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Abstract

Background: Previous studies from our laboratory and others have demonstrated that in addition to altering
chromatin acetylation and conformation, histone deacetylase inhibitors (HDACi) disrupt the acetylation status of
numerous transcription factors and other proteins. A whole genome yeast deletion library screen was used to
identify components of the transcriptional apparatus that modulate the sensitivity to the hydroxamic acid-based
HDACi, CG-1521.

Results: Screening 4852 haploid Saccharomyces cerevisiae deletion strains for sensitivity to CG-1521 identifies 407
sensitive and 80 resistant strains. Gene ontology (GO) enrichment analysis shows that strains sensitive to CG-1521
are highly enriched in processes regulating chromatin remodeling and transcription as well as other ontologies,
including vacuolar acidification and vesicle-mediated transport. CG-1521-resistant strains include those deficient in
the regulation of transcription and tRNA modification. Components of the SAGA histone acetyltransferase (HAT)
complex are overrepresented in the sensitive strains, including the catalytic subunit, Gcn5. Cell cycle analysis indicates
that both the wild-type and gcn5Δ strains show a G1 delay after CG-1521 treatment, however the gcn5Δ strain displays
increased sensitivity to CG-1521-induced cell death compared to the wild-type strain. To test whether the enzymatic
activity of Gcn5 is necessary in the response to CG-1521, growth assays with a yeast strain expressing a catalytically
inactive variant of the Gcn5 protein were performed and the results show that this strain is less sensitive to CG-1521 than
the gcn5Δ strain.

Conclusion: Genome-wide deletion mutant screening identifies biological processes that affect the sensitivity to the
HDAC inhibitor CG-1521, including transcription and chromatin remodeling. This study illuminates the pathways involved
in the response to CG-1521 in yeast and provides incentives to understand the mechanisms of HDAC inhibitors in cancer
cells. The data presented here demonstrate that components of the SAGA complex are involved in mediating
the response to CG-1521. Additional experiments suggest that functions other than the acetyltransferase activity
of Gcn5 may be sufficient to attenuate the effects of CG-1521 on cell growth.

Keywords: Histone deacetylase inhibitor, CG-1521, Yeast deletion library screen, Histone acetyltransferase, SAGA
complex, Gcn5, Chromatin remodeling, Transcription
Background
Many human cancers display abnormal post-translational
modifications of histones, including acetylation [1-4], and
histone deacetylases (HDACs) are known to be aberrantly
expressed in a variety of cancer cells [5]. It has been sug-
gested that changes in histone modifications and histone
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deacetylase expression levels may be useful prognostic indi-
cators of survival and recurrence in a variety of cancers
[2-4,6]. Mammalian HDACs can be subdivided into two
families: the classical HDAC family and the sirtuins. The
classical HDACs are Zn2+ dependent enzymes: class I
HDACs (HDACs 1, 2, 3, and 8) share homology to the
yeast HDAC Rpd3 and are localized to the nucleus; class II
HDACs are related to yeast Hda1 and shuttle between the
cytosol and nucleus (HDAC 4, 5, 7, 9) or reside in the cyto-
sol (HDAC 6, 10). HDAC 11 (class IV), homologous to
Hos3, resides in the cytosol and nucleus. Over the last 10–
15 years a variety of natural and synthetic HDAC inhibitors
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Figure 1 Genomic phenotyping with CG-1521. Panel A.
Representative YPD agar plates. 4852 yeast gene deletion strains, arrayed
on 96 well plates, were tested for sensitivity and resistance to CG-1521.
Strains, grown to stationary phase, were spotted on agar plates
containing the indicated concentrations of CG-1521. Plates were imaged
after 60 h. The BY4741 wild-type strain (red) and the CG-1521-sensitive
strain spt3Δ (yellow) were spotted on each plate as controls. Panel B.
Examples of strains displaying sensitivity or resistance to CG-1521. Images
of wild-type, swi3Δ, vma6Δ, bre5Δ, atg17Δ, cys3Δ and med1Δ were
compiled to show varying degrees of sensitivity or resistance to CG-1521.
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have been developed, including hydroxamic acid deriv-
atives, benzamides, short chain fatty acids, cyclic tetra-
peptides, and electrophilic ketones. Hydroxamic acid
derivatives, including Trichostatin A (TSA), suberoylanilide
hydroxamic acid (SAHA) and CG-1521 (7-phenyl-2,4,6-
hepta-trienoic hydroxamic acid), inhibit the classical family
of HDACs by coordinating the catalytic site Zn2+, stabiliz-
ing the acetylation of histones and non-histone proteins.
This induces a variety of responses including cell cycle ar-
rest, cell death, differentiation and senescence, depending
on the cell lines and inhibitors used [7,8]. HDACis are at-
tractive agents because therapeutically active concentra-
tions are minimally toxic to the host and transformed cells
are more sensitive to HDACi-induced cell death than
normal cells [9-12]. To date, two HDACis, SAHA and
Romidepsin, a cyclic tetrapeptide, have been approved by
the FDA for the treatment of cutaneous T-cell lymphoma
[13,14]. Previous studies from our laboratory and others
have demonstrated that hydroxamic acid-based HDA-
Cis have profound impacts on the biology of prostate
and breast cancer cell lines, inducing growth arrest
and apoptosis [15-19].
The aim of the research reported here was to identify

transcription factors that may be useful for novel thera-
peutic approaches in combination with HDAC inhibitors
for hard-to-treat-cancers. We have taken a systems
biology approach, screening a Saccharomyces cerevisiae
haploid single gene deletion library, to identify gene
products that modulate the response to HDAC inhib-
ition. S. cerevisiae is a valuable model organism for
which there is a wide array of information available
(including transcriptional profiling, interaction studies
and synthetic genetic analysis) to use in analyzing new
high throughput data sets [20-23]. Furthermore, his-
tones and histone modifying enzymes show a high de-
gree of sequence and functional conservation among
eukaryotes [24-27].

Results
CG-1521-sensitive and-resistant strains are enriched for
genes involved in chromatin remodeling and transcription
Genomic phenotyping was performed to detect CG-1521-
sensitive and –resistant strains. Gene deletion strains were
spotted on agar plates containing low (55 μM), medium
(67.5 μM) or high (72.5 μM) concentrations of CG-1521.
Strain growth was imaged and sensitive and resistant
strains were visually identified. Examples of strains with
different grades of sensitivity and resistance are shown in
Figure 1. 407 sensitive and 80 resistant gene deletion mu-
tants were identified (Additional file 1). S. cerevisiae is more
resistant to the hydroxamic acid based HDACi TSA and
SAHA. Sensitive strains can only be identified with concen-
trations starting at 150 μM TSA, while SAHA does not
induce changes in growth up to concentrations of 1.75 mM
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SAHA (data not shown). Due to these limitations, it is not
feasible to identify sensitive and resistant strains in response
to TSA and SAHA.
Gene ontology (GO) analysis using DAVID was used

to determine which functional classes are enriched in
proteins corresponding to the list of sensitive and resist-
ant gene deletion strains [28]. Gene deletion mutants
that are sensitive to CG-1521 are highly enriched in pro-
cesses regulating chromatin organization and transcription
(Table 1). Proteins corresponding to the gene deletion
strains resistant to CG-1521 are enriched for those involved
in tRNA modification (GO:0006400) and regulation of
transcription, DNA-dependent (GO:0006355) and its
child, negative regulation of transcription (GO:0045
892). The other child, positive regulation of transcription
(GO:0045893), was not significantly enriched (Table 2).
Deletion of complexes associated with chromatin conform-
ation, the HAT and HDAC complexes that modulate his-
tone acetylation, the compass complex, which modulates
histone methylation and the Swi/Snf, Swr1 and Ino80 com-
plexes that are central to changes in chromatin conform-
ation, all confer sensitivity to CG-1521 (Figure 2). Proteins
of several other biological processes associated with tran-
scriptional regulation, modulate the response to CG-1521,
including elongation factors (THO complex, Paf1 complex,
transcription elongation factor complex) and CTD kinases,
as well as other modulators of transcription. Additionally,
cellular machineries of translation and mRNA processing,
including poly(A)-modification, mRNA degradation and
splicing affect the sensitivity to CG-1521. Gene products of
several other biological processes, including vacuolar
acidification, vacuolar protein sorting, vesicle-mediated
transport, DNA repair and cell cycle regulation (Figure 2,
Table 1 Gene ontology analysis of CG-1521-sensitive strains u

Gene ontology analysis: sensitive strains

Category (GO-FAT)

Chromosome Organization GO:005127

Chromatin Organization GO:000632

Chromatin Modification GO:001656

Histone Modification GO:001657

Histone Exchange GO:004348

Transcription GO:000635

Regulation of Transcription GO:004544

Positive Regulation of Transcription GO:004594

Negative Regulation of Transcription GO:001648

Regulation of Transcription from RNA Pol II Promoter GO:000635

SAGA Complex GO:000012

Swr1 Complex GO:000081

Rpd3L Complex GO:003369

Four hundred and seven sensitive strains were identified. Reported p values have b
GO FAT database, developed as part of DAVID, removes very broad GO terms and c
Additional file 2) predominantly decrease the sensitivity to
CG-1521. Deletion mutants, lacking genes important for
bud site selection, recovery from arrest in response to
pheromone, G1/S and G2/M progression and cytokinesis
are sensitive to CG-1521. Components of the Mediator and
Elongator complexes are enriched in the resistant strains.
Since the Elongator complex has roles in transcription
elongation and wobble nucleoside modification in tRNA, it
is not clear whether one or both processes are important in
the response to CG-1521 (Figure 2).
To confirm the sensitivity of the strains a secondary

screen was performed in liquid culture as detailed in
Methods (Additional file 3). Sixty five of seventy two
tested sensitive strains were validated. These encompass
gene deletion mutants that lack genes involved in tran-
scription (CTK1-3, THO and Paf1 complex, transcription
factors) and chromatin remodeling, including components
of the Rpd3L (Dep1, Sin3, Pho23, Ume1, Rxt2, Sap30),
Swr1 (Yaf9, Htz1, Swc5, Swc3, Arp6, Swr1, Swc2) and the
Gcn5 HAT complex (Gcn5, Ada2, Ngg1, Sgf73, Spt3,
Spt7, Spt8, Hfi1).

Loss of Gcn5 HAT complexes confers sensitivity to CG-1521
Deletion mutants associated with Gcn5 HAT complexes
are overrepresented (p = 6.2E-4) in the CG-1521-sensitive
strains (SAGA (Spt-Ada-Gcn5-acetyltransferase) complex)
(Figure 3). Gcn5 is a component of three HAT complexes
in S. cerevisiae, the ADA, SAGA and SLIK (SAGA-like)
complexes. Of the sixteen components that have corre-
sponding deletion strains in the library, ten are sensitive
(Gcn5, Ada2, Ngg1, Sgf29, Sgf73, Spt3, Spt7, Spt8, Spt20,
Hfi1, red) and six are not sensitive (Ubp8, Sgf11, Chd1,
Rtg2, Ahc1, Ahc2, blue). Deletion of Spt20, Spt7, Gcn5 and
sing DAVID bioinformatics

p-value Corrected p-value Represented strains

6 4.5E-5 1.5E-3 49

5 1.2E-8 7.1E-6 41

8 1.4E-7 4.3E-5 35

0 6.5E-7 1.3E-4 23

6 3.1E-4 7.0E-3 6

0 1.7E-6 2.1E-4 69

9 7.0E-8 2.8E-5 82

1 6.1E-6 3.8E-4 30

1 1.1E-5 5.6E-4 32

7 5.2E-3 6.9E-2 31

4 6.9E-6 6.2E-4 10

2 1.8E-3 2.6E-2 6

8 1.8E-3 2.6E-2 6

een corrected using the methods described by Benjamini and Hochberg. The
omprises more specific terms [28,29].



Table 2 Gene ontology analysis of CG-1521-resistant strains using DAVID bioinformatics

Gene ontology analysis: resistant strains

Category (GO-FAT) p-value Corrected p-value Represented strains

tRNA Modification GO:0006400 2.2E-4 1.1E-2 7

tRNA Wobble Uridine Modification GO:0002098 6.9E-7 3.2E-4 7

Transcription GO:0006350 1.1E-2 0.19 † 15

Regulation of Transcription, DNA-dependent GO:0006355 2.9E-6 6.6E-4 20

Negative Regulation of Transcription GO:0045892 6.5E-5 5.9E-3 11

Regulation of Transcription from RNA Pol II Promoter GO:0006357 2.4E-5 2.7E-3 14

Srb Mediator Complex GO:0016592 1.1E-5 1.7E-3 6

Eighty resistant strains were identified in the yeast gene deletion library screen. Reported p values have been corrected using the methods described by
Benjamini and Hochberg. The GO FAT database, developed as part of DAVID, removes very broad GO terms and comprises more specific terms [28,29].
†Corrected p-values not significant.
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Ada2 results in high sensitivity to CG-1521 (scores 10–12).
Gene deletion mutants sgf29Δ, spt3Δ, spt8Δ and hfi1Δ are
moderately sensitive (scores 6–7) and ngg1Δ and sgf73Δ
display low sensitivity (score 5 and 4). Sensitivity scores
from the screen and the human homologs of the Gcn5
HATcomplex components can be found in Additional file 4.
Figure 2 Functional categorization of CG-1521-sensitive and-resistant
their function and incorporation in protein complexes. Gene deletions con
The ADA, SAGA and SLIK complexes share the HAT
core module, consisting of the catalytically active histone
acetyltransferase Gcn5, Ada2, Ada3/Ngg1 and Sgf29. De-
letion of any of these genes confers sensitivity to CG-1521
treatment. In contrast, deletion of ADA or SLIK specific
components does not result in sensitivity to CG-1521,
strains. Strains displaying a phenotype were categorized according to
fer sensitivity (red) or resistance (green) to CG-1521.



Figure 3 Sensitivity of components of the Gcn5 HAT complexes. The assembly and spatial organization of SAGA, SLIK and ADA complexes
are shown, adapted from [30]. The organization of the SLIK complex was inferred from that of the SAGA complex. The SAGA complex consists of
four modules, the HAT core module, the DUB module, the SPT module and the TAF module. The SLIK complex contains an additional protein
Rtg2, a truncated Spt7 and is missing Spt8. The HAT module and the ADA module make up the ADA complex. Components not depicted are
Chd1 and Rtg2.
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suggesting that the SAGA complex is required to reduce
inhibitory effects of CG-1521 on cell growth. Deletion of
the deubiquitination (DUB) module components, Ubp8
and Sgf11, does not sensitize cells to CG-1521, indicating
that other functions of the SAGA complex are critical for
the response to CG-1521.
The sensitivity of strains lacking components of these

HAT complexes has been validated on agar plates using
several starting cell densities as well as three different
concentrations of CG-1521 (Figure 4). The most sensi-
tive strains are hfi1Δ and spt20Δ, displaying sensitivity at
25 μM CG-1521. Most deletion mutants demonstrate
the same sensitivity to CG-1521 as in the initial screen,
however, the sensitivity of the hfi1Δ mutant is enhanced
compared to the screen and yeast deletion mutants
ngg1Δ and spt3Δ show slightly increased sensitivity.
To confirm that the sensitivity of the gcn5Δ strain is

due to the loss of GCN5, the sensitivity of the GCN5
complemented strain (BY4741 gcn5Δ, transformed with
p416-TEF7-GCN5) was compared to the BY4741 wild-
type and the gcn5Δ strain. Complementation with GCN5
results in a similar level of resistance as the wild-type
(Figure 5), highlighting an important role for Gcn5 in
modulating the biological response to CG-1521. To as-
sess the importance of the acetyltransferase function of
Gcn5 in the attenuation of CG-1521 activity, the sensi-
tivity of the catalytic site mutant Gcn5 E173Q, which
has minimal residual catalytic activity [31], was mea-
sured in liquid culture. As shown in Table 3, compared
to the wild-type, the gcn5Δ mutant is sensitive at 25 and
50 μM CG-1521. The E173Q catalytic site mutant is sen-
sitive to CG-1521, but to a lesser extent than the gcn5Δ
mutant (p < 0.05), suggesting that functions other than
the acetyltransferase activity of Gcn5 play a role in the
response to CG-1521 and may be sufficient to maintain
cell growth.



 

 

 

  
 

 
 

 

Figure 4 Validation of Gcn5 HAT complex components sensitivity to CG-1521. One μL cell suspension was spotted on CG-1521 containing
agar plates, containing 25, 55 or 65 μM CG-1521, incubated for 60 h and imaged as described in Methods. The experiment was repeated three
times. Gene deletion mutants spt8Δ and spt20Δ are not adjacent, however all deletion mutants are on the same agar plate. Strains lacking Gcn5,
Ada2, Hfi1, Ngg1, Sgf29, Sgf73, Spt3, Spt7, Spt8 and Spt20 are sensitive to CG-1521.
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CG-1521 treatment results in G0/G1 delay and deletion of
GCN5 increases susceptibility to cell death
Based on the reported involvement of Gcn5 in cell cycle
[32,33], the effects of CG-1521 on cell cycle progression
in wild-type and gcn5Δ cells were compared. The growth
inhibitory effect of CG-1521 is more pronounced in the
gcn5Δ strain than in the wild-type strain as determined
on agar plates and in liquid culture. Cell cycle analysis
shows that CG-1521 induces G0/G1 arrest in both
strains (Figure 6). Treatment with 50 μM CG-1521 leads
to a significant increase in the G0/G1 population after
1 h and 2 h for the wild-type and the gcn5Δ strain re-
spectively, indicating that the growth arrest is delayed in
the gcn5Δ strain compared to the wild-type strain. At
4 h, the G0/G1 population increases by 1.8 fold after
treatment with CG-1521 in both the wild-type and the
gcn5Δ strain. The induction of G0/G1 delay by CG-1521
was confirmed by budding index analysis (Table 4).
Treatment with 50 μM CG-1521 reduces the budding
index by approximately 50% in both wild-type and gcn5Δ
strains by 2 h to 4 h. As a positive control for G1 arrest,
both strains were treated with 5 μg/mL α-factor, which
reduces the budding index to approximately 0.1 after 2 h
in both strains.
CG-1521 significantly induces cell death in both gcn5Δ

and wild-type strain, as measured by propidium idodide
uptake using flow cytometry. As shown in Figure 7, the
gcn5Δ strain displays increased susceptibility to CG-
1521-induced cell death compared to the wild-type
strain. The difference is evident as early as 1 h after
treatment with CG-1521 (p < 0.05). The gcn5Δ strain
shows increased cell death after 1 h, whereas cell death
in the wild-type strain increases significantly after 2 h.
By 4 h propidium iodide uptake is detectable in 6.7% of
the wild-type population, compared to 16.6% of the
gcn5Δ population.

Discussion
The global decrease in histone modification, particularly
methylation and acetylation correlates with an aggressive
phenotype and poor prognosis in a number of cancers
including prostate, lung and kidney cancer [2,3]. The
ability of HDACis to induce death in a variety of cell
lines is well documented, however the mechanisms by



   

Figure 5 Complementation with GCN5 rescues from the effects of CG-1521. BY4741 p416-TEF7, BY4741 gcn5Δ p416-TEF7 and BY4741 gcn5Δ
p416-TEF7-GCN5 were spotted on SD-URA agar plates containing 20, 25 and 30 μM CG-1521 and incubated for 60 h as described in Methods.
The experiment was performed in triplicate.
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which they exert their effects are incompletely under-
stood [34-36]. Since many biological processes are regu-
lated by acetylation [37], we have used a yeast deletion
library screen to gain insights into the cell growth
inhibition mechanisms of HDAC inhibitors and to iden-
tify novel targets for combination treatments with the
HDACi CG-1521. Choosing S. cerevisiae as a model or-
ganism decreases the complexity, however the high de-
gree of functional homology among eukaryotes enables
Table 3 Effect of CG-1521 on cell growth of wild-type,
gcn5Δ and gcn5 catalytic site mutant strains

OD600 fraction of control

CG-1521 [μM] 25 50

BY4741 WT 0.87 ± 0.04 †

BY4741 gcn5Δ 0.26 ± 0.18 †

DY2396 WT 0.88 ± 0.05 0.54 ± 0.06 *

DY5925 gcn5Δ 0.48 ± 0.06 0.15 ± 0.04 *

DY6603 gcn5(E173Q) 0.71 ± 0.09 0.21 ± 0.07 *

Early-log phase BY4741 cells were treated with 25, 50 μM CG-1521 or vehicle
control (DMSO) for 20 h. Cell growth was measured and the ratio of OD600
(CG-1521 cells/DMSO treated cells) was determined as described in Methods.
The experiment was performed in 6 independent replicates (BY4741) or 7
independent replicates for DY2396/DY5925/DY6603 strains. The data represent
the mean ± SD. (†,* Comparisons are considered significant if p < 0.05; within
each treatment group all combinations are significantly different from
each other).
the identification of pathways that are important in the
response to CG-1521. For example, mitotic analysis after
exposure to TSA shows disruption of centromeric het-
erochromatin, mitotic delay and chromosome segrega-
tion defects in both fission yeast [38,39] and mammalian
cells [40,41]. Eukaryotic cells have varied responses to
HDACis, which in mammalian cells is partially dictated
by the p53 status of the cell lines. For example, treat-
ment of LNCaP prostate cancer cells, which express
wild-type p53, with CG-1521 induces G2/M arrest and
apoptosis [15]. In contrast, TSA induces G1/S arrest
[18]. These differences in biological response have been
attributed to differences in the site specific acetylation of
p53, stabilized by these two drugs [19]. However, MCF-7
breast cancer cells, which express wild-type p53 and
SUM190PT, which express mutant p53 both arrest in
G0/G1 after treatment with either CG-1521 or TSA, sug-
gesting that the complement of HDACs present in the
cells also plays a significant role in dictating the bio-
logical outcome of treatment.
Despite the roles of histone acetyltransferases and

histone deacetylases in DNA replication and DNA re-
pair, cytoskeleton dynamics and cell cycle, these func-
tional classes are not significantly enriched in our screen
[37]. However CG-1521-sensitive strains are significantly
enriched in vesicle-mediated transport, endocytosis and



Figure 6 CG-1521 induces G0/G1 cell cycle delay in wild-type
and gcn5Δ strains. Exponentially growing yeast cells were treated
with 50 μM CG-1521 for 1 h (Panel A), 2 h (Panel B) or 4 h (Panel C),
and cell cycle profiles were measured by flow cytometry. Three
independent biological replicates were performed. Data are
presented as mean ± SD.

Table 4 CG-1521 induces a budding index decrease in
wild-type and gcn5Δ strains

Budding index analysis

Strain Treatment Budding index

2 h 4 h

WT Control 0.50 ± 0.05 0.48 ± 0.03

50 μM CG-1521 0.30 ± 0.03* 0.16 ± 0.07*

5 μg/mL α-factor 0.10 ± 0.05* 0.25 ± 0.03*

gcn5Δ Control 0.44 ± 0.04 0.44 ± 0.07

50 μM CG-1521 0.25 ± 0.04* 0.23 ± 0.07*

5 μg/mL α-factor 0.12 ± 0.04* 0.33 ± 0.07

The budding index was determined as described in Methods. The data
represent the mean ± SD of five independent biological replicates
(*Comparisons are considered significant if p < 0.05 compared to control).
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ubiquitin ligation (Additional file 2), which have been
shown to be regulated by acetylation [37].
Previous studies have identified 63 gene deletion mu-

tants that result in reduced H3K18 acetylation levels in
S. cerevisiae [42]. These include genes associated with
vacuolar-protein sorting, V-ATPase and SAGA com-
plexes. Twenty-four of these 63 strains were identified as
sensitive to CG-1521 in the present study. Deletion of
additional genes associated with vacuolar acidification,
the vacuolar proton-transporting V-type ATPase com-
plex and vacuolar transport also renders yeast cells
sensitive to CG-1521. Potentially, these CG-1521-
sensitive strains are characterized by decreased histone
acetylation and Gcn5 HAT activity as well. This suggests
that disrupting the dynamics of acetylation and deacety-
lation renders cells sensitive to CG-1521.
Strains lacking components of the Gcn5 HAT complexes

are very sensitive to CG-1521. Deletion of any of the four
components of the histone acetyltransferase module (Sgf29,
Ngg1, Ada2 or Gcn5) renders S. cerevisiae sensitive to CG-
1521 and deletion of components of the SPT module (Spt3,
Spt7, Spt8, Spt20, Hfi1) also results in increased sensitivity
to CG-1521. As the Taf module components (Taf5, Taf6,
Taf9, Taf10 and Taf12) and Tra1 are essential for cell sur-
vival, it is not possible to determine whether deletion of
these proteins also confers sensitivity to CG-1521.
The absence of several deletion strains from the list of

sensitive strains is also notable. Loss of the Ubp8 and
Sgf11 components of the deubiquitination module does
not sensitize the cells to CG-1521. Ubp8 and Sgf11 are
part of a discrete functional module within the SAGA
complex as suggested by genetic interaction and micro-
array analysis [43] and Ubp8 is dispensable at promoters
of several SAGA-dependent genes [44]. These results
suggest that the effects of CG-1521 are not modulated
by the deuibiquitination activities associated with the
SAGA complex. CG-1521 exhibits an increased growth
inhibitory effect on the sgf73Δ strain compared to the
wild-type. Sgf73 tethers the DUB module to the SAGA
complex [45] and recruits the complex to its substrate
to stimulate the formation of the pre-initiation complex
[46]. It is probable that the sensitivity of the sgf73Δ
strain to CG-1521 is due to its latter role in the forma-
tion of the pre-initiation complex.
Deletion of the SLIK specific component Rtg2, which,

in association with Rtg1, Rtg3, Mks1, Lst8 and Tor1 is
also responsible for mediating signaling between the
mitochondrion and nucleus [47-52] does not alter the
response to CG-1521. Since Rtg2 is required for SLIK



Figure 7 Comparison of CG-1521-induced cell death in wild-type and gcn5Δ strains. Exponentially growing yeast cells were treated with
50 μM CG-1521. Cell death was assessed by propidium iodide uptake and propidium iodide positive cells were quantitated by flow cytometry.
The experiment was repeated three times. Data are presented as mean ± SD (*p < 0.05).
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integrity [53], this suggests that the SLIK complex is
not necessary for eliciting a response to CG-1521. In
addition, deletion of ADA (Ahc1, Ahc2) specific compo-
nents does not sensitize cells to CG-1521, indicating that
it is the SAGA complex, rather than ADA or SLIK
complexes, that reduces the growth-inhibitory effects
of CG-1521.
The SAGA complex may also act as physical adapter

independent of Gcn5 and recruit TBP through Spt3 and
Spt8. For example, it has been shown that H3 acetylation
and HAT activity at the Gal1 promoter are not necessary
for the formation of the pre-initiation complex, however
pre-initiation complex assembly on the Pho84 promoter
requires Gcn5 activity [44,46]. Gene expression analysis
also demonstrates that expression of distinct sets of
genes is dependent on individual SAGA subunits [54].
Thus it appears that the requirement for Gcn5 activity is
gene specific, suggesting that genes that require Gcn5
for their transcription are required to ameliorate the ef-
fect of CG-1521.
The data suggest that other functions of Gcn5, besides

the catalytic activity, influence the response to CG-1521
since catalytic site mutation does not confer the same
extent of sensitivity as GCN5 deletion. The bromodo-
main of Gcn5 may recruit the HAT complex to acety-
lated histones. Studies in mice also indicate that there is
a difference between gene deletion and catalytic site mu-
tation. Deletion of the murine Gcn5 homolog is embry-
onic lethal, as the mice show increased apoptosis in
mesodermal lineages. However, mouse embryos express-
ing a catalytically inactive protein survive significantly
longer and die as a result of exencephaly [55]. These and
results presented here indicate that Gcn5 has important
functions that are independent of its HAT activity.
The mechanism by which CG-1521 elicits its growth-

inhibitory action is probably multifactorial. As an HDAC
inhibitor it differentially regulates gene expression and
influences activity, stability, and assembly of protein
complexes through protein acetylation. Similarly, it is
likely that the SAGA complex components, including
Gcn5, regulate multiple pathways in response to CG-
1521, which protect the cell. Potential targets of CG-
1521 that may account for the sensitivity of the gcn5Δ
strain were analyzed through identification of negative
genetic interactions with GCN5 deletion that display
insensitivity to CG-1521. Gene ontology analysis of dele-
tion strains that are insensitive to CG-1521 and are syn-
thetic lethal with GCN5 deletion shows an enrichment
in processes like chromatin modification, transcriptional
regulation, histone acetylation, DNA repair and response
to stress. Notably, deletion of components of the Rpd3 his-
tone deacetylase complexes (Rpd3, Ash1, Pho23, Rxt2,
Sap30, Sds3, Sin3 and Eaf3) results in negative genetic in-
teractions with GCN5 deletion, suggesting that the inhib-
ition of Rpd3 by CG-1521 may contribute to the sensitivity
of the gcn5Δ strain to CG-1521. The CG-1521-sensitive
SAGA deletion mutants ada2Δ, ngg1Δ, spt3Δ, spt7Δ, spt8Δ,
spt20Δ and hfi1Δ show a severe fitness defect or lethality
when combined with RPD3 deletion [43,56-59]. However
deletion mutants of components of the Rpd3L complex
(rxt2Δ, ume1Δ, pho23Δ, sap30Δ and sin3 Δ, dep1Δ) are
minimally or moderately sensitive to CG-1521, indicating
that CG-1521 inhibits several HDACs. This correlates with
the fact that none of the individual yeast HDAC deletion
strains display resistance to CG-1521.
The human homologs of Gcn5, GCN5 and its paralo-

gue PCAF (p300/CBP associated factor), the histone ace-
tyltransferase components of the human ATAC and
SAGA complexes [60], have been implicated in cancer,
and these HATs are co-regulators for several proto-
oncogenes [61]. The human homolog of Tra1, TRRAP,
has been shown to bind c-Myc, leading to histone H4
acetylation and increased expression of Myc-dependent
genes [62-64]. TRRAP interacts with the N-terminus of
c-Myc [62], and truncated Myc isoforms lacking part of the
N-terminal transactivation domain are transcriptionally
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inactive [65]. Transcriptional activation by Myc requires
the GCN5 HAT activity as well as the SPT3/GCN5 inter-
action domain of TRRAP, suggesting that TRRAP serves as
an adapter to recruit GCN5 to Myc-dependent genes
[66,67] and Myc has been reported to globally promote an
active chromatin state, potentially by upregulating GCN5
expression [68]. GCN5/PCAF also directly acetylate Myc
resulting in increased protein stability [69], which may pro-
vide a positive feedback loop through GCN5 upregulation
and further Myc stabilization. Both TRRAP and GCN5 are
required for Myc-dependent transformation [62,66] and
upregulation of Gcn5 by Myc contributes to the block
of erythroid differentiation [70]. These results suggest
that, GCN5 and Myc co-operate to block differenti-
ation and promote transformation. Given the import-
ance of GCN5 HAT complexes for Myc-dependent
transcription and transformation in human cells and
the synthetic lethality of GCN5 deletion and CG-1521
treatment in yeast, it is likely that the effect of GCN5
knockdown (or inhibition of the acetyl transferase
activity) combined with CG-1521 administration in
Myc-driven tumors will lead to the blockade of tumor
progression.
GCN5 and PCAF have been shown to regulate tran-

scription, mediated by other transcription factors,
including E2F and p53 [61,71,72]. Underlining the ver-
satility of the human Gcn5 homologs, GCN5 and
PCAF have been shown to interact with BRCA2 and
BRCA1, respectively. These HATs have been shown to
modulate BRCA-mediated DNA repair as well as their
transcriptional activation function [73,74]. GCN5 is
also a potential target for oncogenic EGF signaling as it
facilitates EGF mediated transcription through local-
ized acetylation [75]. GCN5 and PCAF appear to be
good targets for cancer therapy since they are associ-
ated with several proto-oncogenes and are not fre-
quently mutated in human cancers [76-79].
Inhibitors for histone acetyltransferases are being

developed and include garcinol and anacardic acid
derivatives as well as synthetic inhibitors including iso-
thiazolones, α-methylene-γ-butyrolactones, and the
new pyridoisothiazolone-based inhibitors that appear
to be very active inhibitors of PCAF [80-83]. The
γ-butyrolactone MB-3 has been characterized as a
GCN5 inhibitor in vitro and may be a potential treat-
ment for acute lymphoblastic leukemia (ALL) [84,85].
GCN5/SAGA interacts and acetylates the oncogene
E2A-PBX1 resulting in protein stabilization and in this
context GCN5 inhibition results in decreased levels of
the E2A-PBX1 oncogene [84]. However, as is the case
with HDACis, specificity will have to be precisely
determined. It will be important to determine the
growth-inhibitory activity of GCN5/PCAF specific in-
hibitors in combination with CG-1521.
Conclusion
We have used a high throughput yeast deletion library
screen to quantify strain growth after treatment with the
HDACi CG-1521 and have identified 407 sensitive strains
and 80 resistant strains. Biological processes including tran-
scription and chromatin remodeling are highly represented
in CG-1521-sensitive strains. In particular deletion of com-
ponents of the SAGA complex, including Gcn5, confers
sensitivity to CG-1521. The identification of potential path-
ways that modulate the response to CG-1521 in yeast will
allow the evaluation of combinatorial drug targets as well
as resistance markers for cancer. Based on this study we
suggest that the use of HDAC inhibitors in combination
with Gcn5 inhibitors may be useful for the treatment
of a variety of cancers. These combination therapies
may also provide novel therapeutic approaches for
Myc-driven tumors.

Methods
Strains
The S. cerevisiae library (Open Biosystems, Thermo
Scientific, Hudson, NH) established by the Yeast Dele-
tion Consortium, contains 4852 gene deletion strains
on the BY4741 background (Genotype: MATa his3Δ1
leu2Δ0 met15Δ0 ura3Δ0) [86]. The parental strain, trans-
formed with pYE13G (American Type Culture Collection),
conferring G418 resistance, was grown in growth media
containing G418, as previously described [87].
Strains DY2396, DY5925 and DY6603 were generously

provided by Dr. Stillman (University of Utah Health Sci-
ence Center) [88]. Strains BY4741 p416-TEF7, BY4741
gcn5Δ p416-TEF7 and BY4741 gcn5Δ p416-TEF7-GCN5
were generously provided by Dr. Alper (University of
Texas at Austin) [89,90] (Additional file 5).

Yeast deletion library screen
The yeast deletion library screen was performed as pre-
viously described [91]. Briefly, 96 well plates were repli-
cated in 150 μL YPD, containing 200 μg/mL G418. The
settled cell suspension was mixed and 1 μL was spotted
on agar plates containing a low (55 μM), medium (65–
70 μM) and a high (70–75 μM) concentration of CG-
1521 (Errant Gene Therapeutics, Chicago, IL) using the
Matrix Hydra liquid handling apparatus (Thermo Scientific,
Hudson, NH). Plates were imaged after 60 h incubation
using the AlphaImager (Alpha Innotech Corporation, San
Leandro, CA). The wild-type strain and the positive control
strain (spt3Δ) were also spotted on each plate. The screen
was performed twice (Table 5). Sensitivity and resistance
was scored relative to the non-treated control and wild-
type growth. Depending on the degree of sensitivity, strains
were attributed a score from 1 to 3, while resistant strains
were scored on a scale of −1 to −2. The sum of these scores
across CG-1521 concentrations and biological replicates



Table 5 Study design

Experimental design

Plates 57

Replicates 2

Conditions 0 (Control)

CG-1521 [μM] 55

67.5

72.5

Strains 4852

Total number of plates 456

Total number of data points 39,729

The yeast gene deletion library encompasses 57 plates (4852 strains). The
complete screen was performed twice with three different concentrations of
CG-1521 (55 μM, 67.5 μM and 72.5 μM).
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yields the final score for the respective strain. Strains with a
score of ≥ 3 were regarded as sensitive, while strains with a
score of ≤ −2 were regarded as resistant. Gene Ontology
Analysis was performed using DAVID Bio-informatics Re-
sources (Database for Annotation, Visualization and Inte-
grated Discovery), reported p values have been corrected
for False Discovery Rate using the methods described by
Benjamini and Hochberg [28]. The screening methodology,
which scores mutants as sensitive or resistant compared to
the non-treated and the wild-type strain, cannot completely
account for the differences in growth rates and morpholo-
gies of the deletion strain. While many of the slower grow-
ing deletion strains are not sensitive to CG-1521, the
possibility that some of the sensitive strains are hypersensi-
tive to CG-1521, due in part to their compromised growth,
can not be excluded. For this reason, the sensitivity of the
SAGA complex deletion strains was verified in liquid cul-
ture and agar spot assays.

Validation using an agar spot assay
Sensitivity of gene deletion strains specific to the Gcn5
HAT complex was verified as described above. Strains
were spotted on agar plates containing 25 μM, 55 μM or
65 μM CG-1521. Different cell concentrations were
spotted using 1:20 serial dilution. Experiments using
BY4741 p416-TEF7 strains were performed in synthetic
dropout media lacking uracil, and sensitivity was deter-
mined using 20, 25 and 30 μM CG-1521.

Validation in liquid culture
The sensitivity of strains harboring gene deletions corre-
sponding to proteins with functions in chromatin re-
modeling and transcriptional regulation was verified in
liquid culture. 195 μL YPD containing 25 μM, 50 μM or
65 μM CG-1521 were inoculated with 5 μL cell suspen-
sion. After 20 h incubation, the cell suspension was di-
luted 1:2 and the OD600 was measured. To normalize for
differences in growth between strains the strain growth
relative to wild-type cells was calculated and the ratio of
treated versus untreated control was determined and
expressed as Net Treated Growth Value (NTGV). Strains
with NTGVs ≤ 0.7 are regarded as sensitive. Strains with
NTGVs ≥ 1.2 are regarded as resistant.
Exponentially growing yeast cultures (BY4741 wild-type,

BY4741 gcn5Δ, DY2396, DY5925, DY6603) were treated
with 25 or 50 μM CG-1521 or vehicle control (DMSO) for
20 h, the OD600 was determined and the ratio (treated/un-
treated) was calculated.
Cell cycle analysis
Yeast cells, growing in log phase, were treated with
50 μM CG-1521 or vehicle control (DMSO) for 1 to 4 h.
After fixation in 100% ethanol for 12–16 h, cells were
washed and 107 cells were resuspended in 1 mL 50 mM
sodium citrate pH 7.0 containing 100 μg/mL RNase A
(Sigma, St. Louis, MO), incubated overnight at 55°C and
treated with proteinase K (0.1 mg/mL, Amresco, Solon,
OH) for 5 h at 55°C. The cells were stained with 5 μL
1 mg/mL propidium iodide for 30 min and the DNA
content was analyzed by flow cytometry using a BD
LSR2 flow cytometer (BD Biosciences, San Jose, CA).
The data were analyzed using FloJo™ software (Tree Star,
Inc., Ashland, OR).
Budding index analysis
Flow cytometry results were confirmed by Budding
Index Analysis. Exponentially growing yeast cultures
(107 cells/mL) were treated with 50 μM CG-1521, DMSO
or 5 μg/mL α-factor (Sigma). The budding index was cal-
culated by counting the number of unbudded and budded
cells in approximately 100 yeast cells for each treatment
condition.
Cell death analysis
S. cerevisiae were cultured as described above for cell
cycle analysis. Aliquots were removed from the culture
at 0, 2 and 4 h. The cell suspension was pelleted and re-
suspended in phosphate buffered saline and incubated
with 1 μL propidium iodide (PI) for 10 min in the dark.
PI uptake was quantitated by flow cytometry analysis
using a BD LSR2 flow cytometer (BD Biosciences). The
data were analyzed using FloJo™ software.
Statistical analysis
For all experiments, three or more independent bio-
logical replicates were performed. The results are pre-
sented as mean ± SD. Results are regarded significant if
p < 0.05 as established by ANOVA and Tukey-Kramer
post-test.
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Additional files

Additional file 1: Sensitive and Resistant Strains. Strains are sorted
according to their sensitivity or resistance to CG-1521 compared to the
wild-type strain.

Additional file 2: Additional GO-Terms - Sensitive Strains. Gene
ontology analysis using DAVID Bioinformatics of CG-1521 sensitive strains
indicates an enrichment in ontologies, including vesicle-mediated transport
and vacuolar acidification, purine nucleotide biosynthetic process, ubiquitin
ligase complexes and cytoplasmic mRNA processing body in addition to
chromatin remodeling and transcription. †Corrected p-values are not
significant.

Additional file 3: Validation of Sensitivity. Validation of the sensitivity
of CG-1521-sensitive strains in liquid culture. The net treated growth
value was calculated to normalize for strain growth differences relative to
the control. The data represent 3 independent experiments.

Additional file 4: Components of the Gcn5 HAT complexes and
their human orthologs. The SAGA complex consists of four modules,
the HAT core module (green), the DUB module (purple), the SPT module
(orange) and the TAF module (blue). The SLIK complex contains an
additional protein Rtg2, a truncated Spt7 and is missing Spt8. The HAT
module and the ADA module (red) make up the ADA complex. GO-Analysis
shows an enrichment of sensitive strains in the Gcn5 HAT complexes. Sensitive
components are represented in red, insensitive deletion strains in blue.
Proteins depicted in black are not present in the yeast deletion library.

Additional file 5: Yeast Strains. Yeast strains were generously provided
by Dr. Stillman (*) [88] and Dr. Alper (#) [89,90] respectively.
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