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Abstract

characteristic of cancer.

from the same four tissue types.

inclusion, and vice versa, on a genome-wide scale.

Background: We have previously proposed transcriptome instability as a genome-wide, pre-mRNA splicing-related
characteristic of colorectal cancer. Here, we explore the hypothesis of transcriptome instability being a general

Results: Exon-level microarray expression data from ten cancer datasets were analyzed, including breast cancer,
cervical cancer, colorectal cancer, gastric cancer, lung cancer, neuroblastoma, and prostate cancer (555 samples), as
well as paired normal tissue samples from the colon, lung, prostate, and stomach (93 samples). Based on alternative
splicing scores across the genomes, we calculated sample-wise relative amounts of aberrant exon skipping and
inclusion. Strong and non-random (P < 0.001) correlations between these estimates and the expression levels of
splicing factor genes (n =280) were found in most cancer types analyzed (breast-, cervical-, colorectal-, lung- and
prostate cancer). This suggests a biological explanation for the splicing variation. Surprisingly, these associations
prevailed in pan-cancer analyses. This is in contrast to the tissue and cancer specific patterns observed in comparisons
across healthy tissue samples from the colon, lung, prostate, and stomach, and between paired cancer-normal samples

Conclusion: Based on exon-level expression profiling and computational analyses of alternative splicing, we propose
transcriptome instability as a molecular pan-cancer characteristic. The affected cancers show strong and non-random
associations between low expression levels of splicing factor genes, and high amounts of aberrant exon skipping and

Keywords: Alternative splicing, Carcinomas, Exon microarray, Splicing factor, Tissue specificity

Background

The four major types of cancer, lung cancer, breast can-
cer, colorectal cancer, and prostate cancer, constitute ap-
proximately 40% of cancer cases world-wide, with more
than 5 million new diagnoses and 2.7 million related
deaths every year [1]. These are all epithelial cancers and
are commonly characterized by genomic instability [2].
Genomic instability is described as an enabling hallmark
of cancer, generating random mutations which may also
hit cancer critical genes [3]. At the nucleotide level,
genomic instability can occur as frequent mutations
of short nucleotide repeats dispersed throughout the
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genome, referred to as microsatellite instability, and re-
sults from a defective mismatch repair system [4-6].
Microsatellite instability has been described in several
solid cancer types, including cancers of the colon, endo-
metrium, stomach, and lung [7-11], and is associated with
good prognosis in colorectal cancer [9,12,13]. Chro-
mosomal instability, characterized by numerical and struc-
tural chromosome changes, is common in solid cancers,
but the causes for this molecular phenotype remain
mostly unknown. Measured as aneuploidy, chromosomal
instability has been found to be associated with poor prog-
nosis in all four major types of carcinomas [14-17]. In
addition to genomic instability, epigenome abnormality
has also been described in several cancer types, although
most prominent in colorectal cancer [18]. Cancers with
the CpG island methylator phenotype have frequent DNA
hypermethylation in gene promoter regions, often re-
sulting in gene silencing [19]. Recently, we described
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genome-wide instability acting also on the level of the
transcriptome in colorectal cancer, affecting the pre-
mRNA splicing process [20]. This transcriptome instabi-
lity (TIN) was characterized by large variation in amounts
of aberrant inclusion and skipping of exons in colorectal
cancer samples. These amounts were shown to be strongly
associated with both the expression levels of pre-mRNA
splicing factors and poor prognosis for patients with colo-
rectal cancer [20].

RNA splicing is a tightly regulated and highly tissue
specific process that can occur by a number of different
modes [21]. Alternative splicing modes include differen-
tial inclusion of whole exons (cassette exons) or parts of
exons (alternative 5’ or 3’ splice sites), intron retention,
mutual exclusion of cassette exons, alternative ordering
of exons (exon scrambling) [22], and splicing of exons
encoded by different genes (trans-splicing) [23]. Such
alternative splicing is a major source of functional diver-
sity in the human genome [24]. Nearly all multi-exon
genes are alternatively spliced, predicted to undergo on
average seven alternative splicing events during tissue
development and across tissue types [25,26]. In cancer,
the RNA splicing pathway is commonly disrupted, as
evident by aberrant, disease-specific splicing patterns
[27]. There is a large collection of proteins regulating
the splicing process, and genes encoding these splicing
factors have been identified as cancer critical genes, as is
the case with SRSF1 [28]. Splicing factors have been
found to be both differentially expressed [29] and com-
monly mutated in cancer [30-32]. Hence, there is tre-
mendous potential for splicing variation in the cancer
transcriptome.

In the present study, we describe TIN in several major
types of malignancies, including breast cancer, cervical
cancer, colorectal cancer, lung cancer, and prostate cancer.
By analyzing exon microarray profiles for alternative spli-
cing, we characterized the individual samples within the
datasets for relative amounts of aberrant exon skipping
and inclusion. In cancer types with TIN, we found strong
and non-random associations between these amounts and
the expression levels of splicing factors. Surprisingly, this
association was intact in pan-cancer analysis of the TIN-
cancers, indicating that the pronounced tissue specificity
found in corresponding analyses across normal tissue
types and paired cancer-normal samples was lost.

Results

Strong correlations between TIN-estimates and expression
levels of splicing factors

Exon microarray profiles for 555 samples from ten dif-
ferent cancer datasets and 93 samples from four normal
tissue datasets (Table 1) were analyzed for genome-wide
alternative splicing variation. The lower and upper 1* per-
centiles of alternative splicing (FIRMA) scores within each
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dataset were used as threshold values to designate exons
as aberrantly spliced (range —2.4 to —2.0 and 1.8 to 2.1, re-
spectively; log2-scale; Table S1 in Additional file 1).
Sample-wise amounts of aberrant exon skipping and in-
clusion were calculated as the number of exons exceeding
these threshold values (Additional file 1: Table S1). These
sample-wise amounts of aberrant splicing, relative to the
average amount within the dataset, are referred to as TIN-
estimates. The TIN-estimates and range of TIN-estimates
(the difference between the sample with the highest and
lowest estimate) were similar within all datasets (average
range 3.4; Additional file 1: Table S1). There was no
correlation in TIN-estimates between paired cancer and
normal samples from the colon (n=19), lung (n=20),
prostate (n=29), or stomach (n=23; Additional file 1:
Figure S1). In the breast cancer dataset, there were signifi-
cantly lower TIN-estimates in estrogen and progesterone
receptor positive than negative samples (P=0.04, inde-
pendent samples t-test; Additional file 1: Figure S2). Also,
there were significant differences in TIN-estimates bet-
ween histological subtypes of both cervical cancer and
lung cancer series II. In the cervical cancer dataset, adeno-
carcinomas had higher TIN-estimates than squamous cell
carcinomas (P = 0.002), whereas the opposite was found in
lung cancer series II (P <0.001; Additional file 1: Figure
S2). There were no associations between TIN-estimates
and sample characteristics in any of the other datasets
(characteristics listed in Table 1).

For samples in seven of the cancer datasets (breast can-
cer, cervical cancer, colorectal cancer series I and II, lung
cancer series II, and prostate cancer series I and II), the
sample-wise TIN-estimates correlated strongly with the
expression levels of pre-mRNA splicing factors (n = 280).
The amount of significantly correlated splicing factor
genes (Pearson correlation, P<0.05) ranged from 41%
(colorectal cancer series I) to 70% (prostate cancer series
I) within the datasets (Figure 1a). There was a clear prefer-
ence for negative correlation, and the average correlation
coefficients for the significantly correlated genes ranged
from -0.5 to -0.3 (colorectal cancer series I and II, re-
spectively). In these datasets, samples were also separated
according to TIN-estimates when performing unsuper-
vised hierarchical clustering analyses by the expression
levels of all splicing factors (Additional file 1: Figure S3).
Principal components analyses based on splicing factor
gene expression corroborated these results (Figure 1b). In
general, samples with low TIN-estimates (<-1.0) were
separated from samples with high TIN-estimates (>1.0),
although not perfectly in colorectal cancer series II and
prostate cancer series I. This association between TIN-
estimates and expression levels of splicing factors was less
clear in the other three cancer datasets (gastric cancer,
lung cancer series I, and neuroblastoma; Figure 1). Here,
the amount of significantly correlated splicing factor genes
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Table 1 Samples included in the study
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Tissue Samples Histology Other sample characteristics GEO accession Literature
number references
Breast cancer 84 - Hormone receptor status: HER2-positive  GSE16534 [45]
(n = 35); ER/PR-positive (n = 25); ER/PR/
HER2-negative (n =24)
Cervical cancer 28 Squamous cell carcinoma (n=19); - GSE27388 [44]
adenocarcinoma (n=9)
Colorectal cancer 26 Adenocarcinoma - GSE16534 [45]
series |
Colorectal cancer 101" Adenocarcinoma Stage: Stage | (n=28); stage Il (n=34); GSE24550 [20,49]
series Il (n=55); GSE29638
stage Ill (n =26); stage IV (n=13) (n=46)
MSl-status: MSI-high (n =21); MSS/
MSl-low (n=77); NA (n=3)
Gastric cancer 25 Adenocarcinoma Stage: Stage | (n=28); stage Il (n=4); GSE13195 -
stage lll (n=15); stage IV (n=8)
Lung cancer 20 Non-small-cell lung adenocarcinoma Stage: Stage | (n=12); stage Il (n=3); GSE12236 [48]
series | stage Il (n=5)
Lung cancer 43 Non-small-cell lung adenocarcinoma (n=21) - GSE16534 [45]
series Il and squamous cell carcinoma (n=22)
Neuroblastoma 47 - Stage: stage | (n=10); stage IV (n=37) GSE27608 [43]
Prostate cancer 131 Adenocarcinoma Gleason grade: Grade 5 Pathologic T stage: stage 2 (n = 85); GSE21034 [47]
series | (n=1);, grade 6 (n=77); grade 7 (N =42), stage 3 (n=40); stage 4 (n=6)
grade 8 (n=7); grade 9 (n=4)
Prostate cancer 50° Gleason grade: Grade 5 (n=2); grade 6 Pathologic T stage: stage 2 (n=26), GSE42954 [46]
series Il (n=15);, grade 7 (n=32); grade 9 (n=1) stage 3 (n=24)
Normal colonic 21° 19 samples corresponding to tumors GSE42690 (n=19); [20,49]
mucosa from GSE24550 and GSE29638 GSE29638 (n=2)
Normal lung 20 Corresponding to tumors from GSE12236 [48]
GSE12236
Normal prostate 29 Corresponding to tumors from GSE21034 [47]
GSE21034
Normal stomach 23° Corresponding to tumors from GSE13195 -

GSE13195

2Patient samples analyzed in-house ®Two samples from the GEO entry (GSM333256 and GSM333270) were excluded due to failure of reading the raw data files.
Abbreviations: GEO Gene Expression Omnibus, MSI microsatellite instability, MSS microsatellite stable, NA not available T tumor.

ranged from 2% (lung cancer series I) to 10% (neuroblas-
toma). Analyses of the datasets with normal samples indi-
cated associations between TIN-estimates and expression
levels of splicing factors also in non-cancerous tissues,
with strongest associations in normal colonic mucosa
(Additional file 1: Figure S4). This variance between the
datasets showed no associations to quality control metrics
of the exon microarray data (Additional file 1: Figures S5
and Additional file 1: Figure S6). The three cancer data-
sets not showing associations between TIN-estimates
and expression levels of splicing factors had similar quality
control metrics to the other datasets, whereas the dataset
showing most deviance during quality control (cervical
cancer), showed strong associations.

To test whether the observed associations between
TIN-estimates and expression levels of splicing factors
were greater than expected by chance, comparisons were
made with random gene sets of equal size (n = 1,000 sets

of 280 genes; calculation of percentage of genes in each
random gene set with expression levels significantly cor-
related with the TIN-estimates), and permutations of the
TIN-estimates in each dataset (n=1,000 permutations;
calculation of percentage of splicing factor genes with
expression levels significantly correlated with each round
of permutation). Corresponding with the results above,
the same seven cancer datasets that showed strongest
associations, also had higher amounts of splicing factor
genes with expression levels significantly correlated with
the TIN-estimates than was expected by chance (P < 0.001),
as opposed to the other three cancer datasets (Figure 2).
The same results were obtained also when analyzing
correlation strengths (Additional file 1: Figure S7). Inter-
estingly, all the normal tissue datasets also had higher per-
centages of splicing factor genes with expression levels
that were significantly correlated with the TIN-estimates
than expected by chance (Additional file 1: Figure S8).
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(See figure on previous page.)

principal component.

Figure 1 TIN-estimates are associated with the expression levels of splicing factor genes in seven cancer datasets. (a) In seven of the
cancer datasets (plots with grey background) there were strong and significant correlations (horizontal axes) between TIN-estimates and the expression
levels of >41% of the totally 280 splicing factor genes. In the other three datasets, the correlations were mainly non-significant. Yellow and grey bars
represent the percentages of splicing factor genes with significant and non-significant correlations, respectively. (b) In two-dimensional principal
components analysis based on the expression levels of splicing factor genes (n = 280), samples were generally separated according to TIN-estimates
(only samples with TIN-estimates > +1.0 were included, the number and percentages of samples are indicated for each dataset) in the same seven
datasets (with grey background). In colorectal cancer series Il and prostate cancer series |, the separation was not complete. In the gastric cancer
dataset and lung cancer series |, there were few samples with TIN-estimates > +1.0. In the neuroblastoma dataset, there was no clear separation. PC,

The association was particularly strong in normal colonic
mucosa, where 56% of the splicing factors were signifi-
cantly correlated.

Also in comparison with all gene sets included in the
Molecular Signatures Database v3.1 (MSigDB; annotated
with Gene Ontology terms; n = 1,454 gene sets), as well as
with the full genome (n = 17,881 genes), the splicing factor
gene set (and other splicing-related gene sets included in
MSigDB) had high amounts of genes with expression
levels significantly correlated with TIN-estimates in the
same seven cancer datasets (Additional file 1: Figure S9).

The percentage of TIN-samples (samples with TIN-
estimates > +1.0) in each dataset varied from 0 in lung can-
cer series I to 48% in prostate cancer series I (Figure 1b).
The datasets with the highest percentages also had higher
amounts of splicing factor genes with expression levels sig-
nificantly correlated with the TIN-estimates (Additional
file 1: Figure S10). We consider this to strengthen the no-
tion that tissue and cancer types with high variation in
splicing also have a correspondingly high variation in spli-
cing factor expression.

Inverse relationship between TIN-estimates and expression

levels of splicing factors

In the seven cancer datasets with strong associations bet-
ween TIN-estimates and expression levels of splicing fac-
tors, the associations were mainly inverse. The amount of
genes with expression levels that were negatively corre-
lated with the TIN-estimates (289% of the significantly
correlated splicing factor genes in all seven datasets) was
much larger than the amount of positively correlated
genes, with ratios ranging from 8 in prostate cancer series
IT to 97 in prostate cancer series I. This ratio of negative
vs. positive correlations was significantly higher than ex-
pected by chance (again compared with random gene sets
and permutations of the amounts of aberrant exon usage;
P <0.001; Figure 3). This significant shift towards negative
correlation was not found in the three cancer datasets
with weak associations between TIN-estimates and ex-
pression levels of splicing factors (ratios ranging from 1 to
2; Figure 3). In the normal tissue types, there was also a
significant, but less pronounced shift towards negative
correlation. Here, the ratios of the amounts of significant

negatively vs. positively correlated splicing factor genes
ranged from 4 (normal colonic mucosa) to 30 (normal
stomach; Additional file 1: Figure S11).

Also in comparison with gene sets in MSigDB, as well
as with the full genome, the splicing factor gene set (and
other splicing-related gene sets included in MSigDB) had
a strong shift towards negative correlation in the same
seven cancer datasets (Additional file 1: Figure S12).

Transcriptome instability as a pan-cancer characteristic

Although the individual normal tissue datasets showed
strong correlations between the TIN-estimates and ex-
pression levels of splicing factors, this association was
lost in pooled analyses of the normal tissues (n=91) of
four different origins. Again, this was tested by calcu-
lating the correlation between TIN-estimates and ex-
pression levels of splicing factors across all the different
normal tissue types, and comparing with random gene
sets and permutations of the TIN-estimates (Figure 4a).
This is compliant with the previously described tissue
specificity in both splicing patterns [25,33] and expres-
sion levels of splicing factors reviewed in [34]. The same
results were found from analysis of the paired cancer-
normal sample sets (except for in the colon; Additional
file 1: Figure S13), again in agreement with the fact that
pre-mRNA splicing is differentially regulated also bet-
ween cancer and normal tissues [27]. Surprisingly, when
doing the same comparisons across the cancer types
with strong associations between TIN-estimates and
splicing factor expression, the strong and non-random
associations prevailed (P < 0.001; Figure 4b; for this ana-
lysis, 20 samples were randomly selected from each of
the five cancer types, to assess splicing patterns across
similar numbers of samples as for the normal tissues.
For cancer types represented by two datasets, samples
were selected from the datasets with paired normal sam-
ples, i.e. colorectal cancer series II and prostate cancer
series I). In these pan-cancer analyses, there was a much
higher amount of significant negatively than positively
correlated splicing factor genes (232 genes compared
with 14 genes, ratio 17; also this higher than expected by
chance, compared with random gene sets and permutations
of the TIN-estimates, P < 0.001; Figure 4b). When limiting
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Figure 2 Correlation between TIN-estimates and splicing factor expression compared with random gene sets and permuted TIN-estimates.
In seven of the cancer datasets (with grey background), high percentages of the 280 splicing factor genes had expression levels that were significantly
correlated (P < 0.05; Pearson correlation) with the sample-wise TIN-estimates (41% to 70%; red dots; horizontal axis). This was more than expected

by chance, as compared with genes in each of 1,000 random sets of 280 genes (bar graphs in light blue) and with 1,000 permutations of the TIN-estimates
(bar graphs in dark blue). In the other three cancer datasets (no background), the percentages of significantly correlated splicing factor genes were much
lower and not higher than expected by chance.

the analyses to cancer samples for which paired normal Discussion

samples were available, the results were corresponding.
Non-random associations between TIN-estimates and
splicing factor expression were found only in analyses
across colorectal cancer series II and prostate cancer series
I (Additional file 1: Figure S13). This indicates that TIN
is a shared molecular characteristic across the affected
cancer types.

We have previously proposed genome-wide instability of
the transcriptome as a molecular, pre-mRNA splicing re-
lated characteristic of colorectal cancer. Here, we show
data indicating that the transcriptomes of several, but
not all, other types of solid tumors also have this feature.
Common cancers of the breast, cervix, large bowel, lung,
and prostate all show large variation in sample-wise
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Figure 3 Negative correlation between TIN-estimates and splicing factor expression in the cancer datasets. In the seven cancer datasets
(grey background) with strong associations between TIN-estimates and expression levels of splicing factors (n = 280), the relationship was inverse,
with a much higher percentage of significant negatively (horizontal axes) than positively (vertical axes) correlated splicing factor genes (red). This
shift was higher than expected by chance, as demonstrated by comparisons with genes in each of 1,000 random sets of 280 genes (light blue),

and with each of 1,000 permutations of the TIN-estimates (dark blue). This significant shift towards negative correlation was not found in the
three cancer datasets with weak associations between TIN-estimates and splicing factor expression (no background).

amounts of aberrant exon skipping and inclusion (TIN-
estimates) that are significant negatively correlated with
the expression levels of splicing factor genes. Such as-
sociations were also found within healthy tissue types,
although to less extent. This is consistent with the fact
that most tissues exhibit great and tightly regulated
splicing variation. However, the splicing patterns were
clearly distinct between healthy tissues and their ma-
lignant counterparts, as shown by discordant TIN-

estimates between paired cancer and normal samples in
all the four different tissue types analyzed. This is in
compliance also with the original TIN-report, showing
that colorectal cancers have higher TIN-estimates than
normal colonic mucosa [20]. Furthermore, in analysis
across the various healthy tissues, the correlation bet-
ween TIN-estimates and expression levels of splicing
factors was not greater than expected by chance. This
indicates a failure to detect a common pattern of
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Figure 4 Correlation between TIN-estimates and splicing factor expression in pooled tissue types. The left and right plots correspond to
plots in Figures 2 and 3, respectively. (a) In pooled analyses of samples from four different normal tissues, the percentage of splicing factor genes
(totally 280 genes; red dots) with expression levels that were significantly correlated with the TIN-estimates (P < 0.05; Pearson correlation), was not
higher than expected by chance, as demonstrated by comparison with genes in each of 1,000 random sets of 280 genes (light blue) and with
1,000 permutations of the TIN-estimates (dark blue; left plot). The ratio between the amounts of significant negatively and positively correlated
splicing factor genes was 2 (right plot). (b) Contrarily, across 20 randomly selected samples from each of five different cancer types with strong
associations between TIN-estimates and splicing factor expression (breast cancer, cervical cancer, colorectal cancer series I, lung cancer series I,
and prostate cancer |) the percentage of splicing factor genes with expression levels that were significantly correlated was higher than expected
by chance (left plot). Also, there was a significant shift towards negative correlation (the ratio between the amounts of splicing factors genes with

expression levels that were significant negatively and positively correlated was 17; right plot).

regulation, and that the splicing process is predomin-
antly tissue specific in healthy tissues. Interestingly, in
pan-cancer analyses, the strong associations with expres-
sion levels of splicing factors prevailed. These results
suggest that TIN is a pan-cancer characteristic, clearly
distinguished from normal splicing variation and splicing
factor expression.

The importance of molecular pan-cancer analyses has
recently been illuminated by The Cancer Genome Atlas

Pan-Cancer project [35]. The recognition that cancers
from separate organs may have shared molecular fea-
tures, while cancers from the same organ may be dis-
tinct, has great potential influence both biologically, on
our understanding of the tumorigenic process, and clin-
ically, for example for more personalized and targeted
treatment strategies. Furthermore, pan-cancer analyses
may aid in the identification of novel cancer-critical
genes not disclosed in individual cancer types because of
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low mutation rates [36]. With regard to pan-cancer ana-
lysis of alternative splicing, mutation of the splicing factor
gene U2AF1 has been shown to result in both distinct and
equal aberrant splicing events in lung adenocarcinoma
and acute myeloid leukemia [37], indicating both specific
and common regulation in the two cancer types. Here,
from integrated expression analyses of a comprehensive
collection of splicing factor genes, we have described TIN
both within and across individual cancer types, suggesting
that TIN is a general characteristic of cancer. Closer
inspection of individual splicing factor genes revealed dif-
ferences between the cancer types with respect to which
genes were most closely associated with the aberrant spli-
cing amounts (data not shown). No single splicing factor
gene seceded in these pan-cancer analyses, suggesting that
there is no dependency for the involvement of specific
splicing factors in the establishment of TIN.

In this study, genome-wide analyses of alternative
splicing were performed by computational analyses of
exon-level microarray data. Although experimental work
is needed to elucidate the functional mechanisms, an
underlying biological explanation for the observed va-
riation is suggested by the strong and non-random asso-
ciations with the expression levels of splicing factors in
several cancer types. In fact, this association increased
with increasing splicing variation, as indicated by the cor-
relation between the amount of TIN-samples per dataset
(samples with TIN-estimates > +1.0) and the number of
splicing factor genes with expression levels that were sig-
nificantly correlated with the TIN-estimates. Also worth
noting is the striking inverse nature, with the great major-
ity of splicing factors having expression levels that were
negatively correlated with the TIN-estimates. Altogether,
this suggests a mechanism in which decreased expression
levels of splicing factors result in more aberrant exon skip-
ping and inclusion. The fact that the majority of splicing
factors are involved in several cancer types suggests a
genome-wide mechanism. This is consistent with previous
reports showing a coordinated regulation of RNA splicing
by numerous splicing factors [38].

To describe TIN as a genuine molecular pan-cancer
characteristic, identification of individual, aberrant splicing
events and functional validation of their correlations with
splicing factor expression levels are warranted. Such ana-
lyses are complicated by the genome-wide nature of the
described associations. No single splicing factor is likely to
account for all the observed variation. This situation re-
sembles the obstacles faced also when characterizing the
now well established genetic and epigenetic genome-wide
phenotypes (with the exception of microsatellite instability
found in subgroups of certain cancer types). However, we
anticipate that ongoing RNA sequencing efforts will be
highly valuable in gaining further insights into the pro-
posed TIN characteristic.
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There are various non-biological factors that may have
influenced the splicing variation observed in this study.
Firstly, the analyses are sensitive to the sizes of the data-
sets, and the variation in TIN-estimates increased with
sample numbers (data not shown). This is an inherent
consequence of the analyses, as differential exon skipping
and inclusion were detected relative to all included sam-
ples. Secondly, technical variation in the microarray data
may also have contributed. Accordingly, thorough quality
control of the data was performed, and the extent of cor-
relations between splicing variation and expression levels
of splicing factors in each dataset, was independent of
various quality control metrics. However, the failure to de-
tect the strong association between splicing variation and
splicing factor expression in three of the cancer datasets
(gastric cancer, lung cancer series I, and neuroblastoma)
may be attributable to non-biological features of the data
rather than inherent characteristics of the cancer types. In
particular, the two datasets from lung cancer showed
conflicting results, with strong associations between the
sample-wise TIN-estimates and splicing factor expression
in series II, but not in series I. Both these patient series
consist of non-small-cell carcinomas, but series I com-
prises adenocarcinomas only, whereas series II also
includes squamous cell carcinomas. Although the TIN-
estimates were significantly higher in the squamous cell
carcinomas than the adenocarcinomas in lung cancer
series I, the subtypes individually showed strong associa-
tions between the TIN-estimates and the expression levels
of splicing factors (data not shown). For the other two
cancer types represented by two datasets, colorectal can-
cer and prostate cancer, strong associations were clearly
indicated in both datasets.

Splicing factor encoding genes have previously been
nominated as cancer-critical based on their altered ex-
pression levels [28]. Recently, individual splicing factor
genes have also been found to be commonly mutated in
different cancer types, and this has been shown to have
important implications for carcinogenesis [30-32,39,40].
In this study, mutation analyses have not been con-
ducted. Furthermore, only the splicing events aberrant
skipping and inclusion of cassette exons, as well as in-
tron retention, have been considered. Although these are
the most common modes of splicing [41], a complete
view of the genome-wide effects of splicing factor ex-
pression on the splicing process should also consider the
other events regulated by splicing factors (alternative 5’
and 3’ splice sites, patterns of mutual exclusion, trans-
splicing, and exon scrambling).

Although premature, the implications of TIN as a com-
mon and novel, genome-wide characteristic of epithelial
cancers are intriguing and warrant further investigation.
Similarly to the genetic and epigenetic genome-wide phe-
notypes that have been proven to be important clinical
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characteristics, allowing for sub-grouping of patients ac-
cording to prognosis [13,16] and tumor histology [42],
TIN may also have clinical potential. Previously, we have
shown that TIN is associated with adverse outcome for
patients with stage II and III colorectal cancer [20].

Conclusions

By computational analysis of alternative splicing based on
exon-level microarray data, we show that common types
of solid cancers (including breast, cervical, colorectal,
lung, and prostate cancers) exhibit large variation among
samples in amounts of aberrant skipping and inclusion
that are non-randomly associated with the expression
levels of splicing factors. Importantly, this type of tran-
scriptome instability is a pan-cancer characteristic, as op-
posed to the tissue specificity prevailing in healthy tissues.
Functional evaluation of the associations between this
splicing pattern and the expression levels of splicing fac-
tors is needed to determine if transcriptome instability is a
genuine phenotype of solid cancers.

Methods
Patient material
In this study, genome-wide expression data at the exon
level for a comprehensive collection of 555 tissue samples
from seven types of solid tumors, including the four most
common, breast, colorectal, lung, and prostate, have been
analyzed. Additionally, the study comprises expression
data for a total of 93 normal tissue samples, including
paired samples from cancers of the colon, lung, prostate,
and stomach. All exon-level microarray datasets (Affyme-
trix HuEx-1_0-st-v2 arrays) with more than 20 cancer
samples that have been made publically available by us
and others have been included [20,43-49], except 83 colo-
rectal cancer samples in GSE24549, which we previously
used to describe TIN [20]. An overview of the datasets,
with available clinical information of the tissue samples, is
found in Table 1. From each of colorectal cancer, lung
cancer and prostate cancer, two datasets have been in-
cluded and are referred to as series I and II, respectively.
Colorectal cancer series II is an in-house, consecutive
series of stage I — IV cancers (90% inclusion rate), col-
lected at Aker University Hospital, Oslo, Norway, between
2005 and 2007. This series also comprises 21 normal co-
lonic mucosa samples (including 6 that have not been
published before) taken from disease-free areas distant to
the primary tumors (19 matched sample pairs are in-
cluded). Prostate cancer series II is also an in-house series,
consisting of 50 primary tumor samples from a con-
secutive series of 200 clinically localized cancers treated
with radical prostatectomy at the Portuguese Oncology
Institute, Porto, Portugal.

The analysis of the additional samples published
herein has been approved by the institutional review
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boards (the Regional Committee for Medical and Health
Research Ethics, number 1.2005.1629; and reference
[46]), which involves that informed consent is obtained
from patients being enrolled to the study.

Alternative splicing analysis
All 648 samples have been analyzed for gene expression
at the exon level by the Affymetrix GeneChip Human
Exon 1.0 ST Array (Affymetrix Inc, Santa Clara, CA,
USA). This array contains approximately 6 million dif-
ferent probes, providing genome-scale, exon-resolution
expression measures. Each probe set consists of an aver-
age of four probes and generally corresponds to one
exon. For each sample, 284,258 probe sets belonging to
the ‘core’ set of probes targeting well annotated exons
were analyzed, using an annotation file custom-made for
alternative splicing analysis with the Finding Isoforms
using Robust Multichip Analysis (FIRMA) algorithm
(HuEx-1_0-st-v2,coreR3,A20071112,EP.cdf) [50,51].
Probe cell intensity (CEL) files storing raw data for each
of the samples were used as input for preprocessing and
alternative splicing analysis with the FIRMA algorithm
implemented in the R software environment [52] (GEO
accession numbers of both public and previously unpub-
lished data are indicated in Table 1). This provided the
basis for calculations of sample-wise amounts of aberrant
exon skipping and inclusion within the datasets, as we
have also previously described [20]. The first two steps of
FIRMA follow the RMA approach [53] for background
correction of individual probes based on GC-content, and
for inter-chip quantile normalization. Then, alternative
splicing scores (FIRMA scores) are calculated for each in-
dividual exon in each individual sample, as the deviance
between the exon level and corresponding overall gene
level expression measures. These scores represent the re-
siduals from fitting gene level models to the exon level
data, according to the mapping provided in the custom-
made annotation file. The FIRMA scores were log2-
transformed. Strong positive and negative scores reflect
differential exon inclusion and skipping, respectively,
compared with the rest of the samples in the dataset. The
lower and upper 1* percentiles of FIRMA scores across
each dataset (Additional file 1: Table S1) were used as
thresholds for identification of deviating (aberrant) exon
skipping and inclusion, respectively. Sample-wise amounts
of exons with aberrant splicing patterns were summa-
rized from the exons exceeding these threshold values.
Amounts of aberrant exon skipping or inclusion per sam-
ple are presented on a log2-scale, relative to the average
sample-wise amount within the individual datasets. As a
measure of TIN, aberrant exon skipping and inclusion
were summarized. This TIN-estimate thus represents the
total amounts of aberrant exon inclusion and skipping per
sample (on a log2-scale), relative to the average amount
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within the dataset. TIN-estimates >1.0, indicating twice as
much aberrant exon skipping and inclusion as the average
sample, and < -1.0, indicating half as much as the average
sample, are used as a thresholds for characterizing sam-
ples with TIN (TIN-samples). In comparisons across data-
sets, alternative splicing analyses by the FIRMA algorithm,
and calculation of sample-wise TIN-estimates, were done
across all the samples included in each comparison, as
indicated.

Statistical analyses

Statistical analyses were conducted in the R software
environment (version 2.15.1). Permutations of TIN-esti-
mates across the samples, and generation of random gene
sets were done using the sample() function. Pearson corre-
lations and two-sided Student P-values were calculated
using the corAndPvalue() function in the WGCNA pack-
age [54]. Hierarchical clustering analyses with Euclidean
distance metrics and complete linkage were done using
J-Express 2011 (MolMine AS, Bergen, Norway). To
corroborate the results from the clustering analyses,
principle components analysis by singular value decom-
position of the covariance matrix was performed using the
prcomp() function in R. The component scores for the
first two principal components are used to illustrate two-
dimensional sample separation based on the input gene
expression variables.

Quality control of microarray data

The analyses presented in this study are potentially
sensitive to the quality of the microarray data. Hence,
exon-level quality control of all included samples was per-
formed (Supplementary Methods in Additional file 1).
All cancer (Additional file 1: Figure S5) and normal
(Additional file 1: Figure S6) samples were preprocessed
together and compared using the quality assessment met-
rics recommended by Affymetrix [55] and reported by the
Affymetrix Expression Console™ software.

Splicing factors and miscellaneous gene sets
We have created a comprehensive list of 280 splicing factor
genes by combining search results from public annotation
databases, as previously described [20]. Gene-level expres-
sion measures of these splicing factors were obtained from
the CEL files of all samples included here. The CEL files
were preprocessed across the datasets by the RMA ap-
proach [53], performing background correction, inter-chip
quantile normalization, and gene-level summarization. For
this, the Affymetrix Expression Console™ 1.1 software and
Affymetrix HuEx-1_0-st-v2.r2 gene-core library files were
used.

For comparison with the splicing factor genes, all the
1,454 Gene Ontology gene sets (the Gene Ontology Pro-
ject [56]) collected in MSigDB [57] were also included.
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This collection of gene sets (ranging in size from 10 to
2,131 genes) comprises 8,282 unique genes, correspon-
ding to 7,923 transcript clusters on the exon arrays
(matched by gene symbols), thus representing 44% of
the genes on the arrays. These gene sets are available
from the “TIN’ analysis package.

Previously unpublished microarray data have been de-
posited to the NCBI's Gene Expression Omnibus (GEO;
accession numbers GSE42690 and GSE42954). R codes
for alternative splicing analyses, statistical analyses, and
plotting functions have been collected in a new Bio-
conductor package called “TIN’. This package is available
for download from http://www.bioconductor.org/. A de-
scription of the package, with analysis protocols and R
codes can also be found at this web site.

Availability of supporting data

The data sets supporting the results of this article are
available in the NCBI's Gene Expression Omnibus re-
pository, GSE42690 and GSE42954.

Additional file

[ Additional file 1: Supplementary Methods, Table S1, Figures S1-S13. ]
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