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Abstract

Background: Development of crop varieties with high nitrogen use efficiency (NUE) is crucial for minimizing N loss,
reducing environmental pollution and decreasing input cost. Maize is one of the most important crops cultivated
worldwide and its productivity is closely linked to the amount of fertilizer used. A survey of the transcriptomes of
shoot and root tissues of a maize hybrid line and its two parental inbred lines grown under sufficient and limiting
N conditions by mRNA-Seq has been conducted to have a better understanding of how different maize genotypes
respond to N limitation.

Results: A different set of genes were found to be N-responsive in the three genotypes. Many biological processes
important for N metabolism such as the cellular nitrogen compound metabolic process and the cellular amino
acid metabolic process were enriched in the N-responsive gene list from the hybrid shoots but not from the
parental lines’ shoots. Coupled to this, sugar, carbohydrate, monosaccharide, glucose, and sorbitol transport
pathways were all up-regulated in the hybrid, but not in the parents under N limitation. Expression patterns also
differed between shoots and roots, such as the up-regulation of the cytokinin degradation pathway in the shoots
of the hybrid and down-regulation of that pathway in the roots. The change of gene expression under N limitation
in the hybrid resembled the parent with the higher NUE trait. The transcript abundances of alleles derived from
each parent were estimated using polymorphic sites in mapped reads in the hybrid. While there were allele
abundance differences, there was no correlation between these and the expression differences seen between the
hybrid and the two parents.

Conclusions: Gene expression in two parental inbreds and the corresponding hybrid line in response to N limitation
was surveyed using the mRNA-Seq technology. The data showed that the three genotypes respond very differently to
N-limiting conditions, and the hybrid clearly has a unique expression pattern compared to its parents. Our results
expand our current understanding of N responses and will help move us forward towards effective strategies to
improve NUE and enhance crop production.
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Background

Nitrogen (N) is the most important inorganic nutrient
for plant growth. The production of high-yielding crops
is associated with the application of large quantities of N
fertilizers [1]. The addition of N fertilizer is typically the
single highest input cost for many crops and since its
production is energy intensive, this cost is dependent on
the price of energy [2]. Incorporation of N into agricul-
tural crops, however, rarely exceeds 40% of the applied
N, indicating a serious inefficiency in N utilization [3,4].
The remaining N from fertilizer is lost to the atmos-
phere or leached to the groundwater and other fresh-
water bodies, which is causing serious N pollution and
becoming a threat to global ecosystems [3,4]. Therefore,
to minimize the loss of N, reduce environmental pollu-
tion and decrease input cost, it is crucial to develop crop
varieties with high nitrogen use efficiency (NUE) [5,6].

While improved agricultural practice is one way to in-
crease NUE [7], it is also crucial to understand more
about the genetics of NUE in order to select better var-
ieties. Several studies have presented evidence that natural
variation exists in Arabidopsis for nitrogen metabolism,
including nitrogen uptake and nitrogen remobilization
(reviewed by [8-10]). Genetic differences in N uptake and/
or grain yield per unit of N applied have also been re-
ported in different crops including wheat, rice, maize, sor-
ghum, and barley [11-16].

Maize is one of the most important crops cultivated
worldwide and a large amount of fertilizer is used for its
production. Genetic variation in maize such as in N-
remobilization and post-silking N-uptake, nitrogen me-
tabolism, nitrogen management, and senescence have
been reported [17-21]. Although some physiological and
phenotypic analyses have been done [1], the molecular
knowledge governing genetic variation among different
varieties for NUE is poorly understood. In a previous
study, we developed a hydroponic growth system and
tested two inbred lines and their hybrid that were differ-
ent in their NUE at maturity under N limitation [22].
One parent, SRG200, showed a higher NUE than the
other parent SRG100. Differences between these genetic
lines were found after phenotypic, molecular, and meta-
bolic factors were tested at an early vegetative stage and
transcriptional analysis on a small number of selected
genes involved in N metabolism was conducted [22]. To
have a better understanding of how different maize ge-
notypes respond to N limitation, we used whole tran-
scriptome sequencing (mRNA-Seq) to conduct a survey
of the transcriptomes of these SRG100, SRG200, and
their hybrid under sufficient and limiting N conditions.
The primary objectives of this study were to observe the
major differences in gene expression among these three
lines responding to N limitation, to distinguish the con-
tribution of each parental line to gene expression in the
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hybrid line, and to discover whether these differences in
expression correlate with the differences in the NUE
trait studied.

Results

Transcriptomes of the two inbred parental lines and the
hybrid line under sufficient and limiting N conditions

The two inbred lines, SRG100 and SRG200, and the hybrid
line, SRG150, were grown under sufficient (3 mM) and
limiting (1 mM) N conditions as described previously [22].
To profile the transcriptome, mRNA from leaves and roots
of SRG100, SRG200, and SRG150 plants grown under the
two N conditions were extracted, fragmented, and used
for c¢cDNA synthesis. Libraries were constructed and
mRNA-Seq was performed (see details in Methods). 64-79%
of total paired reads were aligned to the B73 reference
genome (Table 1) and aligned sequences were assembled
with Cufflinks guided by a reference annotation from
Ensembl Genomes (zea_mays. AGPv2.62.gtf). The com-
pleted assembly contains 119,020 genes (the maize working
gene set (WGS), the set of evidence-based and predicted
genes, has 110,028 genes, and the filtered gene set (FGS),
a subset of the WGS, has 39,656 genes). The percentage
of mapped reads, genes with fragments per kilobase of
exon per million mapped reads (FPKM) > 0, > 1, or > 5 are
summarized in Table 1. A transcript was considered to be
expressed if its normalized expression value was greater
than one FPKM [23,24], and if it was part of the FGS
version 5b.60 (maizesequence.org). More genes were
expressed under N limitation than under sufficient N, with
a 4-8% higher number if the FPKM cutoff is greater than 1,
and with a 9-26% higher number if FPKM cutoff is greater
than 5 (Table 1). The original datasets have been deposited
in the Sequence Read Archive (SRA), with the accession ID
SRP033653 and the following link: http://www.ncbi.nlm.nih.
gov/sra/?term=SRP033653.

Identification of differentially expressed genes in leaves
and roots of the three genotypes under limiting N
conditions

Pairwise comparisons were made within root or leaf tissue
of each genotype between the sufficient and low nitrogen
conditions. Differentially expressed (DE) genes were iden-
tified if the FPKM for a gene was greater than 1 in at least
one of the two conditions being compared and the p-value
after adjusting for false discovery was less than 0.05. With
these criteria, 688, 322, and 643 genes were significantly
differentially expressed in SRG100, SRG200, and SRG150
leaves, with 163, 134, 253 up-regulated and 525, 188, 390
down-regulated under N limitation, respectively (Table 2).
In the roots, 675, 585, and 725 genes were significantly dif-
ferentially expressed in SRG100, SRG200, and SRG150,
with 237, 246, and 184 up-regulated and 438, 339, and 541
down-regulated, respectively, under N limiting conditions
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Table 1 Expressed genes in all the samples
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Genotype N condition Tissue % of total # genes (FGS) >0 # genes (FGS) >1 # genes (FGS) >5

paired reads FPKM (% difference FPKM (% difference FPKM (% difference
under N limitation) under N limitation) under N limitation)

SRG100 Limiting Leaf 75.97 28048 (-3.2) 18783 (5.9) 11543 (15)

SRG200 Limiting Leaf 77.57 26022 (-7.5) 17953 (8.0) 10496 (20)

SRG150 Limiting Leaf 7735 27578 (-4.6) 18506 (7.5) 10785 (20)

SRG100 Limiting Root 7549 29527 (-2.8) 21314 (83) 13574 (26)

SRG200 Limiting Root 7591 30082 (-1.9) 21509 (6.1) 13713 (20)

SRG150 Limiting Root 7940 29935 (-2.8) 21745 (4.3) 13962 (9)

SRG100 Sufficient Leaf 70.09 29004 17729 10005

SRG200 Sufficient Leaf 64.21 28124 16620 8764

SRG150 Sufficient Leaf 69.75 28915 17220 8984

SRG100 Sufficient Root 73.33 30381 19679 10777

SRG200 Sufficient Root 75.52 30661 20269 11475

SRG150 Sufficient Root 76.08 30801 20840 12758

(Table 2, Additional file 1). As the SRG200 genome has
more similarity to the B73 genome, the expression of
some SRG200 DE genes (both up-regulated and down-
regulated) were selected and tested by qRT-PCR. The
results verified what we observed from the RNA_seq
data (Additional file 2). Gene Ontology (GO) functional
enrichment analysis was performed using Singular En-
richment Analysis (SEA) on AgriGO [25] with the 12
gene lists from each of the six sufficient N to low N pair-
wise comparisons (Additional file 1 with the up-regulated
and down-regulated genes separated as two lists). A cross
comparison of SEA (SEACOMPARE) on AgriGO [25] was
then performed to compare the GO terms enriched either
in leaf or in root for up-regulated or down-regulated
genes. In leaf samples, 10 GO terms were enriched in
the list of genes up-regulated in response to N limita-
tion for SRG100. Two of these terms were organic acid
transport (GO:0015849) and carboxylic acid transport
(GO:0046942) (Additional file 3). None were enriched
in the up-regulated gene list for SRG200. For SRG150,
31 GO terms were enriched in the up-regulated gene
list, including many biological processes important for
N metabolism such as the cellular nitrogen compound
metabolic process (GO:0034641) and the cellular amino
acid metabolic process (GO:0006520) (Additional file 3).

34 GO terms were over-represented in the down-regulated
gene list for SRG100, including photosynthesis (GO:00
15979); photosynthesis, light harvesting (GO:0009765);
photosynthesis, light reaction (GO:0019684); cellular
nitrogen compound metabolic process (GO:0034641)
and the polysaccharide metabolic process (GO:0005976)
(Additional file 3). Four were enriched in the down-
regulated gene list for SRG200. 25 GO terms were
enriched in the down-regulated gene list for SRG150,
including GO terms enriched for SRG100 such as the
carbohydrate metabolic process (GO:0005975), and
some GO terms were only over-represented in the hy-
brid, such as the response to stress (GO:0006950) and
to abiotic stimulus (GO:0009628) (Additional file 3).

In roots, 18, 26, and 23 GO terms were enriched, re-
spectively, among genes up-regulated in response to N
limitation for SRG100, SRG200, and SRG150, with some
of these enriched in all three genotypes (Additional file 4).
Some GO terms were only enriched in the two parents
or in SRG200 and SRG150, and other GO terms were
enriched only in SRG150, such as anion transport GO:
0006820) and ion transport (GO:0006811) (Additional
file 4). 20, 45, and 47 GO terms were enriched respectively
in the genes down-regulated in response to N limitation for
SRG100, SRG200, and SRG150. The terms photosynthesis

Table 2 Significantly differentially expressed (DE) genes identified

Genotype Tissue Comparison # Differentially expressed genes (| down-regulated, 1 up-regulated)
SRG100 Leaf Sufficient N vs. Limiting N 688 (525 |, 163 1)
SRG200 Leaf Sufficient N vs. Limiting N 322188 |, 134 1)
SRG150 Leaf Sufficient N vs. Limiting N 643 (390 |, 253 1)
SRG100 Root Sufficient N vs. Limiting N 675 (438 |, 237 1)
SRG200 Root Sufficient N vs. Limiting N 585(339 |, 246 1)
SRG150 Root Sufficient N vs. Limiting N 725 (541 1,184 1)
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(GO:0015979); photosynthesis, light harvesting (GO:000
9765); photosynthesis, light reaction (GO:0019684) were
down-regulated in all three genotypes, although the
number of genes enriched in these groups was different,
with the hybrid having the smallest number (Additional
file 4). Again, some GO terms were enriched in the two
parents such as generation of precursor metabolites and
energy (GO:0006091), or in SRG200 and SRG150, such
as gene expression (GO:0010467) and cellular macromol-
ecule biosynthetic process (GO:0034645) (Additional file 4).
Other GO terms were enriched only in SRG150 such
as regulation of gene expression (GO:0010468), regulation
of primary metabolic process (GO:0080090), and regulation
of nitrogen compound metabolic process (GO:0051171)
(Additional file 4).

To have an overview of the major differences among
these differentially expressed genes in the three geno-
types, we first took the differentially expressed gene lists
in leaves and uploaded these to the Pathway Tools Omics
Viewers from the GRAMENE website (http://pathway.
gramene.org/expression.html). It is clear that many differ-
ent pathways were involved even with the limited set of
differentially expressed genes (Additional file 5). Some
examples include the sugar transporter, carbohydrate
transporter, monosaccharide transporter, glucose trans-
porter and sorbitol transporter pathways which were
up-regulated in SRG150 under N limitation, but not in

Page 4 of 12

SRG100 and SRG200 (Figure 1A). Also of note was the
up-regulation of the cytokinin degradation pathway in
SRG150, but not in the two parental lines (Figure 1B).

The differentially expressed gene lists in roots were
also uploaded to the Pathway Tools Omics Viewers. The
patterns in the roots differed from those in the leaves
(Additional file 6). As an example, the sugar transporter,
carbohydrate transporter, and monosaccharide trans-
porter pathways were up-regulated in SRG100 under N
limitation, not significantly changed in SRG200, but
were down-regulated in SRG150 (Figure 2A). Also, the
cytokinin degradation pathway was down-regulated in
SRG150 roots (Figure 2B).

Assessment of additive expression in the hybrid

One of the primary purposes of this study was to deter-
mine if transcript levels in the hybrid resembled one
inbred more than the other. The dominance-to-additive ef-
fects (d/a) ratio is conventionally used to compare trait
values between hybrids and inbreds to determine the mode
of inheritance. We used a modified version of this ratio as
described in Guo et al. [26] to compare hybrid transcript
expression levels relative to levels in SRG100 and SRG200
to determine if overall gene expression levels in the hybrid
resemble one parent over the other. Details are described
in the Methods section. Schematic diagrams of potential
patterns of hybrid gene expression are shown in Figure 3A.
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Figure 1 Highlight of pathways where N-responsive genes in leaves of the three genotypes are different: (A) Sugar transporter
pathways; (B) Cytokinin degradation pathways. In red: up-regulated; in blue: not significantly changed.
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The Wilcoxon signed rank test was used to test if the
mean of genes’ d/a ratios significantly deviated from 0.
The results showed that transcript expression levels in
the hybrid were significantly skewed towards SRG200
(Table 3, Figure 3B). Genes were divided into 16 lists:
genes with d/a ratios below -1, genes with d/a ratios be-
tween -1 and 0, genes with d/a ratios between 0 and 1,
and genes with d/a ratios above 1, respectively, for low
N in leaves, low N in roots, sufficient N in leaves, and
sufficient N in roots. Gene Ontology functional enrich-
ment analysis was performed using AgriGO [25] on the
16 gene lists individually (Additional file 7). SEAcompare
by AgriGO was performed to contrast the GO terms
enriched under different N conditions either in leaf or in
root. It is clear from the analysis that leaf and root tissue
responded differently to N limitation. Many more GO
terms were enriched in the group of genes with expres-
sion levels skewed towards SRG200 under N limitation
in leaf while more GO terms were enriched in roots
under sufficient N conditions (Table 3). It is also clear
that there are different expression patterns for certain
groups of genes under the two N conditions (Additional
files 8 and 9). Expression patterns in the hybrid can
resemble one parent in one N treatment and the other
parent in another N treatment. The examples for these
include GO:0009628 (response to abiotic stimulus),
GO:0016051 (carbohydrate biosynthetic process), and
GO:0000271 (polysaccharide biosynthetic process), which
is clearly seen in leaf (Additional file 8), but not in root
(Additional file 9). Some GO terms were enriched under

sufficient N in the group of genes with hybrid expression
levels similar to either SRG100 and SRG200 but were only
enriched in the group of genes with hybrid expression
levels skewed towards SRG200 under low N conditions,
e.g. photosynthesis (GO:0015979), photosynthesis light
harvesting (GO:0009765) in leaf (Additional file 8), and
cellular carbohydrate metabolic process (GO:0044262)
in root (Additional file 9). Some groups of genes in the
hybrid were expressed at levels between midparent and
SRG200 (0 <d/a<1) under sufficient N condition, but
had more genes expressed at levels outside the SRG200
range under low N condition (d/a >1), e.g. gene expression
(GO:0010467) in leaf (Additional file 8), and carbohydrate
metabolic process (GO:0005975) in root (Additional
file 9). Some GO terms were only enriched under low N
conditions with expression skewed towards SRG200 such
as phosphate metabolic process (GO:0006796), cellular
amino acid metabolic process (GO:0006520), photosyn-
thesis, light reaction (GO:0019684) in leaf (Additional
file 8), while some GO terms were only enriched under
sufficient N conditions with expression skewed towards
SRG200 such as cellular amino acid metabolic process
(GO:0006520), glutamine family amino acid metabolic
process (GO:0009064) in root (Additional file 9). As
we know from our previous results under N limitation
SRG150 responded more similarly to SRG200 rather than
SRG100 and glutamine metabolic process always plays an
important role in NUE; these results support the notion
that the differences in expression correlate well with the
differences in the NUE traits in these lines.
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Figure 3 Assessment of hybrid expression additivity: (A) Schematic diagram of potential patterns of hybrid gene expression;
(B) Results of using the d/a ratio to quantify the level of deviation in transcript expression of the hybrid relative to the midparent
value of SRG100 and SRG200.

Table 3 Expression in the hybrid under different N conditions and GO terms enriched

N condition Tissue d/a<-1 0>d/a>-1 1>d/a>0 d/a>1
Number of genes

Sufficient Leaf 3990 3595 5773 5818
Limiting Leaf 4489 4281 5784 5919
Sufficient Root 5765 2897 3454 9979
Limiting Root 5372 6093 6182 5672
GO terms enriched (with BP, MF, CC)

Sufficient Leaf 56 28 62 63
Limiting Leaf 15 26 67 86
Sufficient Root 42 10 52 147
Limiting Root 24 51 38 30
d/a<—1 expression level outside range of SRG100

0>d/a>-1 expression level skewed towards SRG100

1>d/a>0 expression level skewed towards SRG200

d/a>1 expression level outside range of SRG200

BP: biological process.
MF: molecular function.
CC: cellular component.
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Identification of allelic expression in the hybrid

As parental genetic diversity serves as the basis of he-
terosis, we investigated genes for which the level of ex-
pression from each parental allele differed in the hybrid.
To do this, we assembled de novo transcriptomes for
SRG100 and SRG200 and called SNPs between the tran-
scriptomes. 67,760 SNPs were found and used to deter-
mine differential allele expression in the hybrid at FGS
genes with mean read depths greater than 10 reads per
SNP in the hybrid sample. The number of genes with
differential allele expression varied depending on tissue
and nitrogen status (Figure 4A). In general, a higher per-
centage of genes exhibited differential allele expression
under the sufficient nitrogen condition in both leaves and
roots. SRG200 alleles tended to be consistently more highly
expressed than SRG100 alleles in leaves but not in roots.
Finally, a large proportion of genes showing differential
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allele expression in the low nitrogen sample also showed
this in the sufficient nitrogen sample (Figure 4B).

In root samples both parental alleles had similar prob-
abilities of exhibiting the more highly expressed allele for
genes with differential allele expression. However, the
GO terms represented from the sets of parental alleles
differ significantly (Additional file 10). The details of
these genes are listed in Additional file 11. In leaves, the
cellular N compound metabolic process (GO:0034641)
was enriched for the hybrid regardless of which parental
allele was more highly expressed under sufficient N
condition, but was only enriched in the hybrid when the
SRG200 allele was more highly expressed under the low
N condition (Additional file 10). The hexose metabolic
process (GO:0019318) and glucose metabolic process
(GO:0006006) were enriched in the hybrid when express-
ing SRG200 alleles more highly than SRG100 alleles under
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Figure 4 Allelic expression in the hybrid: (A) Number of genes expressing different parental alleles under sufficient or limiting N
conditions in leaves or roots; (B) Venn diagrams of genes expressing different parental alleles under sufficient or limiting N conditions
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sufficient N condition (Additional file 10). In the roots,
the enriched GO terms were quite different from the ones
in the shoots although the cellular N compound metabolic
process (GO:0034641) was enriched in the hybrid when
the allele from either SRG100 or SRG200 was more highly
expressed under sufficient N condition, but only enriched
in the hybrid when SRG200 alleles were more highly
expressed than SRG100 alleles under low N condition,
which was similar in the shoots (Additional file 10).

Discussion

Transcriptome changes under N limitation for the three
genotypes shows different mechanisms to deal with N
limitation

Efforts have been directed to understand the mechanisms
of how plants respond to N limitation. Many approaches
have been used, and one of these is transcriptome profiling
[6]. Microarray technology has been used in the past for
analyzing genome-scale gene expression [28]. Extensive
studies have been performed for Arabidopsis thaliana
[29-39]. There have also been studies for various crops
such as rice seedlings at an early stage of low N stress [40]
and the model legume Medicago truncatula [41]. Recently,
Yang et al. [42] utilized multiple whole-genome micro-
array experiments to identify gene expression biomarkers
in maize, which can be used to monitor nitrogen status.
The microarray technology, however, has a few intrinsic
limitations. The dynamic range of microarrays is restricted
by factors such as the probe density/availability and the in-
tensities of fluorescent dyes, as well as reduced sensitivity
by non-specific cross-hybridization which can mask iso-
form expression and inflate the expression of rare tran-
scripts [43]. One significant advantage of sequence-based
transcriptomics is the potential to precisely quantify the
abundance of any transcript, drastically increasing the
dynamic range of the experiment [44]. Considering the
advantages, we did a survey of the maize transcriptome
using the mRNA-Seq technique for two parental inbred
lines and the corresponding hybrid line, for which a
number of phenotypic, molecular, and metabolic factors
were previously studied under sufficient and limiting N
conditions [22].

From our results, it is evident that the dynamic changes
in the transcriptome for the three genotypes reflect the
differences in their response to growth under limiting N.
Between the two parents, SRG200 demonstrated a better
strategy to deal with N limitation, and the hybrid was su-
perior to the parents [22]. From the DE genes identified
and the GO terms enriched, the different responses are
noticeable among the three genotypes (Additional files 3
and 4; Figures 1 and 2). In leaf tissues, the hybrid shows
an enhancement in the cellular nitrogen compound meta-
bolic process, the cellular amino acid metabolic process,
and transport when the plants were under N stress, and
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these changes were not seen in the parental lines. Al-
though the hybrid showed a reduction in the cellular
carbohydrate metabolic process under N limitation,
the genes involved in photosynthesis were not over-
represented in the down-regulated gene list, which was
different from the SRG100 parental line, suggesting
that the photosynthesis rate was not down-regulated as
much in the hybrid as in the SRG100 parental line
(Additional file 3). As C and N metabolism are closely
linked and tightly regulated [45,46], maintaining an
adequate photosynthetic rate would certainly favor an
efficient production of reduced C and the subsequent
efficient use of N. This result correlates well with our
physiological tests in a previous study where SRG200
and SRG150 maintained higher sugar content in leaves
than SRG100 [22]. In root tissues, both the hybrid and
the SRG200 parent significantly increased transport
activity, which was not seen in the SRG100 parental
line, and the down-regulation of gene expression associ-
ated with primary metabolism was very significant in the
hybrid (Additional file 4). It has been well documented
that root/shoot ratios would increase when plants are
grown under N-limiting conditions [47] and that there is
an interaction between nitrogen and cytokinin [48]. In-
terestingly, the cytokinin degradation pathway was up-
regulated in the shoots and down-regulated in the roots
under N limitation only in the hybrid (Figures 1 and 2).
Less reduction of root biomass in the hybrid under N
limitation was observed from our previous study [22],
and the down-regulation of the cytokinin degradation in
the hybrid roots under N limitation might be one of the
mechanisms for the hybrid to adapt to N limitation.
The limited expression data from our previous study
suggested that the three genotypes had different mech-
anism to cope with N stress [22]. The present transcrip-
tome data supports that former observation as the three
genotypes presented a different enriched gene set when
they had to deal with N stress.

The change in gene expression in the hybrid resembles
one parent with a similar NUE trait under N limitation
From our previous study, we learned that the parental
line SRG200 had higher NUE than SRG100 and that het-
erosis was observed in the hybrid SRG150 [22]. In this
study, we found that there was a dynamic reprogramming
of the transcriptome and the hybrid gene expression levels
were significantly more similar to SRG200 levels than
SRG100 levels when the hybrid plants were experiencing
N limitation (Table 3, Additional files 8 and 9, Figure 3B).
This result demonstrated that the transcriptomic similarity
mimicked phenotypic similarity.

One possible explanation for the similarity in changes
between gene expression levels of one of the parents,
SRG200, and the hybrid would be that some alleles derived
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from that parent control expression of other genes in the
hybrid, particularly under the N limiting condition. Across
all genes SRG200 alleles were slightly more likely to be up-
regulated than SRG100 alleles but the difference was not
statistically significant. Expression level is determined by a
combination of cis-acting and trans-acting regulatory se-
quences. Changes in the expression of the latter, which
might be allele specific, would lead to changes in expres-
sion of a variety of the regulated genes in a non-allele spe-
cific manner. Further investigation is needed to understand
how plants sense N limitation and change the inventories
of the expression of allele-specific genes and how this cor-
relates with the NUE trait in different genotypes.

Conclusions

Gene expression under N limitation in two parental in-
breds and the corresponding hybrid line that responded
differently to N limitation was surveyed using the mRNA-
Seq technology. The data showed that the three genotypes
have different mechanisms to deal with N-limiting condi-
tions. Gene expression levels are correlated with the ability
of a particular line to respond to growth under limiting
N. There was allele-specific expression in the hybrid with
a slight bias to the parent that grew better under limiting
N. This study enhances our current understanding of the
response to growth under N limitation, and the results
of this type of study can be used to develop plants with
improved NUE.

Methods

Plant materials and growth condition

The plant materials and growth conditions were identi-
cal to our previous study [22]. Briefly, seeds of the two
elite maize inbred lines, SRG100 and SRG200, and the
hybrid line, SRG150, created by crossing the two inbred
lines, (Syngenta Biotechnology Inc. NC, USA), were ger-
minated in turface for 2 days, and then transplanted to
the hydroponic system in nutrient solution containing
4 mM MgSO,, 5 mM KCl, 5 mM CaCl,, 1 mM KH,POy,,
0.1 mM Fe-EDTA, 0.5 mM MES (pH 6.0), 9 uM MnSOy,,
0.7 uM ZnSOy4, 0.3 uM CuSO,4 46 pM NaB,O; and
0.2 uM (NH4)6Mo0,0,. Seedlings were transferred to a
35 L container containing 25 L of the nutrient solution;
the volume and the pH were adjusted weekly by adding
fresh nutrient solution and using phosphoric acid to ad-
just the pH to 5.5. Two different nitrate (KNO3) concen-
trations were used; one as sufficient N condition (3 mM)
and one as limiting N condition (1 mM) [22]. Plants
were grown in a growth cabinet (Conviron, Manitoba,
Canada) under long day conditions of 16 hr light
(~500 pmol m?2 s?!) at 28°C and 8 hr dark at 23°C.
Plants were harvested four weeks later. Leaves (3rd to
5th) and the whole roots were collected separately. Plant
harvest was carried out at noon for each sample which
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was pooled from 2-3 plants. The materials were sub-
merged in RNAlater (Ambion Inc., TX, USA) and stored
at —80°C until further analysis.

RNA extraction, quality control, normalization, mRNA Seq
library construction and lllumina SBS

mRNA was extracted using mirVana™ miRNA isolation
kit (Ambion Inc., TX, USA). Using a Bio-Rad Experion
system (Hercules, CA, USA), total RNA integrity was
measured. An RNA Quality Index (RQI) value greater
than 8 was selected as the cut-off value for the total
RNA quality control. The RNA samples that passed the
QC process were used in the mRNA-Seq library con-
struction. Following the Illumina manual of Preparing
Samples for Sequencing of mRNA (Illumina, San Diego,
CA, USA), 5 ug of total RNA for each sample were used
in the mRNA-Seq library construction. Sera-mag Magnetic
Oligo(dT) beads were used to purify the poly-A containing
mRNA molecules. Subsequently the purified mRNA was
fragmented into small pieces using divalent cations under
elevated temperature, and reverse transcribed into cDNA
using SuperScript II (Invitrogen, Carlsbad, CA, USA). The
c¢DNA went through an end repair process, the addition of
a single ‘A’ base to the 3" ends, and ligation of the Illumina
paired-end sequencing adapters. The ligation products were
fragmented on a 2% agarose TAE gel, and the gel slices con-
taining material in the 200 bp (+15 bp) range were excised.
¢DNA was purified from the gel slices using QIAquick Gel
Extraction Kit (QIAGEN, Valencia, CA). Finally, the size-se-
lected cDNA libraries ligated to the Illumina sequencing
adaptors were selectively enriched using 15 cycles of PCR,
and validated using a Bio-Rad Experion system. Each final
c¢DNA library was then applied on one lane of the Illumina
paired-end flow cell for the cluster generation process and
subsequently sequenced using the Illumina next-generation
sequencing platform GA Il as 2 x 36 or 2 x 40 bp paired-
end reads.

Sequenced read processing and alignment

Reads were aligned to the B73 reference genome version 2
(maizesequence.org) using Tophat v1.4.1 [49] and Bowtie
v0.12.7 [50]. Before alignment, Bowtie quality control re-
moved 0.1-02% of the total reads. A minimum intron
length of 5 and a maximum intron length of 5000 were
used for alignment. Segment lengths were set to half the
read lengths and segment mismatches were set to 1. All
other parameters were set to default.

Identification of expressed genes

A reference annotation from Ensembl Genomes (zea_mays.
AGPv2.62.gtf) was used to guide transcript assembly by
Cufflinks v1.3.0 [51] to obtain fragments per kilobase of
exon per million fragments mapped (FPKM) for all genes
within the WGS. Fragment bias correction [52], which
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corrects for sequence-specific bias, and multi-hit read
correction, which divides the value of a multi-mapped
read between each map location based on a probabilistic
model, were used with Cufflinks. Cuffmerge was used to
create a single unified assembly from each of the 12
individual Cufflinks assemblies. Cuffmerge maximizes
assembly quality by removing transcripts that are arti-
facts and merging novel isoforms with known isoforms
across all Cufflinks assemblies. A transcript was consid-
ered to be expressed if its FPKM value was greater than
one and if it was part of the maize Filtered Gene Set
(FGS) version 5b.60 (maizesequence.org). The FGS is a
list of maize genes in which pseudogenes, transposable
element encoding genes, and low-confidence hypothet-
ical models have been removed.

Identification of significantly differentially expressed (DE)
genes

Cufflinks [51] was used to perform pairwise comparisons
between samples to find differentially expressed transcripts.
Fragment bias correction [52], multi-hit read correction,
and upper-quartile normalization [53], which causes Cuf-
flinks to divide the number of reads mapped to each gene
by 75th quartile of the counts instead of dividing by the
total number of mapped reads for normalization, were
used with Cufflinks. An FGS transcript was differentially
expressed between samples if the FPKM in one sample
was greater than one and if p-value after correcting for
multiple testing with the Benjamini-Hochberg correction
was less than 0.05.

d/a analysis

The d/a ratio (Eq. 1) was used to quantify the level of
deviation in transcript expression of SRG150 relative to
the midparent value of SRG100 and SRG200 [26] for any
genes with FPKM > 1 in SRG100, SRG200, or SRG150.

d_Fi-u
a o Pl—[/l

In the equation, F; is the transcript expression level in
SRG150, p is the average gene expression level in the
two inbred parents, P; is the gene expression level in
SRG200. If F;=P;, then d/a=1 and the gene shows
dominant gene action from the SRG200 allele. Genes
with d/a values between —1<d/a<0 exhibit hybrid ex-
pression levels skewed towards SRG100 levels, and genes
with d/a values between 0<d/a<1 exhibit hybrid ex-
pression levels skewed towards SRG200. Genes with d/a
values greater than 1.0 or less than —1.0 have hybrid ex-
pression levels outside of the parental range. Genes with
d/a values of 0 have expression levels in the hybrid that
are additive and favor neither parent. The one sample
Wilcoxon test [54] was used on the d/a estimates to
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determine if hybrid transcript expression across all genes
deviated significantly from expected additive parental
levels and to determine the overall direction of bias.

Identification of SNPs

Trinity [55] was used to create de novo transcriptomes for
SRG100 and SRG200. The contigs from the de novo tran-
scriptomes were aligned to the B73 reference genome to
find common contigs between the two transcriptomes and
to call SNPs between the two transcriptomes. The hybrid
mRNA-Seq reads were aligned separately to both transcrip-
tomes and read depths were determined using SamTools
[56] at 67,760 SNPs. SRG100 allele depths were estimated
from hybrid reads aligned to the SRG100 transcriptome,
and SRG200 allele depths were estimated from hybrid reads
aligned to the SRG200 transcriptome. For a read to count
towards the allele depth of a given parent, it needed to
match the base at the SNP position for the given parent.
FGS genes with mean SNP read depths greater than 10
reads per SNP in the gene were used for allelic imbalance
analysis. The binomial exact test with an alpha value of 0.05
was used to determine if a gene had preferential expression
for the allele of one parent over that of the other parent.

Availability of supporting data

The datasets supporting the results of this article are
available in the Sequence Read Archive (SRA). The ac-
cession ID is SRP033653, with the following link: http://
www.ncbi.nlm.nih.gov/sra/?term=SRP033653.
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Additional file 1: Significantly differentially expressed genes in
leaves and roots of the three genotypes.

Additional file 2: Expression of selected DE genes verified by qRT-PCR.

Additional file 3: Selected significantly enriched biological
processes in the leaves of the three genotypes under N limitation.

Additional file 4: Selected significantly enriched biological
processes in the roots of the three genotypes under N limitation.
Additional file 5: Overview of pathways where N-responsive genes
in leaves of the three genotypes involved.

Additional file 6: Overview of pathways where N-responsive genes
in roots of the three genotypes involved.

Additional file 7: Different groups of genes with expression levels
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Additional file 8: Selected significantly enriched GO terms in leaves
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Additional file 9: Selected significantly enriched GO terms in roots
under sufficient or limiting N conditions.

Additional file 10: Selected enriched GO terms in the hybrid
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hybrid under sufficient or limiting N conditions.
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