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Abstract

Background: Selective gene duplicability, the extensive expansion of a small number of gene families, is universal.
Quantitatively, the number of genes (P(K)) with K duplicates in a genome decreases precipitously as K increases,
and often follows a power law (P(k)∝k

-α). Functional diversification, either neo- or sub-functionalization, is a major
evolution route for duplicate genes.

Results: Using three lines of genomic datasets, we studied the relationship between gene duplicability and
diversifiability in the topology of biochemical networks. First, we explored scenario where two pathways in the
biochemical networks antagonize each other. Synthetic knockout of respective genes for the two pathways rescues
the phenotypic defects of each individual knockout. We identified duplicate gene pairs with sufficient divergences
that represent this antagonism relationship in the yeast S. cerevisiae. Such pairs overwhelmingly belong to large
gene families, thus tend to have high duplicability. Second, we used distances between proteins of duplicate genes
in the protein interaction network as a metric of their diversification. The higher a gene’s duplicate count, the
further the proteins of this gene and its duplicates drift away from one another in the networks, which is especially
true for genetically antagonizing duplicate genes. Third, we computed a sequence-homology-based clustering
coefficient to quantify sequence diversifiability among duplicate genes – the lower the coefficient, the more the
sequences have diverged. Duplicate count (K) of a gene is negatively correlated to the clustering coefficient of its
duplicates, suggesting that gene duplicability is related to the extent of sequence divergence within the duplicate
gene family.

Conclusion: Thus, a positive correlation exists between gene diversifiability and duplicability in the context of
biochemical networks – an improvement of our understanding of gene duplicability.
Background
Biochemical networks underlie essentially all cellular
functions [1,2]. Proteins do not act alone. Instead, they
connect with each other to form pathways, such as the
MAP kinase cascades and the glycolysis pathway. The
connections are often direct physical protein-protein in-
teractions or enzyme-substrate relationships. They can
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also be indirect ones. For instance, metabolic enzymes are
usually connected through a chain of biochemical reac-
tions they catalyze, even though the enzymes may not be
physically associated with each other. And pathways in
turn join together to form networks, such as the signaling
and the metabolic networks. It is via such networks that
genomic information gives rise to cellular functions and
genotypes are translated into phenotypes. Biochemical
network models have thus long served effectively as plat-
forms for analysis of high-throughput experimental data,
e.g., microarray or next generation sequencing based gene
expression data [3-5].
A prominent category of constituents in biochemical

networks is proteins encoded by duplicate genes, also
termed paralogs [6]. Duplicate genes arose from genomic
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duplication events, which can be whole-genome duplica-
tion (WGD) or small-scale duplication (SSD). Genomic du-
plication is a major driving force of biological evolution
[6-8]. Proteins of duplicate genes are thus abundant in bio-
chemical networks. Moreover, their abundance increases
along with genomic complexity, which is quantified by
genome size, gene number, abundance of spliceosomal in-
trons and mobile genetic elements, from bacterial to uni-
cellular eukaryotes, to multi-cellular species [9]. Proteins of
duplicate genes function and evolve in biochemical net-
works [10,11]. Duplicate gene evolution is frequently ana-
lyzed in the context of biochemical networks, such as the
protein-protein interaction networks [12-14] and the
metabolic networks [15,16], as well as other biological
networks [17,18].
A critical issue is gene duplicability. This term captures

the selective gene duplication pattern universally observed
in sequenced genomes [19-22]. A small portion of the
genes in a genome has extraordinarily high duplicate
counts, while the vast majority either are singletons or has
only a few duplicates. In other words, a small number of
gene families are selectively expanded during the genomic
evolution process. Quantitatively, this phenomenon is
often described by a power-law relationship between the
number of genes (P(K)) with K duplicates and the duplicate
count K, P(k) ∝ k-α, with α as a positive constant. This
relationship holds true regardless of which duplicate
gene detection methods were used; FASTA, BLAST, as
well as protein domain based methods have all been
used [19,22-24]. Moreover, this relationship holds true in
bacterial, unicellular eukaryotic and multicellular genomes,
and changes in the value of α can be used to quantify
enrichment of duplicate genes as genomic complexity in-
creases [22]. We operationally define gene duplicability, as
popularly done, as the number of duplicates a gene has or
the size of the gene family in a genome [25-28], although
slightly different definitions also exist [29].
How and why did the selective gene duplicability pattern

described above emerge? Two seemingly contradictive fac-
tors should contribute significantly: the opportunity to de-
rive novel genetic materials from existing ones and the
need to minimize deleterious effects of gene duplication.
The first is the evolutionary advantage that genomic dupli-
cation confers to a species. A gene in the duplicated re-
gions would have two copies. Subsequently, the pair of
duplicate genes would accumulate mutations. Very often,
one of the two duplicates formed a pseudo-gene, and
became silenced [6,30]. More importantly, the mutations
sometimes led to functional diversification, either neo- or
sub-functionalization, between the pair [7,22,31,32]. This
divergence can be in spatial-temporal expression patterns,
interaction partners, enzymatic specificities of their pro-
teins or subcellular locations of their proteins, etc. On the
other hand, gene duplicability is limited, as postulated by
the gene balance hypothesis, by the second factor – the
potential detrimental effects of gene duplication due to
disruption of the stoichiometric balance between pro-
tein products of duplicated and non-duplicated genes
[28,33,34]. For instance, specific ratios among subunits
are required for formation of protein complexes, which
are major components of biochemical networks. Unless
the genes for every subunit are all duplicated, a genomic
duplication event would disrupt the balance. Rapid neo-
or sub-functionalization between the two duplicates would
restore the stoichiometric balance and alleviate this gene
dosage constrain, thus enhancing gene duplicability. For
instance, in multi-cellular genomes, enhanced functional
diversification through accumulation of introns has been
associated with higher duplicate gene survival rates [9,35].
Thus, functional diversification of duplicate genes not

only promotes genomic functional innovation, but also
alleviates potential deleterious effect of gene duplica-
tion. It is very likely that selective gene family expansion
and enhanced diversification within the expanding families
proceeded inextricably hand-in-hand. In other words, du-
plicate genes in larger gene families should have diverged
from each other to a higher extent than those in smaller
families. For the sake of consistency with the usage of
“duplicability” to refer to the propensity of a gene to be du-
plicated (duplication rate and duplicate survivability) [27],
we use the term “diversifiability” as its sister term to refer
to the propensity of duplicate genes to undergo diversifica-
tion (neo- or sub-functionalization). Similar to duplicability
being operationally computed as the number of duplicate a
gene has or the size of the duplicate gene family, diversifia-
bility can be computed as the degree of diversification
among duplicate genes. We hypothesized positive correla-
tions between gene duplicability and diversifiability.
Testing the hypothesis requires quantifying diversifia-

bility of duplicate genes. Three metrics were used in this
study. Two of them were developed in the context of
biochemical network; one measures the extent to which
duplicate genes diverge sufficiently for their proteins to
participate in mutually antagonizing pathways in a net-
work, the other the pair-wise shortest network distance
among the proteins of duplicate genes. As the third metric,
a protein sequence homology based clustering coefficient
was used to quantify sequence divergence among duplicate
genes. We report, for each of the three metrics, positive
correlation between gene duplicability and diversifiability.

Results
Quantification of gene duplicability
As the goal of this study is to detect potential relation-
ship between gene duplicability and diversifiability, it is
necessary to measure gene duplicability. We performed
respective all-against-all BLAST for protein sequences
encoded in the yeast S. cerevisiae and the human genome,
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with a threshold E-value of 10−30. BLAST hit count (K)
was calculated for each protein. We used the value of K as
a quantifier of duplicability of the corresponding gene –
the higher the value of K, the higher the duplicability. As
previously done for the S. cerevisiae and the C. elegans
proteomes [22], we created the log-log plot of the number
of proteins with K BLAST hits (P(K)) vs. K for the human
proteome. A linear relationship between log(P(K)) and log
(K) was observed (Figure 1). This indicates a power-law
relationship – P(k) ∝ k-α with the exponent constant α be-
ing the slope of the linear relationship. Moreover, the de-
crease of log(P(K)) as log(K) increased was slower in the
human proteome than in the yeast proteome, i.e., a lower
α value of the power-law relationship, reflecting higher
duplicate gene abundance in multicellular genome.
To put it another way, we used all-against-all BLAST

results of a proteome to cast the proteins into a weighted
sequence homology network for that species. Nodes and
edges of the network were proteins and pair-wise protein
homology relationship, respectively. Edges were weighted
by the strength of the homology relationship, as quantified
by BLAST output parameters such as the E-value. Con-
nectivity of proteins, a key parameter in network analysis,
equals to the values of their BLAST hit count K, which, as
described above, follows a power-law distribution. The
network is thus scale-free. This line of analysis, to be dis-
cussed later, led us to effectively adopt another standard
network analysis parameter in this study.
Our question then became whether the value of K is

correlated with gene diversifiability, the extent to which
these duplicate genes have diverged. Thus, the next step
Figure 1 Log-log plot of the numbers of protein-coding genes
P(K) with duplicability K vs. K in the yeast S. cerevisiae and
human. As described in Materials and Methods, duplicability K
of a gene was calculated as BLAST hit count of its protein in an
all-against-all BLAST, with a threshold BLAST E-value of 10−30. Linear
relationships were observed, indicating power-law relationship
between P(K) and K (P(K) ∝ K-α). And the slopes of the linear
relationships – that is, the α values – were different between yeast
and human. To better illustrate this difference, S. cerevisiae data
points were shifted upward to overlap the leftmost data points of
the two species.
was to evaluate duplicate gene diversifiability, which we
performed in the context of biochemical networks.

Pairs of duplicate genes that have diverged to mutual
genetic antagonism tend to belong to high duplicability
gene families
We looked for an approach to identify cases of high
diversifiability among duplicate genes, so that we could
then determine whether high diversifiability is associated
with high gene duplicability, i.e., high K values. We took
advantage of the observation that two proteins may
participate in pathways that antagonize each other in a
biochemical network. Genetically, synthetic knockout of
both of their genes rescues or alleviates the phenotypic
defects caused by the individual knockout of either one.
Pairs of duplicate genes that exhibit this genetic antagon-
ism relationship must have gone through a switch from
their initial identical functions upon gene duplication to
functional antagonism – a complete functional diversifica-
tion process. Such pairs are thus perfect examples of high
functional diversifiability. For instance, the S. cerevisiae
Pif1 and Rrm3 DNA helicases share high sequence hom-
ology (BLAST E-value 2E-103), but they have opposite
effects on ribosome DNA replication. Pif1 enhances ne-
cessary pausing, whereas Rrm3 promotes continuous pro-
gression of the replication forks [36]. Moreover, synthetic
knockout has been systematically carried out in the yeast
S. cerevisiae, making it possible to identify pairs of mutu-
ally antagonizing duplicate genes. We thus identified, as
described in Materials and Methods, all such S. cerevisiae
duplicate gene pairs from the SGD database. As a control
for our analysis, we also identified pairs of duplicate genes
that exhibit the opposite relationship – mutual genetic
complement. In such relationships, synthetic knockout of
both genes causes more severe phenotypic defects than
each of the two individual knockouts. The two duplicate
genes in such pairs retain functional similarity, and are
often functionally interchangeable. The two groups of du-
plicate gene pairs gave us an opportunity to determine
whether high diversifiability is accompanied by high K
values, and thus enhanced duplicability.
We first assessed whether genetically antagonizing (GA)

duplicate gene pairs were more likely to belong to larger
duplicate gene families than genetically complementing
(GC) pairs. The approach was to collect, for each of the
two groups of duplicate gene pairs, the set of genes whose
BLAST hits enclose the proteins of both genes in a pair.
We then determined which of the two sets of identified
genes have higher K values, i.e., whether two mutually an-
tagonizing or complementing duplicate genes tend to have
their proteins co-occur in BLAST hits of genes with
higher K values. The results are illustrated in the form of
log-log plots in Figure 2A. The vertical axis represents the
logarithms of percentage of genes, and the horizontal axis
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Figure 2 Comparison of duplicability (K) distributions within the two groups of duplicate genes: genes in genetically antagonizing
(GA) duplicate pairs (dashed line and white circle) vs. those in genetically complementing (GC) pairs (Solid line and black square). A:
log(P(K)) vs. log(K) plot of genes whose BLAST hits enclose both proteins of a corresponding duplicate gene pair. B: log(P(K)) vs. log(K) plot of
genes in corresponding group of duplicate gene pairs. The gene pairs were identified as described in Materials and Methods. The horizontal axis
is the logarithms of gene duplicability K, which, as described in Materials and Methods, was calculated as BLAST hit count of a gene’s protein.
Vertical axis is the logarithms of P(K). Linear regression lines, regression equations and R2 values of the regression are shown. In both panels, the
GC gene data (black squares) fit well into power-law relationships, whereas the GA gene data (white circles) fit, if at all, poorly.
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the logarithms of K values. A clear linear decay fit the log-
log data well (with a R2 value of 0.78) in the case of GC
pairs. The α value of the power-law relationship was 1.63.
The log-log data of the GA duplicate gene pairs, on the
other hand, fit very poorly (with a R2 value of 0.06) into a
linear decay relationship. The power-law relationship, if it
was at all, had a much lower α value of 0.35, indicating
much slower decrease of the count of gene pairs as K in-
creases. Thus, proteins of pairs of antagonizing duplicate
genes tend to be grouped together in BLAST hits of the
proteins of high duplicability genes. In other words, GC
duplicate gene pairs tend to be associated with low duplic-
ability genes and smaller gene families, whereas GA pairs
are much more likely to be associated with high duplic-
ability genes and larger gene families.
We also determined whether genes in GA duplicate

gene pairs themselves tend to have higher K values. The
approach was to compare distributions of K values of
the genes involved in the two groups of duplicate gene
pairs. We calculated the P(K) vs. K distribution for each
of the two groups. Figures 2B displays the distributions
for the GA and GC groups, respectively. Once again, a
clear power-law decay, and thus scale-free relationship,
was found in the case of GC pairs, and a power regres-
sion fit the data nicely, with a R2 value of 0.73, into a
power-law relationship with a α value of 1.83. As for GA
pairs, the data fit poorly (with a R2 value of 0.29), if at all,
into a power law relationship; and the value of α, 0.66, is
much lower. The lower α value indicates slower P(K) decay
as K increases. This leads to, as shown in a boxplot in
Figure 3, a higher median K value and a shift toward a
higher K value range. Thus, genes in GA duplicate gene
pairs tend to have higher K values, and thus higher
duplicability.
Thus, the two genes in GA duplicate gene pairs tend

to have their proteins co-occur in BLAST hits of genes
with high K values, and they themselves also tend to
have higher K values. The results strongly suggest that
the higher the duplicability, the higher the functional
diversifiability becomes. Genes in smaller gene families
tend to be less diversified, so their functions are more
likely to compensate each other, giving rise to genetic
redundancy and robustness. Genes in larger families, on
the other hand, are more likely to have neo- and/or sub-
functionalized more to assume different, or even antag-
onizing, functions. Thus, their functions are less likely to
compensate each other. Instead, they contribute to evo-
lutionary functional innovation.

Proteins of genes from high duplicability families tend to
be farther away from each other in the protein-protein
interaction networks
For a more direct quantifier of functional diversifiability in
the context of biochemical networks, we evaluated pair-
wise network distances among proteins. Since they diverge
from the same ancestor, duplicate gene pairs are expected
to be more functionally related than non-duplicate pairs
in the topology of biochemical networks. Prior to func-
tional diversification, their proteins shared the same set of
interaction partners. During subsequent evolutionary net-
work re-wiring, the proteins went though various levels of
functional diversification and switched interaction part-
ners. Very often, these diverging pairs eventually lost all
common interaction partners, although they are still more
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Figure 3 Box plot of duplicability K of duplicate genes involved
in mutual genetic antagonism (GA) or genetic complementation
(GC) relationships. GA and GC relationships between a pair of
duplicate genes were identified as described in Materials and
Methods. Duplicate genes involved in GA relationship exhibit a
higher median K value, and their K values display an overall shift
toward higher value range.
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likely than expected by random chance to participate in
the same network domains, i.e., functional modules. We
tested whether protein-to-protein network distances were
a reflection of overall functional similarity among dupli-
cate genes; that is, besides genetic antagonism, whether
network distance could be used as another quantifier of
functional diversifiability to study relationship between
duplicability and functional diversifiability of genes.
Figure 4 Comparison of the distributions of pair-wise network distan
non-paralogous protein pairs in the protein-protein interaction netwo
non-paralogous protein pairs as paralogous pairs were randomly picked fro
as the length of shortest path between two proteins in the protein-protein
indicates directly connected nodes). The vertical axis is the percentage of g
two distributions in A is 1.886e-7 (Pearson’s χ2 test). When the data in B we
groups using a boundary of 3.5, the two distributions have a p-value of 0.0
Proteins of duplicate gene pairs tend to be closer to each
other in protein-protein interaction networks
To test whether functional similarity between duplicate
genes was reflected in the network distances between their
proteins, we calculated network distance between proteins
of each pair of duplicate genes in the S. cerevisiae network.
As a control, we randomly picked the same number of
non-duplicate gene pairs from the network, and calculated
network distance between the two proteins in each of
them. A comparison of the two sets of network distances
is shown in Figure 4A. For pairs of duplicate genes, a sig-
nificant portion of their proteins were found directly con-
nected with each other in this analysis; the distribution of
network distances between their proteins peaked at 3. As
for the randomly picked pairs of non-duplicate genes, on
the other hand, very few of their proteins were found to
be directly connected, and the distribution of network dis-
tances between their proteins peaked at 4. The p-value of
the two distributions is 1.886e-7 (Pearson’s χ2 test). Thus,
proteins of a pair of duplicate genes tend to be closer to
each other than those of a pair of non-duplicate genes in
the S. cerevisiae network.
We tested whether this observation in S. cerevisiae

remained true in the human network. As described in
Materials and Methods, we downloaded human protein
interaction data from the IntAct database [37]. We col-
lected all pairs of proteins of duplicate genes and calcu-
lated the distance in the network for each of them. Once
again, we randomly picked the same number of pairs of
non-paralogous proteins from the network and calculated
distance for each of them. A comparison of the two sets of
network distances is shown in Figure 4b. The distribution
of network distances of randomly picked non-paralogous
ces between pairs of paralogous protein pairs vs. that between
rks of the yeast S. cerevisiae (A) and human (B). Same number of
m the networks. The horizontal axis is the network distance, calculated
interaction network (in terms of number of proteins in the path; 2
ene pairs with corresponding network distance. The p-value of the
re subdivided, based on the shape of the distributions, into two
03 (Pearson’s χ2 test).



Figure 5 Comparison of the distributions of pair-wise
protein-protein network distances within the two groups of
duplicate gene pairs: genetic antagonism (GA) vs. genetic
complementation (GC). The horizontal axis is the network
distance, calculated as the length of shortest path between two
proteins in the protein-protein interaction network of the yeast S.
cerevisiae. The vertical axis is the percentage of gene pairs with
corresponding network distance. The p-value of the two distributions
is 5.6e-05 (Pearson’s χ2 test).
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pairs resembled a normal distribution, with a single peak
at network distance 5. The network distances between
paralogous proteins, on the other hand, exhibited a very
different distribution. The distribution has a similar peak
at the network distance 5, but a significant portion of the
distances shifted leftward, leading to a shoulder in the
short network distance region of the distribution. Conse-
quently, for 17.7% of duplicate gene pairs, their proteins
were observed to be close to each other in the network,
with a network distance of 2 or 3, whereas the percentage
was only 3.9% for randomly picked non-duplicate pairs.
When the data are subdivided into two groups using a
boundary of 3.5, the two distributions have a p-value of
0.003 (Pearson’s χ2 test).

Proteins of genetically antagonizing (GA) duplicate gene
pairs tend to have longer network distances than those of
genetically complementing (GC) pairs
The result suggests that, as a reflection of their functional
similarity, paralogous proteins have an overall tendency to
be closer to one another in both the human and the yeast
biochemical networks. However, different duplicate gene
pairs might have different levels of functional similarity.
Also, not all pairs of duplicate genes retain high func-
tional similarity during genomic evolution, as evolution
pressure is often for neo- and/or sub-functionalization.
We tested whether the network distance tends to be
longer between the two proteins of a highly diverged
pair of duplicate genes.
Once again, the set of GA duplicate gene pairs in S.

cerevisiae was used, with the set of GC pairs serving as a
control. For each duplicate gene pair in each of the two
groups, we determined the network distance between
their proteins. Figure 5 shows the distributions of the
GA and the GC gene pairs in relation to the network
distance. The number of nodes in the path quantifies the
path length. The minimum length of 2 indicates directly
connected nodes. GC pairs concentrated in a shorter path
length range, while GA pairs were more likely to have a
longer shortest path. The p-value of the two distributions
is 5.6e-05 (Pearson’s χ2 test). In a word, proteins of those
duplicate gene pairs that have fully diversified into genetic
antagonism tend to have longer network distances from
each other.

Network distances between proteins of genes from high
duplicability families tend to be longer
As discussed earlier (Figures 2 and 3), pairs of GA dupli-
cate genes tend to belong to large gene families. Two
genes in such pairs tend to co-occur in duplicate lists of
genes with higher K values, and they themselves have
higher duplicability (K) values. Thus, both high duplicabil-
ity and longer network distances between their proteins
are associated with enhanced diversifiability of mutually
antagonizing duplicate gene pairs. We tested whether this
observation can be generalized to the whole genome, i.e.,
the higher a gene’s duplicability K, the longer the pair-
wise network distances among the proteins of this gene
and its duplicates tend to be. As shown in Figure 6, this
is indeed true. Average network distances among the
proteins of a gene and its duplicates have a positive cor-
relation with the K value of the gene. The two have a
correlation coefficient of 0.61 in yeast (Figure 6A), and
0.76 in human (Figure 6B).
These results suggest that network distance can be used

as a quantifier of duplicate gene diversifiability in the
topology of biochemical networks; longer distances imply
higher diversifiability. Functional diversifiability measured
with this parameter correlates positively with gene duplic-
ability. Thus, network distance and genetic relationship
provide two lines of evidence that enhanced functional
diversifiability accompanied hand-in-hand enhanced gene
duplicability.

The positive correlation between duplicability and
diversifiability applies to both whole-genome duplicate
(WGD) and small-scale duplication (SSD) duplicate genes
WGD duplicate genes, unlike SSD duplicate genes, main-
tained the stoichiometric ratio between their proteins, cir-
cumventing the gene dosage evolutionary constraint and
thus have higher retention rates. They also diverge slower
than SSD duplicate genes, as they are under pressure to
preserve the stoichiometric ratio [38-41]. As shown in
Table 1 and Figure 7, this is reflected in their genetic rela-
tionship and the network distances between their proteins.
WGD duplicate gene pairs are much more likely to genet-
ically complement each other; 41.7 percent (194 out of



Figure 6 Relationship between gene duplicability (K) and average network distance among proteins of corresponding duplicate genes
in the yeast S. cerevisiae (A) and human (B) protein-protein interaction networks. Gene duplicability, as described in Materials and Methods,
was calculated as BLAST hit count of the gene’s protein. Average network distances were calculated as the average length of all pair-wise shortest
paths among the proteins of the gene and its duplicates. The data were binned with a bin-size of 1 according to gene duplicability K. The vertical
axis is the average network distance within each bin.
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465) of WGD pairs, whereas only 6.7 percent (251 out of
3762) of SSD pairs, have such relationship. The ratio of
number of genetically complementing pairs to that of an-
tagonizing pairs is 21.6:1 (194 to 9) for WGD, and only
5.8:1 (251 to 43) for SSD (Table 1). Additionally, proteins
of WGD pairs have overall shorter network distances than
those of SSD pairs. The distances are 3 or less for a major-
ity (>70%) of WGD pairs, but are 4 or longer for ~55% of
SSD pairs (Figure 7). The two distributions have a p-value
of 0.001 (Pearson’s χ2 test).
We also compared the 9 genetically antagonizing (GA)

WGD pairs with the rest of the WGD pairs (Figure 8). We
randomly selected 9 WGD pairs and calculated the
average network distances between their proteins. This
process was repeated 100 times. We then compared
the distribution of the 100 average network distances
and the average distances of the 9 GA pairs. The com-
parison showed that the 9 GA pairs have longer dis-
tances than randomly selected pairs, with a p-value of
0.017 (Figure 8A). Additionally, we compared the log
(P(K))-log(K) curve of the 18 genes in the 9 GA WGD
pairs and that of the rest of the WGD duplicate genes
(Figure 8B). The 18 genes exhibit 3 K values and form
a 3-data-point curve. To make the curve for the rest
of the WGD genes, we used only the genes with one
of the three K values; this ensured that the two log-log
curves are equivalent and comparable. Log(P(K)) de-
creases as log(K) increases in both curves, but the
Table 1 Respective distribution of GC and GA pairs, and
their ratio, in WGD and SSD duplicate gene pairs

Pair count GC (%) GA (%) GC/GA Ratio

WGD 465 194 (41.7) 9 (1.9) 21.6

SSD 3762 251 (6.7) 43 (1.1) 5.8
decrease is much slower for the 18 genes, suggesting
enhanced duplicability.
Thus, the positive correlation between gene duplicabil-

ity and diversifiability applies to both WGD and SSD du-
plicate genes. We next examined whether the enhanced
functional diversifiability observed among high duplic-
ability genes is accompanied by enhanced diversification
at the sequence level, as sequence is the primary deter-
minant of protein functions.

Genes from high duplicability families tend to be more
divergent at the sequence level
To quantify sequence diversification among a set of du-
plicate genes, we took advantage of a standard param-
eter in network analysis – the clustering coefficient. As
Figure 7 Comparison of network distances between the
proteins of whole-genome duplication (WGD) and small-scale
duplication (SSD) duplicate gene pairs. The horizontal axis is the
length of shortest network path (network distance) between the
two proteins of a duplicate gene pair. The vertical axis is the
percentage of pairs with the corresponding network distance. SSD
pairs tend to have longer distances. The two distributions have a
p-value of 0.001 (Pearson’s χ2 test).



Figure 8 Comparison of protein-to-protein network distances (A) and gene duplicability (B) of genetically antagonizing (GA) WGD
duplicate gene pairs and those of the rest of WGD pairs. A: average network distance of the 9 GA WGD duplicate gene pairs (red square)
compared with histogram/distribution of the averages for groups of random WGD pairs (the curve). 100 groups, each consisting of 9 randomly
selected WGD pairs as described in the text, were used to generate the histogram. Horizontal axis is the average length of shortest network paths
(network distance). Vertical axis is the percentage of the groups with the corresponding average network distance. The vertical position of the
average for the 9 GA pairs was based on its p-value (0.017). B: log(P(K)) vs. log(K) plots of genes in GA WGD duplicate gene pairs and of genes in
all WGD pairs. Gene duplicability K was calculated as BLAST hit counts. To better illustrate the difference, the GA data points were shifted upward
to overlap the leftmost data points of the two plots.
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discussed earlier, our approach for duplicate gene identi-
fication essentially cast the proteins of a proteome into a
sequence homology network, where the nodes are se-
quences and the edges represent pair-wise homology re-
lationship identified in the all-against-all BLAST result.
Weight of each edge was the strength of the sequence
homology relationship as quantified by the pair-wise
BLAST E-value – the lower the E-value, the stronger the
homology relationship. Thus the networks are weighted.
The power-law relationship between P(K) and K (P(k) ∝ k-α)
indicates the sequence homology networks are, as many
real-world complex networks, scale free. The clustering
coefficient is routinely used in analysis of such networks
to quantify connectivity among immediate neighbors of
a node [42], which in the context of our sequence hom-
ology network would be homology among duplicates of
a gene. Thus, we used this parameter to quantify sequence
diversifiability among a gene’s duplicates – the lower the
coefficient, the higher the extent to which these sequences
have diverged. To calculate the weighted clustering coeffi-
cient (C), we used equation 1 [43] below:

Ci¼2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WijWikWjk

3
p

=Ki Ki‐1ð Þ ð1Þ

Where Ki is the duplicability (connectivity in the hom-
ology network) of protein i; proteins j and k represent
any pair of immediate neighbors of protein i. Wij is the
weight of the edge between proteins i and j (0 <W ≤ 1),
which is calculated as the negative logarithm of the
pair-wise BLAST E-value normalized by the maximum
E-value of each individual clusters. In short, Ci indicates
the probability for two immediate neighbors of node i to
form a non-zero weighted triangle together with i.
We calculated, for each gene in the S. cerevisiae genome,

the value of C. We then tested whether C is correlated
with the gene’s duplicability K. In real world scale-free
networks, the two parameters are usually negatively corre-
lated. As shown in Figure 9A, this is also true in the yeast
protein sequence homology network. When a gene has a
high K value, the C value among its duplicates tends to be
low. The log(C) vs. log(K) plot displays some degree of lin-
earity, with a Pearson correlation coefficient of −0.64 and
a p-value of 0.005. Thus, higher gene duplicability is ac-
companied by higher sequence diversifiability.
We also examined the relationship between C and K

for human genes. The result is shown in Figure 9B.
Once again, a negative correlation is observed. The log
(C) vs. log(K) plot displays a good linear relationship,
with a Pearson correlation coefficient of −0.56 and a
p-value of 1.59e-09. Thus, the positive correlation be-
tween gene duplicability and diversifiability is true in
human as well.
Taken together, these results from S. cerevisiae and

human suggest that higher gene duplicability is accom-
panied by enhanced diversifiability at the sequence level,
the 3rd line of evidence that high gene duplicability and
diversifiability acted hand-in-hand during selective gene
family expansion in genomic evolution. Thus, this study
has used three parameters, each measuring one aspect
of duplicate gene diversifiability. Results from all of them
support the notion that diversifiability is an important
determinant of gene duplicability in evolution.



Figure 9 Log-log plot of gene duplicability K vs. clustering coefficient C in the yeast S. cerevisiae (A) and human (B). Gene duplicability K,
as described in Materials and Methods, was calculated as BLAST hit count of the gene’s protein. Clustering coefficient C was calculated using
equation 1 described in text. Maximal BLAST E-value of individual cluster was used in weighted clustering coefficient calculation. The data were
binned with a bine-size of 2 according to gene duplicability K.
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Discussion
Selective gene duplicability is universally observed in all
sequenced genomes [21]. Gene duplication is a major
source of genetic material for functional innovation in
evolution, leading to a high genomic abundance of du-
plicate genes [6-8]. On the other hand, in a genome,
most protein-coding duplicate genes belong to a small
number of gene families while genes outside these large
families have few or no duplicates, i.e., a small number
of gene/protein families are selectively and extensively
expanded. Quantitatively, the number of genes with K
duplicates (P(K)) often follows a power law, i.e., P(K) ∝ K-α,
with α as a positive constant [19,22,23]. As K increases, P
(K) decreases precipitously. High duplicability is confined
to select groups of genes. This study demonstrates, at the
genomic level, that this elevated gene duplicability is
associated with higher degree of functional and sequence
diversification. We use the term gene diversifiability as a
sister term of gene duplicability to describe the degree
of diversification among duplicate genes. In a word, high
gene duplicability and high gene diversifiability acted
side-by-side to promote functional innovation during
evolution. This conclusion is supported, as discussed
below, by results from each of the three diversifiability
measurement methods.
First, we took advantage of systematic genetic inter-

action data available for the yeast S. cerevisiae, and iden-
tified all pairs of genetically antagonizing duplicate genes
as representatives of high diversifiability between duplicate
genes. For instance, as mentioned earlier, the homologous
DNA helicases Pif1 and Rrm3 exert opposite effects on
ribosome and mitochondria DNA replication [36,44], and
the protein kinases FUS3 and CDC28 (E-value 9E-46)
have counteractive control over cell polarization during
mating [45]. Genes in such fully diversified pairs, we
found, overwhelmingly belong to large duplicate gene
groups – they have higher duplicate counts (K) and thus
higher duplicability. As a result, the relationship be-
tween the number of proteins (P(K)) with K duplicates
and the duplicate count K among these genes deviates
significantly from a power-law relationship. These re-
sults show that high diversifiability genes tend to have
high duplicability as well.
Second, we examined network distances (shortest path)

between proteins of duplicate genes in the protein-protein
interaction network as a metric of their diversifiability. In
both human and yeast, the higher a gene’s duplicate count,
the further its duplicates’ protein products tend to drift
away from its own protein (longer shortest path) in the
networks. In yeast, proteins of genetically antagonizing
duplicate gene pairs tend to have longer network distances
than those of genetically complementing pairs. This fur-
ther confirms that gene diversifiability is positively corre-
lated to gene duplicability.
Third, we measured sequence divergence within dupli-

cate gene groups, using a homology-based clustering coef-
ficient, which increases inversely to sequence divergence.
A negative correlation was observed between duplicability
K of a gene and the clustering coefficient among its dupli-
cates. Thus, once again, gene duplicability is positively
correlated to gene diversifiability.
Taken together, these results demonstrate enhanced

diversifiability among genes in large duplicate gene fam-
ilies. Current knowledge suggests that this enhanced
diversifiability played two roles in duplicate gene evolu-
tion – functional innovation and, at the same time,
alleviation of the gene-dosage evolution constrain. As
discussed in the introduction, cellular processes usually
consist of the actions of multiple proteins and require
specific stoichiometry ratios among the proteins. Gene
duplication breaks this balance between proteins of du-
plicated and non-duplicated genes [34]. Thus, without
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functional diversification, duplicate genes not only confer
no evolution advantage (functional innovation), but also
are also potentially deleterious. Very often, one of the two
copies of the gene disappears in order for the gene balance
to be restored during subsequent evolution [30]. When
both survive, they must quickly neo- or sub-functionalize,
both to alleviate the gene-dosage constrain and to meet
the evolution demand for functional innovation [46,47].
Thus, enhanced diversifiability must have accompanied
selective expansion of gene families during genomic
evolution. And, in addition to duplication rates, gene
duplicability is also determined by survival rates of du-
plicate genes.
Our results are consistent with the observations by

Lynch and Conery that duplicate gene survival rate in-
creases from prokaryotes to multicellular eukaryotes [9].
It is obvious that additional venues for functional diver-
sifiability of duplicate genes became available as cellular
and organismal complexity increases from prokaryotes
to eukaryotes, and on to multicellular species. For in-
stance, eukaryotic cells are compartmentalized, making
subcellular localization a potential venue for gene diver-
sification. Multi-cellular species provide an additional
layer of functional diversification, diversifying cell/tissue
distribution patterns. The evolutionary pressure is to cre-
ate complementary expression patterns among duplicate
genes [22,32]. Protein products of duplicate genes often
do not co-exist in the same cell or subcellular location.
They can preserve their biochemical specificity, e.g. inter-
acting with the same set of proteins, without breaking the
gene dosage balance. The gene dosage constraint is thus
lessened, explaining the higher retention rate of duplicate
genes observed in multi-cellular genomes.
The higher duplicate gene retention rates due to en-

hanced diversifiability in turn leads to increases in dupli-
cate gene abundance from prokaryotes to multicellular
eukaryotes. This is consistent with changes in the expo-
nent (α) values of the power-law relationship between P(K)
and K, P(K) ∝ K-α. The value of α is a duplicate protein
coding gene abundance quantifier [22]. Its value decreases
from prokaryote to unicellular eukaryote, and to multicel-
lular eukaryote. A lower value of α indicates that P(K) de-
creases at a slower pace as K increases, and therefore
dictates higher paralog abundance. As discussed above,
the eukaryotic cellular environment is more permissive for
gene duplication, allowing duplicate genes to be parti-
tioned to different cellular compartments to bypass the
dosage evolutionary constraint. Moreover, in multicellular
eukaryotes, duplicate genes can potentially overcome the
dosage evolutionary constraint through expression in dif-
ferent cell types.
The permissive environment in multicellular eukary-

otes enabled extensive expansion of many gene families.
On the other hand, the expansion is often species-specific,
such as the explosive expansion of the receptor serine/
threonine kinase family and the receptor tyrosine kinase
family in plants and animals, respectively [48,49]. Species-
specific factors enhancing diversifiability and duplicability
within these gene families, and how their expansion con-
tributed to evolutionary fitness of the specific species, will
be an interesting research topic.

Conclusions
In summary, we report three lines of evidence support-
ing a positive relationship between gene diversifiability
and duplicability. The significance of this work can be il-
lustrated through an analogy. Both genetic sequences and
English literature are linear strings of alphabets [50,51]. If
the genome is the “book” of life, as it is often referred to,
evolution is the “writer” of the book. The process of gene
duplication and subsequent diversification is in turn intui-
tively analogous to the frequently used copy-paste-revise
writing technique – copying and pasting texts from other
sources, and then revising and merging them into current
context. Gene duplication and fate of duplicate genes has
thus been fundamental in genomics and evolution biology.
This study improves our understanding of this critical
process in the context of biochemical networks.

Methods
Sequence data and duplicate gene identification
Yeast (S. cerevisiae) proteome sequences were downloaded
from the Saccharomyces Genome Database (SGD) [52].
Human (Homo sapiens) sequences were downloaded from
NCBI. In yeast, protein sequences encoded by dubious
ORF and transposable-element enclosed genes were re-
moved. The yeast and human sequences were then used in
respective all-against-all BLAST analysis to identify pairs of
duplicate genes [53]. A stringent threshold BLAST E-value
of 10−30 is used. In yeast, a total of 7,556 pairs, involving
1,945 genes, were identified. In human 99,611 pairs, involv-
ing 13,309 genes, were identified.

Genetic antagonism (GA) and complementation (GC) data
of the yeast S. cerevisiae
Synthetic knockout data was downloaded from the SGD
database [52]. We identified all genetic interactions be-
tween duplicate genes, and assigned them to the (GA)
or the (GC) categories based on SGD annotation. Genes
were designated as antagonistic when their synthetic
knockout rescues or alleviates the phenotypic defects
caused by individual knockout of either one. Such gen-
etic interactions were annotated as synthetic rescue or
phenotypic suppression in the SGD dataset, and were
categorized accordingly as GA in our analysis. The
opposite, GC, means that synthetic knockout of two
genes causing severer phenotypic defect than individual
knockout. Such interactions were annotated as synthetic
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lethality or phenotypic enhancement in SGD, and were
categorized accordingly as GC.

Protein-protein interaction network data
Yeast protein interaction data were downloaded from
the Saccharomyces Genome Database (SGD) [52]. The
dataset contains 38573 interactions. Individual proteins
have up to 332 interactions. Human protein interaction
data was from the IntAct database [37]. The dataset con-
tains 140,268 interactions. Individual proteins have up to
1,225 interactions.

Shortest path analysis
Pair-wise shortest path in the protein interaction network
was calculated between proteins using the depth-first
search (DFS) algorithm. The length of a shortest path is
calculated as the number of proteins in the path. For in-
stance, a length of 2 indicates the two proteins directly
connect with each other, and a length of 3 indicates that
there is one protein between them. In analyzing the distri-
bution of shortest paths between paralogous pairs, an
equal number of non-paralogous pairs randomly picked
from the network were used as a control.

WGD and SSD data set
The whole-genome duplicate (WGD) data set is taken
from The Yeast Gene Order Browser [54,55]. Within the
entire 548 pairs, 465 pairs (930 genes) still have BLAST
E-values smaller than 1E-30 between their proteins and
are included with our duplicate gene pair list. We use
this dataset of 465 pairs for our WGD analysis. The rest
(3762 pairs) of pairs in our list are considered as small-
scale duplication (SSD) pairs. These 3762 pairs consist
of 1441 genes. WGD and SSD pairs share 321 genes. As
expected from the way they were identified, each WGD
duplicate gene show up only once in the whole list of
WGD pairs.
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