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Abstract

Background: DNA-based methods like PCR efficiently identify and quantify the taxon composition of complex
biological materials, but are limited to detecting species targeted by the choice of the primer assay. We show here
how untargeted deep sequencing of foodstuff total genomic DNA, followed by bioinformatic analysis of sequence
reads, facilitates highly accurate identification of species from all kingdoms of life, at the same time enabling
quantitative measurement of the main ingredients and detection of unanticipated food components.

Results: Sequence data simulation and real-case Illumina sequencing of DNA from reference sausages composed
of mammalian (pig, cow, horse, sheep) and avian (chicken, turkey) species are able to quantify material correctly at
the 1% discrimination level via a read counting approach. An additional metagenomic step facilitates identification
of traces from animal, plant and microbial DNA including unexpected species, which is prospectively important for
the detection of allergens and pathogens.

Conclusions: Our data suggest that deep sequencing of total genomic DNA from samples of heterogeneous taxon
composition promises to be a valuable screening tool for reference species identification and quantification in
biosurveillance applications like food testing, potentially alleviating some of the problems in taxon representation
and quantification associated with targeted PCR-based approaches.
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Background
Biosurveillance is a necessary task to monitor food for hu-
man consumption and pharmaceutical drugs, subsumed
as “biologicals”, which typically consist of complex mix-
tures of processed biological material. Since the species
origin of such products is often unclear, there is a concern
about fraud, health risks and violation of ethical/religious
principles, as best illustrated by the 2013 European
horse meat case (for a further bizarre example see: http://
www.bbc.com/news/world-asia-17980177). Therefore, food
and drug legislation demands producers to provide a
proper declaration of ingredients, e.g. by naming species
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reproduction in any medium, provided the or
components of food products [1,2]. To ensure correct
declaration, accurate and efficient analytical methods of
foodstuff analysis have been developed, mostly based on
the detection of species on the DNA level by PCR [3,4].
Such DNA-based tests are considered superior to protein-
based methods, when processed material has to be ana-
lyzed [5]. Real-time PCR assays, often based on fast-
evolving gene regions from the abundant mitochondrial
genome, now facilitate a multiplex detection of many bird,
fish and mammalian taxa [6-9]. Such assays sometimes
even allow for discrimination of taxa as closely related as
cow and water buffalo [10]. The main shortcoming of
PCR-based detection methods is, however, that they inher-
ently target only DNA from species to which the PCR
primers bind efficiently. This caveat also holds true in
principle for barcoding methods that rely on the PCR amp-
lification and subsequent massively parallel next-generation
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited.
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sequencing of amplicons from variable genomic or cell
organelle DNA regions (e.g. 16S rDNA, rDNA-ITS or
mitochondrial COI [11]). Barcoding methods have
been shown to very efficiently identify taxa within envi-
ronmental or food-derived metagenomic samples in a
qualitative way [12-15], but require separate assays to
address the different domains of life. In addition, quanti-
fication of components by barcode sequencing has proven
problematic due to taxonomic biases induced by the vary-
ing primer binding efficiencies across taxa ([13-16]; and
references therein). Species quantification by sequencing
of organellar PCR amplicons is also critical, as the abso-
lute number of mitochondrial genomes per cell is highly
fluctuating already between different tissues (e.g. eight-
fold within different human cell types [17]). In contrast,
sequence analysis of total genomic DNA isolated from
food offers in principle the possibility to detect species in
a totally unbiased way, enabling e.g. the detection of fraud
through admixture of undeclared ‘exotic’ taxa or the pres-
ence of health risks by microbial contamination [4]. In the
field of gene expression analysis, NGS sequencing facili-
tates a robust quantitative analysis of RNA molecules
through digitally counting sequence reads obtained from
the cDNA population of a tissue [18,19]. The sensitivity
and dynamic range of read counting equals or supersedes
other quantitative DNA analytical methods like microar-
rays or SAGE [20,21]. From a technical perspective, spe-
cies identification based on the whole-genome sequencing
should also be feasible since the large, non-protein-coding
part of eucaryotic genomes evolves rather quickly and
strongly conserved gene exons constitute only a minor
proportion, e.g. roughly 1.5% of a mammalian genome
[22]. Therefore, even closely related food-relevant taxa
such as goat and sheep or turkey and chicken should be
distinguishable in a total genomic comparison. Intra-
specific polymorphism in foodstuff species ranges be-
tween 0.5 to 5 nucleotides per 1,000 bp in horse, swine
and chicken, respectively [23-26], which should not sub-
stantially affect species discrimination.
Here we show that deep sequencing of total DNA de-

rived from foodstuff material can readily identify and
quantify species components with high accuracy by a sin-
gle experimental assay. Sequence reads are assigned to
species by mapping [27,28] to publicly available reference
genome sequences, which steadily grow in number, as ex-
emplified by the Genome10k Project (https://genome10k.
soe.ucsc.edu). At the same time, reads of “unexpected”
species origin are readily detected by a metagenomic ana-
lysis based on DNA sequence database searching.

Methods
The bioinformatics pipeline
Sequence reads of 100 bp, either obtained by simulation
(see below) or by Illumina sequencing of DNA from
sausage meat (see below), were initially mapped against
reference genomes using the algorithms BWA (V 0.7.0;
[29]) or CUSHAW [30] resulting in a SAM file for each
mapping. Reference genomes in our pilot analysis com-
prised the species Bos taurus, Bubalus bubalis, Equus
caballus, Escherichia coli, Gallus gallus, Glycine max,
Homo sapiens, Listeria seeligeri, Meleagris gallopavo, Mus
musculus, Neisseria gonorrhoeae, Oryctolagus cuniculus,
Oryza sativa, Ovis aries, Rattus norvegicus, Shigella boydii,
Sus scrofa, Triticum aestivum and Zea mays (for details
see Additional file 1). Reference genome taxa were mostly
chosen either because of their foodstuff relevance or
matches obtained in the metagenomic analyses step of our
pipeline. Others (like human or rat) were primarily in-
cluded to serve as negative controls to judge the extent of
false positive read assignments. It is clear that for a
broader screening many more reference genomes could
have been used. The practical upper limit for the number
of reference genomes clearly depends on computer power
and scales linearly with time. The BWA mappings were
executed by allowing 0, 1, 2 or 3 mismatches, depending
on the respective approach (see below). For the down-
stream analysis of the mapping results we utilized SAM-
tools (V 0.1.18; [31]) and a set of self-implemented Perl
scripts.
After the mapping step, we identified three sets of se-

quence reads (Figure 1). The first set contained reads
mapping to just one genome (“unique reads”). Assigning
these reads to a genome and quantifying them by count-
ing was a straightforward task. More challenging were
reads, which covered conserved sequence regions within
genomes and therefore simultaneously hit at least two
different genomes (“multi-mapped reads”), even under
conditions of the highest mapping stringency. Since these
conserved reads cannot be assigned with any certainty to
one specific genome, we distributed them to the respective
candidate genomes in the proportion previously calculated
from the unique reads. By this means, the multi-mapped
reads could additively be used to improve the values of
the quantitative analysis.
A 3rd category, so-called “unmapped reads”, were col-

lected and forwarded to up to three further rounds of
mapping, each of which allows one more mismatch than
the previous round (i.e. in round 4 we had a matching
stringency of 97%). We then calculated the proportions
of species material from all reads, which were unam-
biguously assigned at this step. To account for the differ-
ent quality (i.e. completeness) of the reference genomes,
as indicated by different numbers of positions denoted by
Ns in the genome drafts, our initial quantitative estimates
were corrected by a genome quality factor f = (n + c)/c,
where n is the number of ambiguous nucleotides and c is
the total number of nucleotides in the reference genome.
Further normalization should in principle be necessary to
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Figure 1 Outline of the AFS pipeline.
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adjust for largely different genome sizes, e.g. when com-
paring birds and mammals which differ roughly 3-fold in
DNA content [32,33]. However, our quantification of a
sample containing avian material (Additional file 2) indi-
cated that such normalization might be unnecessary, pos-
sibly due to the correlation of smaller genome size with a
smaller nucleus and cell size [34] leading to a compensa-
tory denser packaging of cells per gram avian tissue.
In our pipeline, we subsequently tried to identify the

origin of still unmapped reads by BLASTN (V 2.2.25)
database searching [35] against the NCBI nucleotide
database (nr/nt). Since our query sequences were short
100 bp reads, we used a word size of 11, set the BLAST
e-value to 100 according to MEGAN’s “how to use
BLAST” tutorial [36], and accepted the best three hits
for further analysis. Furthermore, we set BLAST’s “–I”
option to add the gi number to the default BLAST out-
put files. Otherwise, default BLASTN settings were used.
BLASTN results were then visualized by the metagenomic
analysis tool MEGAN4 (V 4.70.4). This tool parses BLAST
output files and assigns the results to species or, if this is
not possible, taxonomic groups of higher rank according
to the NCBI taxonomy database. To filter out false-positives,
caused by low complexity repeats (e.g. microsatellites) or
highly conserved regions, we set MEGAN’s LCA param-
eters to Min complexity = 0.44, Min Score = 75.0, Top
percent = 1.0 and turned on the percent identity filter. To
limit the analysis to the most relevant results, taxa were
somewhat arbitrarily only accepted for visualization in our
pilot study, if more than 50 reads were assigned to this
taxon. BLAST results were then visualized as a phylogen-
etic tree and quantified using Excel. For species attracting
more than a threshold number of the unmapped reads in
the BLAST step, a return to the read mapping procedure
would be reasonable to infer more exactly the proportion
of this taxon. This, of course, requires the availability of
the respective reference genome, the list of which is grad-
ually increasing.

Dataset simulation and calculation
As a proof of principle, we simulated records of Illumina
sequence data by randomly extracting 100 bp long se-
quences from downloaded genome sequences, which
were subsequently tagged by their origin (Additional file 1).
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Random errors were introduced into the simulated reads
at a 1% rate. Next, we compiled mixed datasets for testing
the read-mapping pipeline, by randomly sampling subsets
of these simulated sequence reads. For simplicity at this
testing stage, we did not perform iterative mapping at dif-
ferent stringencies, but allowed only one mismatch in the
mapping process. We also did not apply the genome qual-
ity factor.

Illumina sequencing of DNA from a sausage calibration
sample
Total genomic DNA was extracted from 200 mg of the
homogenized calibration sausages “KalD” (type “boiled
sausage”) [37] and “KLyoA” (type “Lyoner”) [9] by the
Wizard Plus Miniprep DNA purification system (Pro-
mega, Madison, USA). DNA was eluted in 50 μl elution
buffer according to the supplier's manual. Illumina se-
quencing library preparation was conducted on 1.5 μg of
total DNA by StarSEQ (Mainz, Germany) using the Tru-
Seq DNA Sample Preparation Kit v.2 (Illumina, San
Diego, USA). Sequencing was performed on an Illumina
HiSeq 2000 instrument (100 bp paired-end reads) for
KalD and on a MiSeq instrument (50 bp single reads) for
KLyoA. We used the FASTX toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/index.html) for adapter clipping and
quality filtering. Reads shorter than 50 bp (KalD) or 20 bp
(KLyoA) were discarded.

Hardware for bioinformatical analyses
For the sake of speed, mappings using BWA were pref-
erentially performed on one node (containing 4 CPUs
with 16 cores each running at 2.1 GHz) of the Mogon
Linux-Cluster at University of Mainz. Each iterative map-
ping (4 rounds, 0 to 3 mismatches) with 1 mio paired-end
reads took about 45 minutes. Mapping on a standard PC
(4 × 2.67 GHz, 16 GB RAM) consumed 3 hrs of time
using 12 reference genomes (30 Gbp size) and 100,000
reads. The BLAST steps of the pipeline were run on the
University of Mainz Central Computing Linux-Cluster
Lc2 (Suse Linux Enterprise Server 10 SP2, 132 nodes con-
taining 2 CPUs with 8 cores each running at 2.7 GHz).
Blast requests (single-threaded) were split up to 1000 sep-
arate jobs, which reduced runtime to less than 2 hours for
200,000 queries. The MEGAN program was subsequently
run on a standard personal computer (PC) with 8 GB
RAM and Windows OS.

Results and discussion
Read mapping facilitates exact quantification of DNA
from diverse species
To test if high-throughput genomic DNA sequencing was
able to accurately determine the proportions of foodstuff
components, we initially simulated two sets of sequencing
records (Table 1 and 2). The simulated sequence data was
based on randomly sampled sub-sequences of public avail-
able genomes with randomly introduced errors.
Dataset 1 consists of one million reads derived from six

mammalian species (Table 1). After running our pipeline
on this dataset, the proportions of reads assigned to the re-
spective reference genomes mirrored the sample com-
pounds with high accuracy. The artificial dataset contained
sequences present in rather high quantities (60% for sheep)
and low amounts (1% for human and rat) indicating that
the method worked over a broad range of proportions. We
achieved absolute differences between assigned reads and
input read numbers of 0 to 0.19% (Table 1). The maximum
relative difference (% absolute difference/% input DNA)
was 1.67%. We also checked the accuracy of the mapping
process by tracing the identity of the uniquely mapped
reads (represented by different file paths). The mapping ac-
curacy turned out to be better than 99.9% (cattle).
Simulation dataset 2 comprises 850 K reads, mixed at

uneven proportions from three mammalian species (cat-
tle, pig, sheep) and the bacterium E. coli (Table 2). This
dataset was created to check if the method was able to
detect signals of “unexpected” species, which would pos-
sibly not have a reference genome included in the initial
mapping step. The sample was therefore initially run
through the pipeline without mapping against bacterial
genomes. As a result, all E. coli reads were passed on to
the metagenomic BLAST/MEGAN step. By this database
searching routine, 34,944 of 131,683 unmapped reads
(=26.54%) were identified as possible E. coli signals. Ac-
cording to our pipeline rationale, the strong E. coli signal
prompted us to add the E. coli genome to the mapping
process and to run the pipeline again to achieve a better
quantitative estimate of the bacterial reads. In fact, the
proportion of E. coli reads was now determined at high
accuracy with only 0.02% deviation from the real input
value (Table 2). Meanwhile, the correct assignment of
the E. coli reads improved the overall quantitative esti-
mates for all the other species components.
These (and others, not reported) results of our simula-

tion study proved the general feasibility of quantitative
species identification through deep sequence analysis of
total genomic DNA. Quantification was most exact for
the read mapping process implemented in AFS, which
however requires the availability of a reference genome.
Given that vertebrate (and many other) species will soon
be sequenced by the thousands, this requirement will
not set a limiting condition on the method itself.
For identifying unexpected species, the application of a

less stringent metagenomic search tool, based on a BLAST
database search followed by visualization via MEGAN, also
proved successful. However, our results for dataset 2 sug-
gested that the mere evaluation of BLAST/MEGAN results
would not facilitate an accurate quantitative measure-
ment of read numbers, which is only possible via the more
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Table 1 Mapping results from simulated datasets

Species Reads assigned Proportion [%] Target value [%] Difference abs. [%] Difference rel. [%]

Cattle 26,555 2.95 3 0.05 1.67

Horse 224,077 24.91 25 0.09 0.36

Human 8,969 1.00 1 0.00 0.00

Pig 89,421 9.94 10 0.06 0.60

Rat 9,042 1.01 1 0.01 1.00

Sheep 541,432 60.19 60 0.19 0.32

Simulated quantification of sequence reads obtained from six different genomes using the AFS pipeline. “Difference abs.” shows the difference between the
proportions of reads, as determined by AFS (“proportion”), relative to the expected amounts existing in the sample (“target value”). “Difference rel.” is calculated
by dividing “Difference abs.” by the expected proportion value.
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stringently working read mapping algorithms. It should also
be stressed that the results of the metagenomic working
step entirely depend on the completeness of the sequence
database chosen for searching and on the representation of
a particular species within a database partition. In addition,
one should be cautious of erroneous annotations within
public databases [38].
However promising the results of the simulation data

analysis appeared, they clearly represented an idealized
situation, since we obviously obtained the simulated
reads from the very same genomes to which they were
mapped thereafter. Hence, we conducted an analysis using
real data.

Illumina sequencing of a DNA sample from calibration
sausage material
Illumina sequencing was performed on DNA obtained
from sausage material, which previously had been designed
and produced as calibration sample for qPCR-based ap-
proaches to species identification (KalD, [37], KLyoA [9]).
The sample KalD, on which we focused our most detailed
analysis, contained material from four mammalian species
(35% cattle, 1% horse, 9% pig, 55% sheep). These mamma-
lian taxa feature a minimal interspecific nucleotide diver-
gence at the level of synonymous sites within genes of 7%
(for sheep-cattle; [39]), which is most probably exceeded
by neutral non-genic sites. In addition, the sausage sample
contained admixtures of 11 different plant allergens at
varying amounts (R. Köppel, unpublished data; Additional
file 3).
Table 2 Effect of reference genome choice

Species Target value Proportion without
E. coli genome [%]

Propor
E. coli g

Cattle 58.82 61.81 5

E.coli 5.89 0.00

Pig 11.76 13.00 1

Sheep 23.53 25.19 2

Simulation demonstrates the effect of choosing the adequate genomes for quantifi
mapping step. After observing E. coli reads in the metagenomic analysis, its genom
now recovered with much higher accuracy.
After quality filtering, we obtained 2 × 16 million 100 bp
paired-end reads. Encouraged by the previous simulations,
subsets of only 2 × 500 K (=1 mio) randomly selected
paired-end reads were used for further analysis. To ac-
count for a possible trade-off between the specificity of
taxon identification and a maximally exact quantifica-
tion of reads, we devised two different mapping strategies.
When maximum specificity was the prime goal (“AFS-
spec”), we did not allow any mismatches during read map-
ping, and thus performed only a single mapping step with
the highest stringency. In addition, we disabled the Smith-
Waterman alignment option in BWA because it lowers
the mapping stringency for a paired-end read when rescu-
ing a read from its aligned mate. The second strategy
(“AFS-quant”) aimed at best quantitative results. To this
end, we performed an iterative read-mapping starting with
a stringency of 0 and ending with 3 mismatches.
For both strategies, the n = 3 repetitions produced highly

similar results, as evidenced by low standard deviations
(Table 3). The AFS-quant approach delivered a highly
accurate quantification of meat components in sausage
KalD, as exemplified by the value of 54.8% DNA versus
55% (w/w) meat for sheep (Table 3). Absolute differences
between the DNA proportions and the meat proportions
ranged from 0.24 to 1.79%, showing that species quantifi-
cation can be achieved at the 1% discrimination level. The
highest divergence (1.79%) was observed for pig and can
be explained by the use of lard tissue [40], which presum-
ably contains less cells and thus DNA than e.g. muscle tis-
sue. In this respect, AFS behaves in the same well-known
tion with
enome [%]

Difference before [%] Difference after [%]

8.53 2.99 0.29

5.86 5.89 0.02

1.74 1.24 0.02

3.86 1.66 0.33

cation by AFS. Initially, the E. coli reference genome was omitted in the
e was added to the mapping procedure, and the species proportions were



Table 3 Mapping results for the reference sausage KalD

Species Target
value [%]

Proportion [%] Difference abs. [%] Difference rel. [%]

AFS-quant AFS-spec AFS-quant AFS-spec AFS-quant AFS-spec

Cattle 35 36.05 ± 0.04 41.16 ± 0.02 1.05 ± 0.04 6.16 ± 0.02 3 ± 0.11 17.6 ± 0.03

Horse 1 1.27 ± 0.01 1.45 ± 0.01 0.28 ± 0.01 0.45 ± 0.01 27.67 ± 0.67 45 ± 1

Pig 9 7.22 ± 0.05 7.59 ± 0.09 1.79 ± 0.05 1.41 ± 0.09 19.85 ± 0.48 15.67 ± 1

Sheep 55 54.76 ± 0.09 49.71 ± 0.08 0.24 ± 0.09 5.29 ± 0.08 0.44 ± 0.17 9.62 ± 0.15

Waterbuffalo 0 0.64 ± 0.03 0.07 ± 0 0.64 ± 0.03 0.07 ± 0 n.a. n.a.

Total 100 4 ± 0.1 13.38 ± 0.04

Quantitative species analysis obtained by Illumina sequencing of DNA from the “KalD” reference sausage [37]. The AFS-quant and AFS-spec approaches (see text
for details) were compared. Each dataset tested contained 1 mio of paired-end sequence reads, randomly selected from a larger dataset. Three different sub-
datasets (1 mio reads each) were analyzed and mean values plus standard deviations are displayed. “Difference abs.” shows the difference between the proportion
of reads as determined by AFS (“proportion”) relative to the expected amounts existing in the sample (“target value”). “Difference rel.” is calculated by dividing
“Difference abs.” by the expected proportion value.
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matrix-dependent way as other DNA-based detection
methods [40], and the definition of normalization values
for typical ingredients and production recipes should alle-
viate this problem also for AFS.
To infer the specificity of the mapping procedure we

included the reference genome sequence of water buf-
falo, which belongs to the same subfamily (Bovinae) as
cattle. AFS-quant detected a false-positive proportion of
0.64% DNA reads in the buffalo genome (Table 3), which
probably represent sequences strongly conserved be-
tween the two bovines. The more stringent AFS-spec
approach was able to reduce the false-positive rate of
“buffalo reads” substantially to 0.07%, but only at the ex-
pense of a markedly diminished accuracy for quantification
of the real meat components (Table 3). To demonstrate
the broader applicability of the AFS-quant approach we se-
quenced and quantified the main ingredients of the KLyoA
sausage sample, which contains 0.5% chicken and 5.5%
turkey on a background of pig and cattle meat (Additional
file 2). The avian components were determined as accurate
as the mammalian ones.
We conclude that the AFS-quant strategy delivers the

most accurate quantitative species determination. We
note that the AFS quantification results are equal to or
sometimes even better than species analyses performed by
quantitative PCR on the same sausage material [37]. AFS
still contains a very low risk of obtaining false-positive
matches to closely related species. Clearly, further case
studies with other species pairs like horse-donkey, which
diverged only 2.4 million years ago [41], have to be con-
ducted to generalize our conclusions. As a screening
procedure, AFS performance is only limited by the num-
ber of reference genomes available. Offering both, a quali-
tative and quantitative result, deep sequencing of total
genomic DNA appears as an excellent alternative to
microarray-based screening methods for species iden-
tification [42] or sequencing of PCR-based barcode
amplicons [12,13,15].
Detection of “unexpected” species via metagenomic
analysis
DNA reads which do not map to the selection of reference
genomes will be passed over to the BLAST/MEGAN an-
notation procedure in AFS. The one-million-read datasets
obtained from the KalD sausage each produced more than
200 K of unmapped reads (Figure 2). Roughly half of these
reads could successfully be assigned to a species or higher
ranked taxon. The other half was represented by two clas-
ses: (i) low-complexity repetitive DNA (e.g. microsatel-
lites) which is present in almost all genomes and thus
cannot be assigned unequivocally; and (ii) un-assignable
reads which either did not match an entry in the chosen
database or did not meet the stringent MEGAN criteria
applied. Clearly, the choice of different specialized data-
bases and perhaps less stringent match criteria has the po-
tential of reducing this portion.
The ca. 100 K reads that were taxonomically assigned

by BLAST/MEGAN originated in their vast majority
(98%) from mammals (Figure 2). Of those mammalian
hits, 96% were annotated as cattle, sheep, pig and horse
(i.e. those taxa which formed the sausage). Close inspec-
tion of these sequences revealed that they predominantly
represented centromeric satellite DNA. This sequence
class is usually not represented in genome reference se-
quences, explaining that the corresponding reads could
not be assigned in the mapping step. The observed spe-
cies proportions of the satellite DNA reads somewhat
surprisingly did not match the meat proportions for cat-
tle and sheep. A reason could be that centromeric DNA,
which is an inherently unstable component of eucaryotic
genomes [43], is present in different amounts in the het-
erochromatin of sheep and cattle chromosomes, making
its use for quantification purposes problematic.
Among the reads of mammalian origins, we further re-

corded hits to several bovine-related taxa like the muntjac,
goat or whales (Figure 2), which separated from bovines 25,
30 and 56 million years ago, respectively (www.timetree.org).

http://www.timetree.org


Figure 2 Metagenomic analysis of unmapped reads. Results of the metagenomic analysis of sequence reads obtained from the KalD
reference sausage. The global result of the BLAST/MEGAN step is shown in the box (grey frame). A more detailed classification of matches is
displayed for mammals, viruses, bacteria and plants.
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We could show by an analysis using the tool REPEAT-
MASKER (http://www.repeatmasker.org/) that these reads
most often belonged to transposable elements (MIRs,
LINEs, ERVs, DNA transposons) which show sequence con-
servation across this clade. Surprisingly, we also found ~500
matches to human, cercopithecan primates and mouse.
Inspection of these BLAST hits revealed that they also
contained interspersed repeats. However, in humans and
monkeys, none of those reads corresponded to the
primate-specific Alu element family. We are thus rather
sure that neither goat or whale nor traces of human, mon-
key or mouse DNA are present in the sample. At the same
time, this issue demonstrates that expert interpretation
of BLAST results is required, which is by no means a
simple task.
Beyond Mammalia, BLAST/MEGAN suggested the pres-

ence of viral, bacterial and plant sequences in the sausage
DNA (Figure 2). Viral DNA, all belonging to bacteriophage
PhiX174, was easily explained since this DNA is usually
applied for technical reasons as a calibrator in Illumina
sequencing (http://res.illumina.com/documents/products/
technotes/technote_phixcontrolv3.pdf). Several hundred
bacterial reads were detected, mostly originating from the
human-pathogenic species Neisseria gonorrhoeae (n = 572
reads) or from Pseudomonadales (n = 64 reads), with
Pseudomonas fluorescens as an often annotated species
(n = 45 reads). The latter is notably present e.g. in deterio-
rating milk and meat products [44]. While the small num-
bers of P. fluorescens reads can be taken as an indicator of
beginning food spoilage, the finding of Neisseria reads tells
a very important cautionary tale in metagenomic analysis.
After adding the respective genome [45] to the mapping
process, presumed N. gonorrhoaea DNA was detected at
an amount of 0.04%. Knowing that there should not be
any N. gonorrhoeae material in the sample, we investigated
this result further. By mapping all 32 million reads of our
initial dataset to the N. gonorrhoeae genome, we obtained
matches exclusively located in ten genomic regions, each

http://www.repeatmasker.org/
http://res.illumina.com/documents/products/technotes/technote_phixcontrolv3.pdf
http://res.illumina.com/documents/products/technotes/technote_phixcontrolv3.pdf
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shorter than 700 bp, where read coverage was extremely
high (up to 5200-fold). These regions were extracted from
the N. gonorrhoeae genome and analyzed by BLAST
against the NCBI nucleotide database, thereby revealing
strong homology of these parts to ruminant sequence en-
tries (data not shown). In addition, mapping the sausage
reads to other available N. gonorrhoeae genomes sequences
did not produce any matches. We thus question the
quality of the N. gonorrhoeae strain TCDC-NG08107
genome and recommend using it with high caution. In
general, this points out that the annotation quality of data-
base entries is of prime importance to species diagnosis.
Since meat products often contain plant material, the

metagenomic analysis on the plant spectrum is of special
interest. In fact, the sausage contained admixtures of 11
plant species (Additional file 3) to enable its use in the
development of allergen detection methods. The most
prominent spiked-in ingredients were lupine (Lupinus
spec.), walnut (Juglans regia), hazelnut (Corylus avellana)
and mustard (Brassica spec.). We detected 661 plant
hits, which were assigned to a total of 33 plant families.
Amongst those families, Brassicaceae (mustard) domi-
nated with 449 hits, followed by Fabaceae (lupine, peanut,
soy) with 62 hits (Figure 2; Additional file 3). All other
plant ingredients received only from 1 to 17 BLAST hits.
These numbers of database matches did not correlate with
the amount of spiked-in plant material, illustrating that
the current BLAST/MEGAN routine is by no means
quantitative. A probable reason is the unbalanced repre-
sentation of sequence entries for the different taxa in the
Figure 3 Determination of the optimal number of sequence reads ne
components. The number of sequence reads used in the mapping (x-axis
calculated as the cumulated absolute deviation in% of mapping results ver
database (data not shown). This can be overcome in fu-
ture by the production of reference genomes for all major
food- and allergenicity-relevant species. In addition, as ex-
pected for a DNA-based method, the quantification result
will heavily depend on the efficiency of DNA recovery
from the food matrix. Of all plant allergens tested, only
the genome of soy (Glycine max) is publicly available and
was thus included in the AFS read mapping step. We de-
tected a stable proportion of 0.005% soy DNA in the
sample, while the proportion of spiked-in soy material in
the sausage was 0.0316%, suggesting a matrix-dependent
underestimation by a factor of 6. We point out, however,
that qualitative detection may be the prime goal in aller-
gen analysis [46]. The limits of AFS for allergen detection
clearly have to be investigated further.

Technical considerations and further improvements
Next-generation sequencing methods represent the fast-
est growing technology worldwide, with ever decreasing
cost per analysis (http://www.genome.gov/sequencingcosts/).
Applying novel 96-well format multiplex methods for
Illumina library preparation (NEXTERA®) and a personal
sequencer (MiSeq®) we calculate current sequencing cost
(chemistry plus personnel, but excluding the bioinformatic
analysis) at roughly 150–200 Euro per sample, which may
already now be interesting and feasible for routine screen-
ing purposes. Although we produced 100 bp paired-end
reads for the KalD sample, the initial results on KLyoA
suggest that cost-saving 50 bp single-end reads will prob-
ably perform equally well in read mapping. However,
cessary to obtain accurate quantification results for species
) was plotted against the values of mapping accuracy (y-axis),
sus expected species proportions.

http://www.genome.gov/sequencingcosts/
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shorter reads may pose more problems in database
searches, unless the BLAST version is optimized for short
query sequences.
An additional cost saving can possibly be achieved by

optimizing the numbers of sequence reads necessary to
obtain stable quantification results. To this end, we mapped
different numbers of reads, starting with 50 K and multiples
thereof up to 10 mio reads, and calculated the sum of devi-
ations (in%) of the observed from the expected species pro-
portions (Figure 3). Deviations decreased with increasing
dataset size, but were already close to the optimum at 1
mio reads. Even at 50 or 100 K reads, the sum of deviations
was rather moderate, opening the perspective that even
very small datasets will still guarantee a reasonable quantifi-
cation result for the main sample ingredients.
Throughput of samples in time will improve, especially

when using the MiSeq® instrument, running only 6 hrs
for 50 bp reads. DNA size requirements (>300 bp) and
input amounts needed (1 ng) for the NEXTERA XT®
protocol [47] are routinely obtained in current PCR-
based foodstuff analytics (reviewed in [48]). The slight
chance for a wrong allocation of multiplexed samples,
which may e.g. be due to erroneous bioinformatic sort-
ing of multiplexing tags, will be substantially reduced by
the use of two such tags per sample in the NEXTERA
protocol [49,50]. Another practical problem which has
to be adequately addressed is the possible run-to-run
carry-over of DNA molecules e.g. due to incomplete re-
moval of residual DNA washing from the sequencing de-
vice. Illumina’s technical notes say that this detrimental
effect is typically below 0.05% (thus affecting 500 reads
in 1 million) and must be controlled by dedicated device
maintenance procedures.
On the bioinformatic side, the read-mapping process

can already be carried out on standard PCs with 4 GB of
RAM using commercial software tools, but is still time-
consuming when many reference genomes are inspected.
New developments in software programming offer the
use of fast and affordable graphics processing units
(GPUs) to analyze massive sequence data in reasonable
time. To test if such compute unified device architecture
(CUDA)-based programs will speed up our pipeline, we
compared the novel mapping tool CUSHAW [30] to the
standard tool BWA for the time needed for analyze the
species proportions of the sausage sample. While the ac-
curacy using CUSHAW appeared somewhat lower than
BWA possibly due to algorithmic differences (data not
reported), time improvement using CUSHAW was sub-
stantial with a 2.0 to 2.6-fold speed-up, depending on
the number of threads (one to eight) BWA was allowed
to use. CUSHAW thus could cut the time needed for
read mapping on a PC roughly by half.
The biggest limitation in our pipeline in terms of time

and costs was set by the massive BLAST routines (carried
out on our University high-performance cluster) necessary
for the metagenomic step. Our adhoc calculations suggest
that additional costs (ca. 100 EUR) have to be considered,
if access to a commercial computing facility is needed.
The cautionary tale of the wrongly assembled/annotated
Neisseria reference genome in our metagenomic step il-
lustrates that the correct interpretation of the BLAST/
MEGAN results still requires substantial biological and
bioinformatical knowledge. The use of curated sequence
database information and/or the application of dedicated
repositories containing validated species-specific sequence
data (such as bar-coding targets; http://www.barcodeoflife.
org/) will greatly simplify this step for non-specialists on
the food control side. We wish to point out that a number
of highly innovative approaches for the identification (but
not necessarily quantification) of species have recently
been established in the field of bacterial metagenomics,
making use of curated taxon-specific sequence databases
(e.g. MetaPhlAn [51]), ultrafast algorithms for sequence
pattern recognition (e.g. k-mer based methods; [52]) or a
probabilistic framework for read assignment to very
closely related genomes (e.g. Pathoscope [53]). Integration
of these tools is a promising option for further improve-
ment of AFS.

Conclusion
AFS has the potential to be a valuable method for rou-
tine testing of food material and other biosurveillance
applications, offering an attractive combination of un-
biased screening for all types of ingredients and the pos-
sibility of simultaneously obtaining quantifiable results.
Since deep DNA sequencing has already revolutionized
biological and medical research, it may find its way into
routine diagnostics soon. AFS implementation currently
requires elaborate knowledge of genomes and bioinfor-
matics, but several strategies are conceivable to further
simplify and standardize the approach.

Additional files

Additional file 1: Table S1. Reference genomes used in AFS.

Additional file 2: Table S2. Mapping results for the reference sausage
KLyoA.

Additional file 3: Table S3. Plant components: spiked in proportions
and respective BLAST-hits.
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