceae. Antonie Van Leeuwenhoek 2013,
104(3):349-368.

Lechner M: Detection of Orthologs in large-scale analysis. Master’s
thesis, University of Leipzig 2009.

Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ:
Proteinortho: detection of (co-)orthologs in large-scale
analysis. BMC Bioinformatics 2011, 12:t24.

Polard P, Prére MF, Chandler M, Fayet O: Programmed translational
frameshifting and initiation at an AUU codon in gene expression of
bacterial insertion sequence 1S911. J Mol Biol 1991, 222(3):465-477.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Page 17 of 18

Spiers AJ, Bergquist PL: Expression and regulation of the RepA protein
of the RepFIB replicon from plasmid P307. J Bacteriol 1992,
174(23):7533-7541.

Binns N, Masters M: Expression of the Escherichia coli pcnB gene is
translationally limited using an inefficient start codon: a second
chromosomal example of translation initiated at AUU. Mol Microbiol
2002, 44(5):1287-98.

Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection
of transfer RNA genes in genomic sequence. Nucl Acids Res 1997,
25:955-964.

Sugahara J, Yachie N, Sekine Y, Soma A, Matsui M, Tomita M, Kanai A:
SPLITS: a new program for predicting split and intron-containing
tRNA genes at the genome level. In Silico Biol 2006, 6(5):411-418.
Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and
tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004,
32:11-16.

Dilimulati Y, Marz M, Stadler PF, Hofacker IL: Bcheck : a wrapper tool
for detecting RNase P RNA genes. BMC Genomics 2010, 11:432-440.
Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz
P: CRISPR recognition tool (CRT): a tool for automatic detection of
clustered regularly interspaced palindromic repeats. BVC
Bioinformatics 2007, 8:209-209.

Grissa |, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify
clustered regularly interspaced short palindromic repeats. Nucleic
Acids Res 2007, 35(Web Server issue):52-57.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. J Mol Biol 1990, 215(3):403-410.

UniProt Consortium: Reorganizing the protein space at the Universal
Protein Resource (UniProt). Nucleic Acids Res 2012,

40(Database issue):71-75.

Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0 : inference of RNA
alignments. Bioinformatics 2009, 25:1335-1337.

Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S,
Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A: Rfam:
updates to the RNA families database. Nucleic Acids Res 2009,
37(Database issue):136-140.

Wuyts J, Perriére G, Van De Peer Y: The European ribosomal RNA
database. Nucleic Acids Res 2004, 32(Database issue):101-103.

Eddy SR: RNABOB: a program to search for RNA secondary structure
motifs in sequence databases. 1992-1996. [http://selab.janelia.org/
software.html]

Hofacker IL, Fekete M, Stadler PF: Secondary structure prediction for
aligned RNA sequences. J Mol Biol 2002, 319:1059-1066.

Hofacker IL: Vienna RNA secondary structure server. Nucleic Acids Res
2003, 31:3429-3431.

Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P:
Fast folding and comparison of RNA secondary structures. Monatsh
Chem 1994, 125:167-188.

Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF: RNAalifold:
improved consensus structure prediction for RNA alignments. BMC
Bioinformatics 2008, 9:474-474.

Thompson JD, Higgins DG, Gibson TJ: CLUSTALW: improving the
sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight
matrix choice. Nuc/ Acids Res 1994, 22:4673-4680.

Otto W, Will S, Backofen R: Structure local multiple alignment of RNA.
In Proceedings of German Conference on Bioinformatics (GCB2008), Volume
P-136 of Lecture Notes in Informatics (LNI). Gesellschaft fir Informatik (GI);
2008:178-188. [http://dblp.uni-trier.de/db/conf/gcb/gcb2008.html#
OttoWB08]

Griffiths-Jones S: RALEE—RNA ALignment editor in Emacs.
Bioinformatics 2005, 21:257-259.

Federhen S: The NCBI Taxonomy database. Nucleic Acids Res 2012,
40(Database issue):D136—D143.

Rokas A: Phylogenetic analysis of protein sequence data using the
Randomized Axelerated Maximum Likelihood (RAXML) Program. In
Current Protocols in Molecular Biology: John Wiley & Sons, Inc; 2011.
Chapter 19 [http://dx.doi.org/10.1002/0471142727.mb1911596]
Subramanian AR, Kaufmann M, Morgenstern B: DIALIGN-TX: greedy
and progressive approaches for segment-based multiple sequence
alignment. Algorithms Mol Biol 2008, 3:6-6.


http://dx.doi.org/10.1007/978-3-642-38036-5_25]
http://selab.janelia.org/software.html
http://selab.janelia.org/software.html
http://dblp.uni-trier.de/db/conf/gcb/gcb2008.html#OttoWB08
http://dblp.uni-trier.de/db/conf/gcb/gcb2008.html#OttoWB08
http://dx.doi.org/10.1002/0471142727.mb1911s96

Lechner et al. BMC Genomics 2014, 15:522
http://www.biomedcentral.com/1471-2164/15/522

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71

72.

73.

74.

75.

76.

77.

78.

79.

80.

Le SQ, Gascuel O: Phylogenetic mixture models for proteins. Mol Biol
Evol 2008, 25(7):1307-1320.

Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Res 2002, 30(14):3059-3066.

Kimura M: A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide
sequences. J Mol Evol 1980, 16(2):111-120.

Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic
inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
Stamatakis A: RAXML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics 2006, 22(21):2688-2690.

Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T: Rapid and accurate
large-scale coestimation of sequence alignments and phylogenetic
trees. Science 2009, 324(5934):1561-1564.

Edgar RC: MUSCLE : a multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics 2004,
5:113-113.

Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A,
Chabas S, Reiche K, Hackermiller J, Reinhardt R, Stadler PF, Vogel J: The
primary transcriptome of the major human pathogen Helicobacter
pylori. Nature 2010, 464(7286):250-255.

Beckmann BM, Burenina OY, Hoch PG, Kubareva EA, Sharma CM,
Hartmann RK: In vivo and in vitro analysis of 6S RNA-templated short
transcripts in Bacillus subtilis. RNA Biol 2011, 8(5):839-849.

Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Konig H, Rachel R,
Rockinger |, Fricke H, Stetter KO: Aquifex pyrophilus gen.nov., sp.nov.,
represents a novel group of marine hyperthermophilic
hydrogen-oxidizing bacteria. System Appl Microbiol 1992, 15:340-351.
Mattatall NR, Sanderson KE: Salmonella typhimurium LT2 possesses
three distinct 23S rRNA intervening sequences. J Bacteriol 1996,
178(8):2272-2278.

Nicol JW, Helt GA, Blanchard SG, Raja A, Loraine AE: The Integrated
Genome Browser: free software for distribution and exploration of
genome-scale datasets. Bioinformatics 2009, 25(20):2730-2731.
Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE,
Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM,
Olsen GJ, Swanson RV: The complete genome of the
hyperthermophilic bacterium Aquifex aeolicus. Nature 1998,
392(6674):353-358.

Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF,
Hackermdiller J: Fast mapping of short sequences with mismatches,
insertions and deletions using index structures. PLoS Comput Biol
2009, 5(9):21000502.

Beckmann BM, Griinweller A, Weber MH, Hartmann RK: Northern blot
detection of endogenous small RNAs (approximately 14 nt) in
bacterial total RNA extracts. Nucleic Acids Res 2010, 38(14):e147.

NCBI: Genome information by organism. [http://www.ncbi.nlm.nih.
gov/genomes/lproks.cgi] (accessed 2013-08-05).

Reysenbach AL, Hamamura N, Podar M, Griffiths E, Ferreira S, Hochstein R,
Heidelberg J, Johnson J, Mead D, Pohorille A, Sarmiento M, Schweighofer
K, Seshadri R, Voytek MA: Complete and draft genome sequences of
six members of the Aquificales. J Bacteriol 2009, 191(6):1992-1993.
Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction of
noncoding RNAs. Proc Natl Acad Sci U S A 2005, 102:2454-2459.
Kuratani M, Ishii R, Bessho Y, Fukunaga R, Sengoku T, Shirouzu M, Sekine S,
Yokoyama S: Crystal structure of tRNA adenosine deaminase (TadA)
from Aquifex aeolicus. J Biol Chem 2005, 280(16):16002—16008.
Kuratani M, Yoshikawa Y, Bessho Y, Higashijima K, Ishii T, Shibata R,
Takahashi S, Yutani K, Yokoyama S: Structural basis of the initial
binding of tRNA(lle) lysidine synthetase TilS with ATP and L-lysine.
Structure 2007, 15(12):1642-1653.

Soma A, lkeuchi Y, Kanemasa S, Kobayashi K, Ogasawara N, Ote T, Kato J,
Watanabe K, Sekine Y, Suzuki T: An RNA-modifying enzyme that
governs both the codon and amino acid specificities of isoleucine
tRNA. Mol Cell 2003, 12(3):689-698.

Muramatsu T, Nishikawa K, Nemoto F, Kuchino Y, Nishimura S, Miyazawa
T, Yokoyama S: Codon and amino-acid specificities of a transfer RNA
are both converted by a single post-transcriptional modification.
Nature 1988, 336(6195):179-181.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94,

95.

96.

97.

98.

99.

Page 18 of 18

Muramatsu T, Yokoyama S, Horie N, Matsuda A, Ueda T, Yamaizumi Z,
Kuchino Y, Nishimura S, Miyazawa T: A novel lysine-substituted
nucleoside in the first position of the anticodon of minor isoleucine
tRNA from Escherichia coli. J Biol Chem 1988, 263(19):9261-9267.
Voorhees RM, Mandal D, Neubauer C, Kéhrer C, RajBhandary UL,
Ramakrishnan V: The structural basis for specific decoding of AUA by
isoleucine tRNA on the ribosome. Nat Struct Mol Biol 2013,
20(5):641-643.

Marszalkowski M, Teune JH, Steger G, Hartmann RK, Willkomm DK:
Thermostable RNase P RNAs lacking P18 identified in the
Aquificales. RNA 2006, 12(11):1915-1921.

Willkomm DK, Minnerup J, Hittenhofer A, Hartmann RK: Experimental
RNomics in Aquifex aeolicus: identification of small non-coding
RNAs and the putative 6S RNA homolog. Nucleic Acids Res 2005,
33(6):1949-1960.

Marszalkowski M, Willkomm DK: Hartmann RK: 5’-end maturation of
tRNA in Aquifex aeolicus. Biol Chem 2008, 389(4):395-403.
Marszalkowski M, Willkomm DK, Hartmann RK: Structural basis of a
ribozyme’s thermostability: P1-L9 interdomain interaction in RNase
P RNA. RNA 2008, 14:127-133.

Trotochaud AE, Wassarman KM: A highly conserved 6S RNA structure
is required for regulation of transcription. Nat Struct Mol Biol 2005,
12(4):313-319.

Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL: Breaker RR: 6S RNA is a
widespread regulator of eubacterial RNA polymerase that
resembles an open promoter. RNA 2005, 11(5):774-784.

Beckmann BM, Hoch PG, Marz M, Willkomnm DK, Salas M, Hartmann RK: A
pRNA-induced structural rearrangement triggers 65-1 RNA release
from RNA polymerase in Bacillus subtilis. EMBO J 2012,
31(7):1727-1738.

Wassarman KM, Saecker RM: Synthesis-mediated release of a small
RNA inhibitor of RNA polymerase. Science 2006, 314(5805):1601-1603.
Neusser T, Gildehaus N, Wurm R, Wagner R: Studies on the expression
of 6S RNA from E. coli: involvement of regulators important for
stress and growth adaptation. Bio/ Chem 2008, 389(3):285-297.
Gildehaus N, Neusser T, Wurm R, Wagner R: Studies on the function of
the riboregulator 6S RNA from E. coli: RNA polymerase binding,
inhibition of in vitro transcription and synthesis of RNA-directed de
novo transcripts. Nucleic Acids Res 2007, 35(6):1885-1896.

Karzai AW, Roche ED, Sauer RT: The SsrA-SmpB system for protein
tagging, directed degradation and ribosome rescue. Nat Struct Biol
2000, 7(6):449-455.

Tanner DR, Dewey JD, Miller MR, Buskirk AR: Genetic analysis of the
structure and function of transfer messenger RNA pseudoknot 1.

J Biol Chem 2006, 281(15):10561-10566.

Zwieb C, Gorodkin J, Knudsen B, Burks J, Wower J: tmRDB (tmRNA
database). Nucleic Acids Res 2003, 31:446-447.

Horvath P, Barrangou R: CRISPR/Cas, the immune system of bacteria
and archaea. Science 2010, 327(5962):167-170.

Maaty WS, Ortmann AC, Dlakic M, Schulstad K, Hilmer JK, Liepold L,
Weidenheft B, Khayat R, Douglas T, Young MJ, Bothner B:
Characterization of the archaeal thermophile Sulfolobus turreted
icosahedral virus validates an evolutionary link among
double-stranded DNA viruses from all domains of life. J Virol 2006,
80(15):7625-7635.

Li YW, Yu L, Zhang YP: Long-branch attraction artifact in phylogenetic
reconstruction. Yi Chuan 2007, 29(6):659-667.

doi:10.1186/1471-2164-15-522
Cite this article as: Lechner et al.: Genomewide comparison and novel
ncRNAs of Aquificales. BMC Genomics 2014 15:522.



http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Genomes
	Extension of protein annotation
	Annotation of ncRNAs by homology
	Phylogenetic reconstruction
	dRNA-seq of A. aeolicus total cellular RNA
	Detection of novel ncRNAs
	Northern blot experiments
	Total RNA preparation
	Positive and negative controls
	Digoxigenin and LNA probes
	5'-Phosphorylation of RNA oligonucleotides
	Electrophoresis
	Blotting, crosslinking, hybridization and detection
	In vitro transcripts, probes and primers


	Results and discussion
	Genome analysis – general observations
	Extended annotation of proteins
	Homology search and annotation of known ncRNAs
	rRNA operons
	tRNAs
	RNase P
	6S RNA
	tmRNA
	CRISPR system
	Other ncRNA

	Novel ncRNAs in A. aeolicus

	Conclusion
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

