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Abstract

Background: Personal genome assembly is a critical process when studying tumor genomes and other highly
divergent sequences. The accuracy of downstream analyses, such as RNA-seq and ChIP-seq, can be greatly enhanced
by using personal genomic sequences rather than standard references. Unfortunately, reads sequenced from these
types of samples often have a heterogeneous mix of various subpopulations with different variants, making assembly
extremely difficult using existing assembly tools. To address these challenges, we developed SHEAR (Sample
Heterogeneity Estimation and Assembly by Reference; http://vk.cs.umn.edu/SHEAR), a tool that predicts SVs,
accounts for heterogeneous variants by estimating their representative percentages, and generates personal
genomic sequences to be used for downstream analysis.

Results: By making use of structural variant detection algorithms, SHEAR offers improved performance in the form of
a stronger ability to handle difficult structural variant types and better computational efficiency. We compare against
the lead competing approach using a variety of simulated scenarios as well as real tumor cell line data with known
heterogeneous variants. SHEAR is shown to successfully estimate heterogeneity percentages in both cases, and
demonstrates an improved efficiency and better ability to handle tandem duplications.

Conclusion: SHEAR allows for accurate and efficient SV detection and personal genomic sequence generation. It is
also able to account for heterogeneous sequencing samples, such as from tumor tissue, by estimating the
subpopulation percentage for each heterogeneous variant.

Keywords: Genomics, Next-generation sequencing, Sequence analysis, Assembly, Personal genome, Heterogeneity,
Structural variation, Prostate cancer

Background
The last several years of genomics research has revealed
the need to study whole genomic sequences, including
regions that were once thought to be inconsequential,
when trying to identify important individual genetic vari-
ations. A more thorough analysis of these variations
requires the assembly of personal genomic sequences
through resequencing. For instance, ChIP-seq analysis
was recently shown to be more effective if aligned using
a personal genome as opposed to a reference genome
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[1], and many other types of analyses, such as RNA-seq,
may be aided by using personal genomic sequences as
references for alignment.
In many cases, personal genome assembly is also com-

plicated by sample heterogeneity, such as tumor samples
with subpopulations of somatically-acquired variants that
are present in only a subset of the sequencing data.
Genomic instability and rapid division of cancer cells can
lead to a high degree of cellular heterogeneity within
tumor tissue. Sequencing data from tumor samples will
usually contain mixtures of DNA from diverse tumor cell
populations, as well as from normal somatic cells, each
with their own set of variants. The assembly programs
currently used to create personal genomic sequences
often assume sample homogeneity and are plagued by an
inability to handle non-universal variants (see Figure 1),
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Figure 1 Variants in tumor DNA can result in heterogeneous alignment patterns in tumor samples. (a) The progression of tumor
development illustrates how neighboring cells can have several different genomic sequences. The tumor cells (orange) originate with a genetic
mutation in one cell and grow rapidly to outnumber the normal cells (blue). During the rapid growth of the tumor, additional genomic variants are
created through further mutations (brown), resulting in a heterogeneous mix of normal and multiple tumor genomic sequences. (b) Reads sampled
from the normal cells (blue) and two subpopulations of tumor cells (orange/brown) are aligned against the reference sequence. Soft-clipped
portions are indicated by a dotted line border. A germline-acquired deletion is present in all of the sample, but deletions present in only the tumor
cells result in some reads being aligned to the reference and others being soft-clipped. Disregarding the possibility of heterogeneous sequencing
samples might result in these variants being missed.

but these tools must account for this type of data if they
are to be useful for studying cancer genomics.
If there is a closely-related reference genome available,

alignment-based assembly is a simplistic way to perform
assembly of personal genomes. The sequenced reads are
aligned to the reference genome using a short-read aligner
such as BWA [2] or Bowtie [3], and SNPs and small
indels are determined by consensus amongst the aligned
reads. Although this is usually efficient, complete personal
genomic sequences must also account for the presence
of structural variation (i.e. deletions, insertions, duplica-
tions, inversions, or translocations of large segments of
DNA). The opposite extreme of approaches is to join
together all the sequenced reads, like pieces of a puz-
zle, by determining how they overlap with one another.
This class of assembly algorithms, known as de novo
assembly, does not require a reference sequence and is
useful for assembling regions that are significantly differ-
ent from the available reference genome, such as novel
insertions. However, de novo assembly may struggle to
properly assemble repetitive regions and can be extremely
inefficient at the high coverage levels often required for
assembling whole genomes. Examples of global de novo
assembly algorithms include Velvet [4], SOAPdenovo [5],
and ALLPATHS-LG [6].
Algorithms have recently been developed that com-

bine aspects of both alignment-based assembly and de
novo assembly. Seq-Cons [7] and LOCAS [8] use localized

versions of de novo assembly in order to assemble reads
in separate blocks determined by the area of the ref-
erence that they are first aligned to, rather than try-
ing to determine possible overlaps between all of the
reads globally, without a preliminary alignment. A similar
approach was also shown to be successful in assembling
several variant strains of Arabidopsis thaliana from a
related reference genome [9]. RACA [10] uses a reference
genome to arrange the scaffolds that are first produced
through de novo assembly, but also requires multiple out-
group genomes (i.e. from other closely related species) as
input.
In contrast to the above methods that can be thought

of as either “global de novo assembly followed by align-
ment” or “alignment followed by local de novo assembly”,
IMR/DENOM is a reference-guided assembly approach
that combines alignment-based assembly and de novo
assembly in parallel and merges the results [11]. The
alignment-based half of the algorithm, IMR, is an itera-
tive procedure that creates an alignment to the original
reference sequence using Stampy [12], generates a new
reference sequence from consensus variants in the align-
ment, realigns the paired-end reads to the new reference
sequence, and repeats this procedure until convergence.
DENOM takes contigs that are assembled de novo using
SOAPdenovo [5] and aligns them to the reference in
order to handle larger SVs, such as novel insertions not
present in the reference sequence. The results of these
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two approaches are then merged to generate a personal
genomic sequence.
All of these assembly programs assume sample

homogeneity, resulting in unexpected behavior when
sequencing samples contain variants only present in
subpopulations of the cells, and thus will struggle with the
type of tumor data described previously. Certain types of
SVs, such as tandem duplications, also remain a challenge.
Additionally, these approaches are often inefficient in the
context of personal genome assembly due to the large
amount of redundant operations performed, such as the
multiple alignments of every read in IMR, or the assem-
bly of every read in reference-guided assemblers such as
Seq-Cons or LOCAS. A more efficient approach for gen-
erating personal genomic sequences might be to leverage
the specialized ability of pre-existing SV detection pro-
grams to locate individual SVs and address them directly,
rather than hoping to discover their signature through de
novo assembly (which is made more difficult in the pres-
ence of heterogeneous sequencing samples). A variety of
SV detection algorithms have been developed over the
last few years [13-18] which can serve for this purpose.
In this paper, we propose a new tool called SHEAR

(Sample Heterogeneity Estimation and Assembly by Ref-
erence). SHEAR creates personal genomic sequences by
predicting SVs and generating the new genomes based on
the existing reference after correcting for those SVs, while
also offering the ability to handle heterogeneous sequenc-
ing samples. Our novel contributions come in the form of
two key concepts that integrate and expand several pre-
existing programs, namely a pipeline to improve align-
ments (and thus subsequently improve SV prediction)
by correcting errant soft-clipping at probable SV break-
points, and a scheme to estimate heterogeneity percent-
ages for SV predictions for a variety of SV types. The level
of heterogeneity for SVs present in the sequencing sam-
ple is estimated by comparing soft-clipped and spanning
reads at the SV breakpoints, allowing users to generate the
genomic sequences of the particular sample subpopula-
tions they are interested in. In contrast to using existing
de novo, alignment-based, or reference-guided assem-
bly methods for generating personal genomic sequences,
SHEAR is able to handle heterogeneous sequencing
data, has a better ability to detect tandem duplication
events, and offers improved computational efficiency by
focusing on known variant regions and reducing repetitive
operations in concordant regions. We compare our me-
thod against existing approaches on a variety of simulated
data sets as well as real sequencing data from a prostate
cancer cell line with known heterogeneous variants.

Implementation
Unlike de novo assemblers or the iterative alignment-
based assembly done by IMR, our approach works by

doing a one-time global alignment which is used to
predict SVs and correct them directly to create a per-
sonal genomic sequence. Candidate SV regions are refined
through further local alignment, and finally SNPs and
small indels are determined using an alignment-based
assembly once the genomic sequence is structurally sim-
ilar and reads that span SV breakpoints are properly
aligned. Heterogeneity percentages for SVs are estimated
using a novel scheme that compares counts of soft-clipped
and spanning reads at SV breakpoints in a variety of ways,
depending on the SV type.
SVs are predicted from the alignment using CREST

[15], an SV prediction algorithm that uses the split-read
approach. Split-read approaches look at reads that are
only partially aligned to the reference, with the remainder
being “soft-clipped”. This methodology discovers SVs by
finding pairs of soft-clip clusters that match each other in
the reference, indicating an adjacency of genomic regions
that are normally separated in the reference. CREST was
selected for this purpose because it predicts breakpoints
at base pair resolution, handles many different SV types
(with good support for tandem duplications in particular),
and is designed for somatically-acquired variants as well
as germline variants. However, SHEAR is designed so that
any base pair resolution SV detection algorithm could be
substituted in to accomplish this task. Thus, as SV detec-
tion algorithms improve in accuracy and efficiency, so too
will SHEAR.
There are two key novel components to the SHEAR

framework. The first is a pipeline for correcting soft-
clipping errors in the alignment that occur at the break-
points of candidate SVs. Although these alignment errors
are often minor, correcting for them improves the reli-
ability of CREST predictions, as well as the accuracy of
our heterogeneity estimation. Thus, the first component
of our proposed method enables and enhances the sec-
ond component, which is a novel scheme for estimating
the heterogeneity of predicted SVs of various types. This
is done by comparing the soft-clipped reads to the span-
ning reads at SV breakpoints. The following two sections
give a more detailed description of these two components
of the SHEAR algorithm, and an illustration of SHEAR’s
overall workflow can be see in Figure 2.
Although the bulk of this paper focuses on heterogene-

ity estimation and improving SV predictions by refining
soft-clipping at candidate breakpoints, the other main
purpose of SHEAR is to generate personal genomic
sequences by modifying the reference sequence using the
most common set of predicted variants, or the set of vari-
ants chosen by the user. Future versions will automate
the generation of multiple personal genomic sequences
using phasing information derived from the estimated
heterogeneity levels. The SV prediction and heterogene-
ity estimation component of SHEAR can also be run
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Figure 2 SHEAR workflow diagram. (1) SHEAR’s workflow begins by using CREST to predict the locations of SVs from the original SAM/BAM
alignment file. (2) Reads neighboring the breakpoints of the predicted SVs, as well as all unmapped reads, are extracted from the original alignment.
(3) These extracted reads are then realigned using a local alignment algorithm (BWA-SW) to improve the soft-clipping accuracy near the
breakpoints. Breakpoint extracted reads are aligned in their original neighborhoods, and unmapped extracted reads are aligned against the whole
reference sequence. (4) SVs are again predicted from the new alignment, which contains only the realigned reads near the original candidate
breakpoints, as well as reads that were initially unmapped but have been realigned using the local alignment algorithm. The new SV predictions will
potentially include new SVs and refined breakpoints of previously predicted SVs. Steps 2–4 may be repeated as necessary to pick up new SV events,
and will usually only need to be repeated 2–3 times before SV predictions remain constant. (5) Using the refined predicted SV breakpoints, the
heterogeneity percentage of each SV is estimated by comparing the soft-clipped and spanning reads at the breakpoints. This calculation varies
depending on the SV type (see Figure 4). (6) Finally, a new personal genomic sequence is created by using the predicted SVs to directly modify the
original reference sequence.

independently of the component to generate personal
genomic sequences. Our program is implemented using
the Genome Analysis Toolkit (GATK) framework [19] to
provide efficient data access and for ease of parallelization,
with additional tools used from SAMtools [20] and Picard
[21].

Pipeline for improving SV predictions by refining
soft-clipping at candidate breakpoints
Paired-end reads are first aligned to the original reference
sequence with BWA [2] using default parameters. Poly-
merase chain reaction (PCR) duplicates are removed using
Picard [21]. This produces an alignment on the whole
sequence that will be referred to as the original align-
ment. An initial set of SVs are then predicted by CREST,
each of which is characterized by an SV type (i.e. dupli-
cation, deletion, etc.) and two breakpoint locations in the
genome.
Both the CREST prediction accuracy and our estima-

tion of heterogeneity percentage depend on having an
accurate alignment in which reads sampled from a variant
subpopulation are properly soft-clipped at that subpopu-
lation’s SV breakpoints. Unfortunately, this is not always
the case for an alignment done using BWA. If a sufficient
global alignment is not found for an aligned read’s pair,
BWA will perform local alignment in the genomic region
near where the read’s pair is predicted to occur. This local
alignment algorithm will soft-clip any ends that do not
align.

However, many reads that should be soft-clipped are
missed for two reasons. First, reads that are almost fully
aligned to the reference sequence (i.e. only a few bases
extend past the breakpoint) can be aligned with mis-
matches in the global alignment portion of the BWA algo-
rithm. In this situation, local alignment is not attempted
because the global alignment is sufficient, and thus there
is no soft-clipping done. An example of this can be seen
in the bottom two aligned reads in Figure 3. Second,
reads that should be soft-clipped at a breakpoint might
remain unmapped completely. This occurs when BWA
determines that neither the global alignment nor the local
alignment are of sufficient quality. In both cases, the soft-
clipped local alignment represents the “true” alignment,
but the aligner has no way of knowing the location of the
SV breakpoint, and thus will instead force a mismatched
global alignment or leave the read unmapped.
These issues could potentially be addressed by modify-

ing BWA’s parameters to be more stringent for accepting
global alignments and less stringent for soft-clipped local
alignments. However, this can introduce additional issues
when aligning other concordant reads. Assuming we have
at least some reads from variant breakpoints that are
aligned with the correct soft-clipping, we can use the pre-
dicted SVs to hone in on the exact areas that are likely to
experience the above problems and correct them.
To address these problems, we remap these reads using

the BWA-SW algorithm for local alignment [22]. BWA-
SW is less efficient than the global alignment of the regular
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Figure 3 Soft-clipped reads vs. improperly aligned reads at a structural variant breakpoint. The reference sequence is indicated in blue. Green
bases are alignment matches, pink bases are mismatches, yellow bases are skips, and gray bases are soft-clipped. All four reads are sampled from the
variant sequence and span the breakpoint, but only the top two are properly soft-clipped. The bottom two reads are aligned with mismatches and
skips because the portion that should be soft-clipped is only a few bases long and the global alignment is used instead. Inaccurate soft-clipping can
lead to false negatives for split-read based SV prediction algorithms and also lowers the accuracy of SHEAR’s heterogeneity estimation algorithm.

BWA algorithm and can only align reads individually, not
in pairs, but it does allow for soft-clipping rather than
requiring the entire read to be aligned. We account for
this inefficiency by remapping only reads that might be
affected by the two issues discussed above. Specifically,
all unmapped reads, as well as reads that align either
spanning or soft-clipped at one of these breakpoints, are
extracted from the original alignment. This collection
of reads are then realigned with BWA-SW using default
parameters to produce a new alignment. Leaving the con-
cordantly aligned reads alone improves the efficiency of
our approach in comparison with de novo assemblers or
the iterative alignment of IMR. Aligning these reads indi-
vidually removes the pairing restrictions that may lead to
unmapped reads when using default BWA, as discussed
above.
The corrected version of the alignment is then passed

back to CREST to make revised SV predictions. New SV
predictions can be picked up if there were not a significant
number of supporting soft-clipped reads in the original
alignment. At this point, the unmapped and breakpoint
reads can be extracted again from the original alignment
to correct the soft-clipping at these new SV locations,
using the same procedure. In practice, we observe that
this rarely needs to be repeated more than three times
before SV predictions remain unchanged. Finally, before
estimating heterogeneity percentages for each SV, SHEAR
will remove some variants that are slight derivations from
other predicted SVs (i.e. only differing by a few base pairs
on one breakpoint). If the differing breakpoint has only
a few supporting soft-clipped reads in comparison with a
“main” predicted breakpoint with many more, it is usually
due to sequencing error and thus can be discarded as a
false positive.

Using soft-clipped reads to estimate variant heterogeneity
After no additional SV predictions are picked up by
CREST, the heterogeneity percentages for each SV are
estimated by comparing the average number of reads per

locus from the reference-like sequence (estimated refer-
ence depth (R)) with the number of reads per locus from
the variant sequence (estimated variant depth (V )). These
can be estimated from the numbers of reads that span
the SV breakpoints and the number of reads that are soft-
clipped at these breakpoints, respectively. The way this
calculation is done depends on the type of SV. In all cases,
the goal is to determine the estimated reference depth (R)
and the estimated variant depth (V ), and to estimate the
heterogeneity percentage by comparing the two. Let the
total number of aligned reads that span either breakpoint
be A, and the total number of reads that are soft-clipped
at either breakpoint be B. Figure 4 illustrates the exam-
ples for deletions, tandem duplications, and inversions. In
these examples, the variant subpopulation is always 20%
of the sample.
In the case of a deletion, the original reference has two

breakpoints that are merged into the same locus in the
variant subpopulation (Figure 4a). Reads sampled from
the variant subpopulation that span this breakpoint will
align (with soft-clipping) to either of the correspond-
ing breakpoints in the reference, usually depending on
which half of the read the breakpoint is at. Thus, the
estimated variant depth (V ) is the total number of reads
soft-clipped at the two reference breakpoints (B). The
estimated reference depth (R) is taken from the average
number of spanning reads between the two breakpoints,
( 12A). The heterogeneity percentage, H, is estimated
as:

H = V
R + V

= B
( 12A) + (B)

= 2B
A + 2B

In the example in Figure 4a,A = 16 and B = 2, giving an
estimated variant depth of 2× and an estimated reference
depth of 1

216 = 8×, for a 20% estimated heterogeneity.
The case of a tandem duplication is slightly more com-

plicated (Figure 4b). Reads from the variant subpopulation
that span the new fusion (i.e. the middle of the tandem
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Figure 4 Alignment of reads from a heterogeneous sequencing sample. Total counts of soft-clipped reads and spanning reads at the structural
variation breakpoints are different between the cases of (a) deletion, (b) tandem duplication, and (c) inversion. All examples have 10× depth of
coverage, with 20% of the sample coming from the variant sequence (i.e. 2× depth) on the bottom and 80% from the reference-like sequence (i.e.
8× depth) on top. Arrows indicate how reads from the variant sequence will be aligned against the reference genome, with soft-clipping indicated
by dotted line borders. A indicates the total number of reads that span either breakpoint, and B indicates the total number of reads that are
soft-clipped at either breakpoint in each of the examples. A and B are used by SHEAR to estimate the heterogeneity of SVs.

repeat) will againmap to either of the two reference break-
points depending on which side of the breakpoint each is
more aligned with. However, reads that align correctly to
the outside edges of the duplicated segment could have
been sampled from either the reference-like sequence or
the variant sequence. In order to get an accurate estimate

of the number of reads from the reference-like sequence,
we must account for the fact that A contains reads from
both populations. Again we take the total number of soft-
clipped reads at both breakpoints, B, as the estimated
variant depth. This is then subtracted from the aver-
age number of spanning reads to arrive at an estimated
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reference depth. The heterogeneity percentage is thus
estimated as:

H = V
R + V

= B
( 12A − B) + (B)

= 2B
A

In the example in Figure 4b, A = 20 and B = 2, giv-
ing an estimated variant depth of 2× and an estimated
reference depth of 1

220 − 2 = 8×, for a 20% estimated
heterogeneity.
Unlike deletions and tandem duplications which have

a difference in the number of breakpoints involved
between the reference-like sequence and the variant
sequence, inversions have two breakpoints in each
sequence (Figure 4c). Reads sampled from the variant sub-
population that span these breakpoints will again map to
either of the reference breakpoints, depending on their
location. Because there is no copy number change in an
inversion, we can directly estimate the heterogeneity by
comparing the total number of soft-clipped reads with the
total number of spanning reads at the two breakpoints of
the inversion. Heterogeneity is thus estimated as:

H = V
R + V

=
1
2B

( 12A) + ( 12B)
= B

A + B

For this example (Figure 4c), A = 16 and B = 4, and a
direct estimation of heterogeneity is again 20%.
Note that the above calculations for H all assume intra-

cellular homozygosity (i.e. all copies of the genetic locus
within the cell contain the variant), but the likelihood
of heterozygosity in real-world data sets should be con-
sidered when interpreting the meaning of H. Thus, a
reported heterogeneity estimation of H = 50% could
imply either that 100% of the cells in the sequencing sam-
ple are heterozygous for the variant in a diploid case,
or that 50% of the cells in the sequencing sample are
homozygous for the variant.

Results and discussion
To evaluate our methods, we evaluated SHEAR on simu-
lated data sets as well as a prostate cancer cell line sample
with validated heterogeneous variants. We compare our
results with IMR/DENOM [11] to demonstrate the advan-
tages of our approach, namely, improved computational
efficiency, better support for tandem duplications, and the
ability to handle personal genome assembly in the pres-
ence of heterogeneous sequencing samples as well as to
estimate the level of that heterogeneity. IMR/DENOM
alone was chosen for comparison because other reference-
guided assemblymethods produce contigs or are generally
designed for creating new reference sequences rather than

“personalizing” existing reference sequences, which is the
purpose of SHEAR.

Simulated data
A reference sequence to be used for simulation was taken
from a 70 kbp region of chromosome 15 (25,420,001-
25,490,000) chosen because of its non-repetitiveness. The
length of this sequence is intended to be on the scale of the
size of a long gene. Twenty different variant sequences are
then created by introducing ten different sets of deletions
and ten different sets of tandem duplications at known
locations. These represent two SV types easily handled by
CREST. Other SV types could be handled by incorporat-
ing additional SV predictors. Each set of SVs contained
three non-overlapping SVs of sizes 150 bp, 1000 bp, and
30 kbp.
Sequencing simulation was then performed on each of

the variant sequences by randomly sampling paired-end
reads, with read lengths of 75 bp and fragment sizes sam-
pled from a truncated normal distribution with a mean
of 250 bp, standard deviation of 20 bp, inclusive lower
bound of 175 bp, and inclusive upper bound of 325 bp.
For each sequencing simulation, a portion of the paired-
end reads were sampled from the original sequence as
well as from the variant sequence. This heterogeneity per-
centage was varied (20%, 40%, 60%, 80%, 90%, and 100%
from the variant sequence), as was the overall average cov-
erage (10×, 20×, 30×, 50×, 100×, 500×, and 1000×).
There were no synthetic sequencing errors and base qual-
ity was reported as perfect (i.e. phred score of 40). This
was to eliminate the effects of sequencing errors in order
to evaluate the two methods solely on their algorithmic
approach. These simulated data sets were intended to be
easy to handle, in order to control for issues with fragment
size distributions, sequencing errors, SNPs, small indels,
and cross-chromosomal events. Instead, we focus specif-
ically on the issue of how to account for heterogeneous
SVs.
Using a 20× overall coverage and varying the por-

tion of simulated reads that originated from the variant
sequence (Table 1), our method demonstrates a strong
ability to handle heterogeneous SVs. IMR/DENOM is only
able to reliably detect deletions in relatively homogeneous
sequencing samples. Even at very high overall coverage
(i.e. 1000×), IMR/DENOM is still unable to pick out het-
erogeneous variants, suggesting that this is not due to
a lack of supporting reads (see Table S1 in Additional
file 1). Tandem duplications are never identified using
IMR/DENOM with our simulated data.
Table 2 demonstrates our method’s ability to scale down

to lower coverage levels even in the heterogeneous case
where only 20% of the reads are sampled from the vari-
ant sequence. IMR/DENOM fails to detect any of the SVs
present in the sample, while our method scales down well
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Table 1 Correctly detected SVs for simulated data at 20×
coverage under varying levels of heterogeneity

Deletions Tandem duplications

Variant SHEAR IMR/DENOM SHEAR IMR/DENOM
percent

20% 6 / 30 0 / 30 3 / 30 0 / 30

40% 20 / 30 0 / 30 14 / 30 0 / 30

60% 26 / 30 0 / 30 24 / 30 0 / 30

80% 29 / 30 1 / 30 26 / 30 0 / 30

90% 29 / 30 1 / 30 24 / 30 0 / 30

100% 28 / 30 27 / 30 26 / 30 0 / 30

All simulations are done on a 70,000 bp portion of chromosome 15 after
introducing deletions and tandem duplications of sizes 150 bp, 1000 bp, and
30,000 bp, each over 10 different iterations, for a total of 30 different deletion
events, and 30 different tandem duplication events.

to 50× overall coverage and even picks up a few events
from the 30× and 20× coverage data sets. The depth of
coverage required to detect SVs depends on the hetero-
geneity percentage of each SV. For example, as seen in
Table 2, 20× coverage is too low to reliably pick up vari-
ants that only comprise 20% of the sequencing sample.
However, the same coverage level was enough to detect
most of the variants (50/60) simulated at 60% heterogene-
ity level (see Table S2 in Additional file 1).
Although CREST is used as the underlying SV detection

algorithm, SHEAR’s pipeline for correcting soft-clipping
errors in the alignment via targeted local realignment
improves the SV predictions in comparison to using
CREST alone. Of the 2520 SVs in the simulated data
set (i.e. twenty different variant sequences × three SVs
per variant sequence × seven different coverage set-
tings × six different heterogeneity percentage settings),
2072 were predicted by both CREST and SHEAR, but
SHEAR improved the accuracy of breakpoint prediction
for 502 (24.22%) of these, whereas CREST only improved

Table 2 Correctly detected SVs for simulated data at 20%
heterogeneity under varying levels of coverage

Deletions Tandem duplications

Depth SHEAR IMR/DENOM SHEAR IMR/DENOM

10× 1 / 30 0 / 30 0 / 30 0 / 30

20× 6 / 30 0 / 30 3 / 30 0 / 30

30× 13 / 30 0 / 30 13 / 30 0 / 30

50× 21 / 30 0 / 30 21 / 30 0 / 30

100× 29 / 30 0 / 30 28 / 30 0 / 30

500× 29 / 30 0 / 30 28 / 30 0 / 30

1000× 29 / 30 0 / 30 28 / 30 0 / 30

All simulations are done on a 70,000 bp portion of chromosome 15 after
introducing deletions and tandem duplications of sizes 150 bp, 1000 bp, and
30,000 bp, each over 10 different iterations, for a total of 30 different deletion
events, and 30 different tandem duplication events.

the breakpoint accuracy for three SVs (see Table S3 in
Additional file 1). Additionally, SHEAR’s local realign-
ment component tends to increase the number of sup-
porting soft-clipped reads for each predicted SV, with a
7.26% relative increase of supporting reads for each SV
prediction.
Finally, the novel benefit of our approach is the esti-

mation of heterogeneity of discovered SVs. Table 3
demonstrates the consistent accuracy of our heterogene-
ity estimation on SVs that are discovered. As expected,
there is more error in estimating the heterogeneity level
of tandem duplications than there is for deletions due
to the heuristics used to estimate the number of reads
from the reference-like sequence (see Figure 4b). The
average error of heterogeneity estimation is higher at
lower coverage levels, due to the smaller sample size of
reads, and this effect is amplified for the more difficult
problem of estimating the heterogeneity of tandem dupli-
cations. SHEAR’s local realignment component also helps
to improve the accuracy of heterogeneity estimation by
fixing incorrectly soft-clipped reads. In comparison with
estimating heterogeneity from the original alignment, het-
erogeneity estimation is improved by an average of 11.26
percentage points across the 2520 SVs in the simulated
data set after SHEAR’s targeted local realignment.

Tumor cell line data
To evaluate our methods with an experimental data set,
we used next-generation sequencing data from previous
work that examined the role that variants in the androgen
receptor (AR) gene have on castration-resistant prostate
cancer (CRPCa) [23]. Paired-end reads were sampled at

Table 3 Average error of heterogeneity estimation

Deletions Tandem duplications

Depth 150 bp 1000 bp 30 kbp 150 bp 1000 bp 30 kbp

10× 0.00 1.22 1.46 13.98 13.73 12.27

20× 0.08 0.52 1.14 8.91 11.22 12.40

30× 0.17 0.42 1.06 9.64 11.48 11.86

50× 0.10 0.27 1.17 9.83 9.69 9.20

100× 0.08 0.21 1.21 5.56 5.47 6.06

500× 0.09 0.21 1.04 4.17 2.35 4.09

1000× 0.08 0.18 1.06 4.58 2.11 3.40

Each entry reports the average absolute error for estimation of heterogeneity
percentage for a variety of SVs at different overall coverage levels. For each
pairing of SV type and coverage level, ten iterations of simulation were sampled
from each of seven different underlying heterogeneity percentages (20%, 40%,
60%, 80%, 90%, and 100%) for a total of 70 simulations per entry in the table.
The reported error is the absolute difference between SHEAR’s estimation of
heterogeneity percentage and the true percentage of breakpoint reads
originating from the variant sequence. Each entry in the table contains the
average error for that scenario, ignoring simulations in which the SV was not
predicted. For example, for the first entry in the table (150 bp deletion at 10×
depth), the SV is only predicted in 24 out of the 70 simulations due to the low
coverage, and thus the average error is from those 24 estimations.



Landman et al. BMC Genomics 2014, 15:84 Page 9 of 12
http://www.biomedcentral.com/1471-2164/15/84

6000× coverage from non-repetitive regions of the AR
locus in genome DNA from the CWR-R1 cell line model
of CRPCa. Reads were 76 bp in length with a 208 bp
median fragment size (62.44 bp standard deviation).
The entire SHEAR pipeline (including initial alignment

using BWA) completed execution in just under 16 hours
using a cluster of eight Intel Xeon 2.66 GHz processors.
The two components of IMR/DENOM could be run in
parallel, with IMR, the more computationally expensive
component due to the iterative alignments, taking more
than three days on 24 Intel Xeon X7542 “Westmere”
2.66 GHz processors. These results indicate that SHEAR
offers an efficiency advantage over IMR even though both
operate iteratively, because SHEAR excludes concordantly
aligned reads from future iterations. For example, the first
execution of CREST in the SHEAR pipeline took seven
hours, whereas the two subsequent executions of CREST
took less than an hour combined.
Table 4 lists the results found from this data set. SV #1

is a translocation between theGALK2 gene locus on chro-
mosome 15 and intron 1 of AR. SVs #2-4 are deletions
within intron 1 of AR while SV #5 is located in intron
2. SV #6 is a deletion of the exact locus of intron 6
in AR and thus is likely the result of cDNA copies of
mRNA present in the sequencing sample, as this sam-
ple was prepared in a lab that frequently works with AR
expression vectors. Thus the supporting reads for this
SV call might have come from cDNA containing exons 6
and 7 spliced together. None of the predicted SVs were
found by IMR/DENOM because of the heterogeneity of
the sample, highlighting the advantage of using SHEAR on
heterogeneous sequencing samples.
SVs #2, #3, #4, and #5 were experimentally validated

in this cell line sample using nested polymerase chain
reaction (PCR) with deletion-spanning primers to amplify
candidate SV regions, and Sanger sequencing to verify the
joined sequences. We validated SV #3 in a previous study
[23], and the PCR gel enrichments and electrophero-
gram peak traces for SVs #2, #4, and #5 clearly confirm
their presence in the sequencing sample (see Figure S1

Table 4 Results from the CWR-R1 cell line data

No. SV type Breakpoints Variant
percent

1 Translocation chr15:49,498,516 chrX:66,829,481 1.42%

2 Deletion chrX:66,812,839 chrX:66,861,669 29.21%

3 Deletion chrX:66,813,091 chrX:66,861,564 1.73%

4 Deletion chrX:66,830,140 chrX:66,861,904 1.68%

5 Deletion chrX:66,874,605 chrX:66,896,916 0.76%

6 Deletion chrX:66,941,805 chrX:66,942,669 0.36%

Left and right breakpoint locations on the reference sequence are given for each
predicted structural variation, as well as the estimated levels of heterogeneity.

in Additional file 1). Additionally, SHEAR removed eight
CREST predictions that were slight derivations of these
four reported SVs and that SHEAR determined to be false
positives due to sequencing error. The experimental vali-
dation of SHEAR’s reported SV breakpoints confirms that
the removed CREST predictions were indeed false posi-
tives. We were unable to validate SV #1 via nested PCR,
but both of its breakpoints are located in repeat regions
of the genome, making validation more difficult. This
result could be spurious, however, the PCR validation of
SVs #3, #4, and #5 suggests that SHEAR has the capability
to identify true variants present in a very small percentage
of the sample.
SVs #1 and #6 were not predicted by running CREST

alone, outside of the SHEAR framework. It is only by
re-running CREST after performing our pipeline to fix
soft-clipping errors that there is enough evidence to suc-
cessfully detect these two SVs. As mentioned, we were
unable to validate SV #1 via nested PCR, and SV #6 is
believed to be the result of RNA contamination. However,
even though SV #6 is not an SV of interest, it still likely
represents a true event in the sample and thus demon-
strates how the SHEAR pipeline can improve upon using
CREST alone. Additionally, for the other SVs, the SHEAR
pipeline improves the confidence of the CREST predic-
tion by increasing the number of soft-clipped reads that
are concordant with the breakpoint pairs. For example,
SV #2 is supported by 773 soft-clipped reads after running
CREST on the default alignment, but has 1114 supporting
reads using the SHEAR pipeline.
In our previous work, we also determined that there

is a 20–30% decrease in copy number in the region of
these deletions using multiplex ligation-dependent probe
assay (MLPA) [23]. Previously thought to be attributed
to a subpopulation with SV #3, this is instead precisely
consistent with the heterogeneity level of the deletion of
SV #2, as estimated by SHEAR. At the left breakpoint of
SV #2, there are 702 reads that are soft-clipped and 3,094
reads that span the breakpoint, while the right breakpoints
has 412 soft-clipped reads and 2,306 spanning reads (see
Figure S2 in Additional file 1). Using SHEAR’s hetero-
geneity estimation scheme described earlier, for this SV
we would have A = 3, 094 + 2, 306 = 5, 400 and B =
702 + 412 = 1, 114 for an estimated heterogeneity of:

H = 2B
A + 2B

= 2 ∗ 1, 114
5, 400 + 2 ∗ 1, 114

= 29.21%

Deletions in this region have been implicated in alterna-
tive splicing of the AR gene, which can result in resistance
to androgen depletion therapy (ADT) in CRPCa patients.
It should be noted that there is a natural bias towards

sampling DNA that is more similar to the reference
sequence when doing targeted sequencing due to the
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“baits” used to target specific regions for sequencing.
Divergent genomic sequences will be less likely to be
sampled, especially when the baits are close to the
breakpoints. This bias would be present in this tumor
cell line data, meaning that our calculated heterogene-
ity percentages are likely underestimated by an unknown
amount. The agreement between our computational esti-
mation and the MLPA wet-lab estimation suggests that
this underestimation is small, however it is still present
nonetheless.

Tumor whole-genome sequencing data
For both the simulated and cell line data sets, the sequenc-
ing data analyzed is sampled from genomic regions on a
gene-size scale (i.e. tens or hundreds of kbp). To demon-
strate SHEAR’s ability to scale up to larger data sets, we
ran SHEAR on whole-genome sequencing data from liver
metastatic tumor tissue from a lung cancer patient [24].
This data set had an average depth of coverage of 44.77×.
Since the CREST algorithm cannot easily be parallelized,
we ran SHEAR independently on each chromosome using
an Intel Xeon 2.66 GHz processor. For this data set,
SHEAR was able to detect SVs and generate most chro-
mosomes in only a few hours each, and only two chro-
mosomes (chr1 and chr10) took more than a day. Results
for runtime and number of SVs detected as part of the
assembly can be seen in Table S4 in Additional file 1. We
observed that CREST’s SV detection accounts for a major-
ity of the runtime in most cases. Since SHEAR is designed
to work with any base pair resolution SV detection algo-
rithm, future algorithms (i.e. especially algorithms that are
parallelizable) can further improve SHEAR’s efficiency.
This analysis was intended mainly to demonstrate

SHEAR’s ability to scale up to the size of whole-genome
sequencing data sets, however there were also a few note-
worthy findings in the results. When compared with a list
of 70 large deletions in coding sequences determined by
read-depth analysis published by Ju et al. [24] for this same
data set, there were eight deletions predicted by SHEAR
that had breakpoints within 30 bp of a corresponding pre-
diction from Ju et al. SHEAR’s heterogeneity estimations
for these eight SVs were also mostly consistent with their
observed read-depth ratios from Ju et al., with an average
absolute error of 9.87 (see Table S5 in Additional file 1).
Since we do not have access to the original sample tissue
for this data set, it was not possible to do a thorough val-
idation of these results such as was done for the tumor
cell line data discussed previously, but the consistency
in both breakpoint coordinates and heterogeneity esti-
mation for these select SVs is encouraging. The analysis
from Ju et al. for this data set was limited to large dele-
tions in coding sequences, so it is also likely that SHEAR
may have found additional valid SVs not present in the
Ju et al. predictions. We also compared SHEAR’s results

with genes from the Catalogue of Somatic Mutations in
Cancer (COSMIC) [25] and found thirteen SVs that over-
lapped with genes related to cancer-causing SVs listed in
COSMIC (see Table S6 in Additional file 1). Interestingly,
one of these SVs was a KIAA1462-KIF5B fusion that was
also found by Ju et al. in transcriptome data from this same
sample, but not previously found in this whole-genome
sequencing data set.

Limitations and future work
The proposed methods contain some inherent limitations
and directions for future work:
First, even if the alignment is done perfectly, with no

sequencing errors and correct soft-clipping, the estimated
heterogeneity level cannot fully account for random fluc-
tuations between the coverage of the reference-like DNA
and the variant DNA in the sample. This uncertainty
can always be minimized by increasing the depth of the
sequencing to reduce the variation in these coverage level
fluctuations. Future development for SHEAR will include
reporting confidence intervals for heterogeneity estima-
tions to help quantify this uncertainty.
Second, we limit the results and methods discussed in

this paper to small, intra-chromosomal SV types for proof
of concept in leveraging SV predictions to generate per-
sonal genomic sequence and estimating heterogeneity by
comparing counts of spanning and soft-clipped reads. We
will expand our methods to be more thorough in future
versions of SHEAR. Specifically, support for both intra-
and inter-chromosomal translocations will be added, as
well as support for moderate-sized insertions and more
complex variants consisting of overlapping SVs. We will
also look to improve upon the assembly component of
SHEAR by automatically generating multiple personal
genomic sequences using phasing information derived
from our estimated heterogeneity levels of variants.
Third, we will explore the possibility of applying SHEAR

to other kinds of heterogeneous sequencing data sets,
such as pooled population samples or metagenomic sam-
ples that can share a similar reference sequence. We
believe that SHEAR’s ability to quantify the heterogeneity
percentage of predicted SVs makes it an ideal tool to help
analyze these types of data sets.
Finally, future work will explore the possibility of using

alternative alignment algorithms and SV predictors in
the SHEAR pipeline. Newer alignment programs such
as GSNAP [26] and BWA-MEM [27] may offer stronger
capabilities for proper soft-clipping alignment, and we
will investigate how the incorporation of these programs
may improve the first part of the SHEAR pipeline. For
SV prediction, CREST was shown to work well in the
experiments presented here, but any base pair resolu-
tion SV detection algorithm would also be compatible as
well, such as the more recently developed PRISM [18]
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or DELLY [28]. Since new SV detection algorithms are
being developed regularly, the SHEAR pipeline could be
naturally enhanced with each new breakthrough in SV
detection approaches.

Conclusions
We have developed SHEAR, a tool that predicts SVs,
accounts for heterogeneous variants by estimating their
representative percentages, and generates personal geno-
mic sequences to be used for downstream analysis. Our
results demonstrate how SHEAR offers advantages over
competing approaches for simulated data sets, tumor cell
line data, and whole-genome tumor sequencing data in
terms of computational efficiency, tandem duplication
events, and an ability to handle heterogeneous sequenc-
ing samples. The local realignment component of SHEAR
is shown to fix errant soft-clipping and thus improve the
accuracy and confidence of SV predictions in comparison
with running CREST by itself, as well as improve the accu-
racy of our heterogeneity estimations. SHEAR is an ideal
tool for detecting SVs and generating personal genomic
sequences when dealing with heterogeneous sequencing
samples.

Availability and requirements
• Project name: SHEAR
• Project home page: http://vk.cs.umn.edu/SHEAR
• Operating system(s): Unix-like (Linux, Mac OSX,

etc.)
• Programming language: Java
• Other requirements: CREST, BWA, Samtools,

Picard, GATK
• License: GNU GPL v3
• Any restrictions to use by non-academics: None
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Additional file 1: Supplementary Figures and Tables. Document
contains the following Supplementary Figures and Tables: Figure S1
Verified SVs from AR locus in CWR-R1 cell line. Figure S2 Alignment at
breakpoints for SV #2 from CWR-R1 cell line. Table S1 Correctly detected
SVs for simulated data at 1000× coverage under varying levels of
heterogeneity. Table S2 Correctly detected SVs for simulated data at 60%
heterogeneity under varying levels of coverage. Table S3 Summary of
performance for SHEAR versus standalone CREST on simulated data sets.
Table S4 Summary of SHEAR results for whole-genome tumor sequencing
data. Table S5 Deletions predicted by both SHEAR and read-depth
approaches for whole-genome tumor sequencing data. Table S6 SHEAR SV
predictions overlapping with COSMIC genes for whole-genome tumor
sequencing data.
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