Nalabothula et al. BMC Genomics 2014, 15:92

http://www.biomedcentral.com/1471-2164/15/92
P BMC

Genomics

RESEARCH ARTICLE Open Access

The chromatin architectural proteins HMGD1 and
H1 bind reciprocally and have opposite effects on

chromatin structure and gene regulation

Narasimharao Nalabothula'", Graham McVicker>", John Maiorano', Rebecca Martin® Jonathan K Pritchard>>°

and Yvonne N Fondufe-Mittendorf'”

Abstract

been studied far less than the core histone proteins.

architectural proteins and epigenetics in gene regulation.

repeat length

Background: Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and
higher-order chromatin structure. While these proteins are almost certainly important for gene regulation they have

Results: Here we describe the genomic distributions and functional roles of two chromatin architectural proteins:
histone H1 and the high mobility group protein HMGD1 in Drosophila S2 cells. Using ChlP-seq, biochemical and
gene specific approaches, we find that HMGD1 binds to highly accessible regulatory chromatin and active
promoters. In contrast, H1 is primarily associated with heterochromatic regions marked with repressive histone
marks. We find that the ratio of HMGD1 to H1 binding is a better predictor of gene activity than either protein by
itself, which suggests that reciprocal binding between these proteins is important for gene regulation. Using
knockdown experiments, we show that HMGD1 and H1 affect the occupancy of the other protein, change
nucleosome repeat length and modulate gene expression.

Conclusion: Collectively, our data suggest that dynamic and mutually exclusive binding of H1 and HMGD1 to
nucleosomes and their linker sequences may control the fluid chromatin structure that is required for
transcriptional regulation. This study provides a framework to further study the interplay between chromatin
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Background

Eukaryotic DNA is packaged into chromatin, a highly
compacted structure made up of repeating nucleosome
units. Nucleosomes consist of 147 bp of DNA wrapped
around an octamer of core histones (two copies each of
H2A, H2B, H3 and H4) and are connected to each other
by short stretches of linker DNA [1,2]. In most organ-
isms, this short extra-nucleosomal linker region is bound
by an additional histone, known as H1. H1 belongs to a
class of chromatin architectural proteins (CAPs) that are
responsible for maintaining, modulating and stabilizing
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chromatin architecture. H1 binds to the DNA as it en-
ters/exits the nucleosome and may compact chromatin
into a higher-order fiber structure [3-7]. This is sup-
ported by in vivo studies that have shown that reducing
the total amount of cellular H1 results in a less compact
chromatin structure [8-11].

The ability of H1 to compact chromatin may be antag-
onized by other CAPs, such as the highly abundant high
mobility group proteins (HMGs). HMGs decompact
higher-order chromatin structures to promote the bind-
ing of nuclear regulatory factors to their binding sites
[12-17]. HMGs have similar DNA and chromatin binding
properties to H1 [18-22], bind to sites at the entry/exit
dyad of the nucleosome and linker DNA [23], and may
out-compete H1 in order to activate specific transcriptional
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programs [16,17,19,24]. Furthermore, changes in the con-
centration of H1 and HMG proteins alter transcriptional
programs important for normal cell development and via-
bility [11,15,25-31]. Thus, H1 and HMG proteins are both
chromatin architectural proteins that may serve as active
regulators of transcription.

Similar chromatin binding of H1 and HMGs suggests
that they may be functionally linked and act in oppos-
ition with respect to the stability of chromatin structure
[28,30]. Potentially, access to the genome by transcription
regulatory machinery could be mediated by competition
between H1 and HMG. Support for this hypothesis comes
from early embryogenesis, where initially HMGDI1
(Drosophila’s only known HMG) or HMG-B (Xenopus) is
highly abundant and H1 is barely detectable. As develop-
ment progresses, H1 is expressed and replaces HMGD1/
HMGBI at some regions of the genome [19,32]. This re-
placement is thought to silence specific genes and thus
contribute to programmed development.

Despite suggestive evidence of a relationship between
HMGs and H1, their genome-wide distributions are not
known and a clear understanding of how they are re-
lated to chromatin structure and gene expression is lack-
ing. Here we apply genome-wide profiling and gene
specific approaches to study these proteins in D. mela-
nogaster S2 cells and to better understand their roles in
gene regulation and chromatin structural changes. As
Drosophila only encodes one isoform each of histone H1
and HMGD]1, and there exists a wealth of other genom-
ics data for this cell line, S2 cells are an excellent model
system for studying this problem.

Here, we report detailed experiments and analyses that
show that H1 and HMGD1 are associated with specific
genomic regions with specific transcriptional activity.
We show that these proteins bind reciprocally with each
other and affect gene regulation and local chromatin
structures. The data we have generated serves as a useful
resource for understanding the interplay between his-
tone modifications, chromatin architectural proteins,
chromatin structure and gene expression.

Results

H1 and HMGD are enriched in different chromatin regions
To test whether HMGD1 and H1 are associated with
distinct chromatin states, we first determined the rela-
tive abundance of these proteins in different chromatin
fractions. We isolated nuclei from D. melanogaster S2
cells and digested their chromatin with micrococcal nu-
clease (MNase). We subjected the solubilized chromatin
to salt fractionation analyses (Figure 1A) and analyzed
the resulting euchromatic (soluble) and heterochromatic
(insoluble) fractions by agarose gel (Figure 1C) and west-
ern blot (Figure 1B). The majority of HMGDI1 protein is
associated with the active euchromatic fraction as typified
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by the presence of H4K16ac (active histone mark), while
most of H1 is present in the heterochromatic fraction
(Figure 1B). We confirmed these results using a slightly
modified version of the sucrose gradient fractionation
method [33] (Figure 1D & E). Here too, H1 sedimented
with the highly dense, longer and inactive chromatin
and HMGD]1 associated with the lighter, shorter and ac-
tive chromatin fractions. While both results show that
HMGDI1 and H1 associate preferentially with euchroma-
tin and heterochromatin respectively, a non-negligible
proportion of each protein is present in both fractions.
This could be due to post translational modifications of
these proteins, which may change their targets and cel-
lular localization.

To gain further insight into the functional consequences
of HMGDI1 and Histone H1 binding to chromatin, we
used nucleosome-ChIP-seq to obtain genome-wide maps
of HMGD1- and H1 -bound nucleosomes in D. melanoga-
ster S2 cells. We first digested chromatin with MNase to
yield ~450 bp fragments, which are long enough to in-
clude linker DNA bound by either H1 or HMGD1. We
then immunoprecipitated chromatin fragments using
ChIP-grade antibodies against Histone H1, HMGD]1, and
IgG (Additional file 1: Figure S1) and adapted the immu-
noprecipitated mononucleosomal fragments for SoLiD se-
quencing. After sequencing the reads, we aligned them to
the reference genome and discarded those that did not
map uniquely. In total, we mapped 12—14 million unique
reads, equivalent to ~18-22x fold coverage per nucleo-
some (Additional file 1: Table S1). Total nucleosomal in-
put DNA from S2 cells was also sequenced and used to
correct for background nucleosome occupancy.

We examined the broad distribution of H1l- and
HMGD1-bound nucleosomes across chromosomes. After
normalizing the total number of mapped reads in the H1
and HMGD1 datasets, we found that HMGD1-bound nu-
cleosomes are consistently depleted on the heterochro-
matic chromosome arms compared to both H1 and total
nucleosomes (Figure 2A and Additional file 1: Table S1).
Interestingly, HMGD1 is highly abundant on the X
chromosome compared to total nucleosomes. Potentially
this could be related to dosage compensation in male flies
(S2 cells are biologically male), which results in a doubling
of gene expression on the X-chromosome (Meller and
Kuroda 2002). These results are consistent with those
from the chromatin fractionation experiments and indi-
cate that HMGDL1 is enriched in the euchromatic fraction
of the genome.

HMGD1 and H1 presence at transcription start sites
correlates with gene expression

The above results prompted us to ask whether the occu-
pancy of HMGD1 and H1 vary across different chromo-
somal regions and features that are associated with
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Figure 1 HMGD and H1 are associated with euchromatic and heterochromatic fractions respectively. (A) Salt fractionation of chromatin
procedure. (B) Western blot of H1 and HMGD?1 in heterochromatic (P2) and euchromatic (52) chromatin fractions. We digested chromatin from
S2 nuclei with micrococcal nuclease and fractionated it to yield supernatant (S2) and pellet (P2) fractions. The western blot shows that H1 is

primarily found in the heterochromatic fraction (P2) and HMGD?1 is primarily found in the euchromatic fraction (52). The histone mark H4K16ac is
a positive marker for active euchromatin and the histone H4 antibody is used as a chromatin loading marker. (C) Ethidium bromide stained 3.3%
Nusieve™ agarose gel showing the DNA associated with the S2 (magnesium-soluble) and P (magnesium-insoluble) fractions. (D) Sucrose gradient
fractionation procedure. (E) Western blot analysis of H1 and HMGD1 released from MNase-digested chromatin from S2 cells. The 6 — 40% sucrose

gradient reveals that H1 is bound to the heavier heterochromatin, while HMGD1 is bound to the lighter euchromatin.

transcription. We used the flybase gene annotations to
define genomic regions as intergenic, intronic, or exonic,
and we labeled regions within 1000 bp of annotated
transcription start sites (TSS) as promoters. To estimate
the relative abundance of HMGD1 and H1, we counted
the number of ChIP-seq nucleosome centers within each
region, and divided by the total number of mapped reads
from each experiment. Compared to total nucleosomes,
HMGDL1 is depleted in intergenic regions and is highly
enriched at promoters. Conversely, H1 is depleted in
promoter regions (Figure 2B and Additional file 1:

Figure S2). To further understand the HMGDI1 pro-
moter enrichment, we split promoters into regions that
are downstream and upstream of the TSS. HMGDI is
enriched within both upstream and downstream regions
of TSSs, which suggests that it may be associated with
both transcriptional initiation (promoter clearance) and
elongation.

We next asked whether differences in HMGD1 and
H1 binding correlate with transcriptional activity. We
utilized RNA-seq data from S2 cells [34] and grouped
genes by their expression levels. We then aggregated
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Figure 2 Density of HMGD1 and H1 across different chromosomes and genomic regions in S2 cells. (A) Density of midpoints from
mapped HMGD1 and H1 ChiP-seq reads on each chromosome. (B) Density of HMGD1 and H1 ChIP-seq reads in different genomic regions:
promoters (defined as 1 kb upstream and downstream of TSSs), exons, introns, and intergenic regions in the D. melanogaster genome. “Upstream”
and “Downstream” regions are defined as 1 kb upstream and 1 kb downstream of the transcription start site, respectively.

data across genes in each expression group and compared
the density of HMGD1 and Histone H1 to the density of
total nucleosomes. Total nucleosome reads from MNase-
seq were used to subtract out effects that are solely attrib-
utable to nucleosome positioning (Figure 3A). We find
that HMGDL1 is highly enriched around the promoters of
genes with high expression (Figure 3A & B), while in con-
trast H1 is preferentially enriched in the promoters of
genes that are silenced or have low expression (Figure 3A
& C). We further validated the presence of HMGD1 and
H1 at a subset of promoters with high and low expression
genes using ChIP followed by RT-qPCR (Additional file 1:
Figure S3A, S3B & S3C).

To quantify the relationship between gene expression,
HMGD1, and H1, we calculated the Pearson correlation
between gene expression and ChIP-seq read depth across
promoter regions (Figure 4). HMGD1 showed a strong
positive correlation (R =0.71) and H1 had a negative cor-
relation (R = -0.47) with gene expression (Figure 4A & B).
We next divided promoters into several non-overlapping
regions corresponding to the approximate locations of

well-positioned nucleosomes and the nucleosome-depleted
region (NDR) (Additional file 1: Figure S2). For each
region we then calculated the correlation across all
promoters. HMGD1 has a moderately strong positive cor-
relation with gene expression both upstream and down-
stream of the promoter, with a maximum correlation at
the +1 nucleosome (R=0.50; P <10°) (Figure 4C). H1
has a negative correlation with gene expression, which is
strongest at the nucleosome-depleted region immediately
upstream of the TSS (R=-055; P<10™") (Figure 4C).
These data suggest that while chromatin binding of
HMGD1 is associated with transcription activation, H1
may be involved in gene silencing or repression.

If HMGD1 and H1 bind mutually exclusively and re-
ciprocally to the same sequences, then the ratio of
HMGDI1 to H1 should be more strongly associated with
gene expression than either measure alone. To assess
this we computed the correlation between gene expres-
sion and the ratio of HMGD1 to H1 density. The cor-
relations obtained with this ratio are substantially and
significantly stronger than those with H1 or HMGD1
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Figure 3 HMGD1 is enriched around the promoters of active
genes and H1 is depleted. (A) Density of total nucleosome
midpoints from S2 cells around transcription start sites (TSSs).
Midpoints are aggregated across genes with high, medium and low
expression. (B) Density of HMGD1 ChlIP-seq midpoints around TSSs
in 52 cells for genes with high, medium and low expression.

(C) Density of H1 ChIP-seq midpoints around TSSs in S2 cells for
genes with high, medium and low expression.

(P< 10" for every region by F-test), and reach a max-
imum of R = 0.73 at the +1 nucleosome. This argues that
the relative levels of these proteins are more important
than their individual absolute levels (Figure 4C).

HMGD1 is associated with DNase | hypersensitive sites
HMGN]1, the human homolog of HMGD], is known to
co-localize with DNasel hypersensitive sites [35-37],
which are sensitive indicators of open chromatin [38-40].
We wondered whether HMGD1 would be generally asso-
ciated with open chromatin regions, including those out-
side of promoter regions. To address this question, we
obtained a set of DHSs for Drosophila S2 cells [34]. We
then divided the Drosophila genome into non-overlapping
1 kb regions and computed the distance of each region to
the nearest DHS. The density of HMGD1 nucleosome
midpoints is much higher near DHSs, and there is a
negative correlation between DHS distance and HMGD1
density (R =-0.31; P<10™"®) (Figure 5A). H1 density has
only a very weak positive correlation with DHS distance
(R=0.091; P <10™°) (Figure 5B).

Collectively our data suggest a high degree of corres-
pondence between HMGD1 and regions of open chroma-
tin in S2 cells. In contrast, chromatin regions containing
H1 are less accessible and perhaps refractory to DNase 1.
Previous studies have argued that HMGD1 and H1 com-
pete for binding to the same linker DNA regions [41]; thus
the accessibility of chromatin to regulatory factors could
be mediated by competition between these proteins. If
chromatin accessibility is driven by competition between
these proteins, then their relative abundance should be
more predictive than the level of either protein on its
own. We tested this prediction by computing the ratio of
HMGD1 to H1 with respect to the distance to DHSs
(Figure 5C). The correlation with the ratio is significantly
stronger than obtained by either protein on its own (P <
10" for both comparisons by F-test), Even after excluding
all regions that are within 2 kb of a known TSS, the
HMGD1/H1 ratio is highest near to DHSs (Additional file 1:
Figure S4). Our data suggest that the relative levels of
HMGDI1 to H1 binding may be a primary determinant of
chromatin openness and are consistent with previous ex-
perimental results that suggest these proteins bind com-
petitively in vivo.
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Histone posttranslational modifications (PTMs) direct
many important processes such as gene activation and

repression [42-47]. To determine whether H1 and HMGD1
are associated with specific core histone PTMs, we down-
loaded a large set of S2 cell line histone modification data
from the modENCODE project (Kharchenko et al., [34]).
Using 2 kb windows surrounding each annotated TSSs,
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Figure 5 HMGD1 and H1 density are correlated with distance from DNasel hypersensitive sites. Box plots show (A) the distribution of
HMGD?1 and (B) H1 densities calculated from non-overlapping 1 kb regions. The box represents the inter-quartile range of the distribution and
the bar represents the median. The whiskers extend to the most extreme data point that is no more than 1.5 times the interquartile range from
the box. Regions are grouped by their distance to the nearest DNase | hypersensitive site (DHS). (C) Distributions of HMGD1/H1 ratio for DHS
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we computed the mean signal for each PTM and esti-
mated the density of HMGD1- and Hl-bound nucleo-
somes. We then calculated the pairwise correlations
across TSS regions for all possible combinations of PTMs,
HMGDI1 and H1 and performed hierarchical clustering to
visualize the results (Figure 6 and Additional file 1: Figure
S5). We found that HMGD1 clusters with a large number
of activating PTMs including H3K36me3, H3K79mel/2,
H3K27ac, H3K18ac, H3K9acS10P, H3K9ac, H3K4me2/3,
H4K16ac, and H4K8ac and with elongating marks
H3K36me3, H2Bubi [48,49]. In contrast, H1 clusters with
several repressive marks, namely H3K27me2/3, H3K9me3,
and H4K20mel, which are known to be associated with
gene silencing and heterochromatin.

HMGD1 and H1 are associated with local nucleosome
spacing

The average distance between two nucleosomes, the nu-
cleosome repeat length (NRL), is an important parameter
that describes primary chromatin organization. Since H1’s
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expression level is a key determinant of the genome-wide
NRL [10,25], we sought to determine whether the relative
protein levels of HMGD1 and H1 are associated with local
differences in nucleosome spacing. We divided the gen-
ome into non-overlapping 2 kb regions and computed the
ratio of HMGD1 to H1 in each region. We then calculated
the density of nucleosome midpoints as a function of dis-
tance from an “anchor” nucleosome (treating each nucleo-
some midpoint within a region as an anchor in turn). The
resulting plots show well-defined peaks in nucleosome
occupancy particularly for regions with the highest
HMGD1/H1 ratio (Figure 7A). These peaks were then
used to estimate the NRL, which we found to be better
correlated with the ratio of HMGD1 to H1 (Figure 7B) than
either H1 or HMGD1 alone, (Additional file 1: Figure S6A
and S6B). The NRL varies from 174 bp in regions with a
high HMGD1/H1 ratio to 187 bp in regions with a low
HMGD1/H1 ratio. These results suggest that the stoichi-
ometry of H1 is important, not only for the average NRL
across the genome, but also for defining the local spacing
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of nucleosomes. Potentially, the spacing between nucleo- Interestingly, knockdown of H1 decreased the average
somes may be specified by which CAP is bound to the NRL in bulk chromatin by ~24 bp, whereas HMGD1
linker region (e.g. HMGD1 or H1). Under this hypothesis  knockdown increased the average NRL by ~7 bp
the average NRL across cells would reflect the relative  (Figure 8D and Additional file 1: Figure S7). H1 knock-

concentrations of these proteins. down may have a greater effect on the repeat length of

bulk chromatin because it is present in most regions of
H1 and HMGD1 bind reciprocally and affect gene the genome, while HMGDI1 is most abundant at highly
expression and nucleosome repeat length transcribed regions that comprise a smaller fraction of the

To directly test the hypothesis that reciprocal binding of = genome. These results suggest that nucleosome spacing
HMGD1 and H1 has functional consequences for gene may be dictated by the binding of these (and potentially
regulation and nucleosome spacing, we performed siRNA  other) CAPs.

knockdown of both HMGD1 and H1 (Figure 8A) [31,50].

Following both knockdowns, we assayed the occupancy of  Discussion

H1 and HMGDL1 in representative promoters using ChIP-  The role of the core histones and their modifications in
qPCR (Figure 8B and Additional file 1: Figure S3). For the = gene regulation has been widely studied, however, the
HMGD1 knockdown, the subset of promoters with high  function of chromatin architectural proteins such as his-
initial levels of HMGD1 showed a remarkable two- to  tone H1 and the high mobility group proteins (HMGs) are
three-fold increase in H1 binding and a significant reduc-  less well understood. In this study we used genomic, gene
tion in gene expression (Figure 8B and C). Conversely, H1  specific and biochemical approaches to characterize two
knockdown resulted in only modest HMGD1 promoter  highly abundant chromatin architectural proteins: H1 and
occupancy increases at 4 of the 5 target H1 promoters ex- HMGD1. Additionally, by using a homogenous cell popu-
amined and no change was observed at one promoter, lation and high-throughput sequencing, we were able to
HSP27. Likewise, observed changes in gene expression directly correlate H1 and HMGDI1 protein binding with
were varied at these promoters with only two genes show-  gene activity and chromatin structure on a genome-wide
ing significant increases in expression (Figure 8B and C).  scale. We found that HMGDI1 is associated with active
This suggests that H1 depletion alone may not be suffi- transcription and euchromatin, while H1 is associated
cient to initiate gene expression in all heterochromatic  with repressed genes and heterochromatin. More specific-
regions. On the other hand, the reduction in gene ex- ally, HMGD1 occupancy is highest in regions with active
pression following HMGD1 knockdown suggests that transcription, activating histone PTMs, and DHSs, while
HMGD1 facilitates transcriptional initiation or elongation. ~ H1 is enriched in inaccessible regions with low gene
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Figure 8 HMGD1 and H1 knockdown reciprocally mediate higher order chromatin structure leading to changes in distinct gene
expression outcomes. (A) S2 cells were treated with the indicated siRNA for 48 hours and knockdown (KD) was validated by western blot. For
the H1 KD, there was a ~40% reduction in H1 protein levels; for the HMGD1 KD, there was a ~90% reduction in HMGD1 protein levels.

(B) Relative occupancy of HMGD1 and H1 as measured by ChIP-qPCR at promoters that were initially bound by H1 and HMGD1. Relative
occupancy was computed by setting the IgG control to 1. (C) Gene expression changes measured by RT-gPCR following HMGD1 or H1
knockdown in S2 cells. Expression was normalized to B-actin levels and fold change in expression was calculated by setting the expression in the
mock control to 1. In (B) and (C), error bars are mean + SD from three independent experiments. Using a student t-test, the p values from all
experiments were significant with values ranging from p=135x 10" to p=287x 10® (D) Nucleosome repeat length changes caused by KD of
H1 or HMGD1. S2 nuclei (5 x 10°) were digested with 25 units of MNase for 1, 3, 5, 7 and 10mins. Purified DNA from these digests was run on a
3.3% Nusieve™ agarose gel. M indicates DNA ladders. Red stars indicate the nucleosome ladders. A decrease in H1 levels decreased the
nucleosome repeat length by ~24 bp. Knockdown of HMGD1 increased the nucleosome repeat length by ~7 bp.
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expression, repressive histone PTMs and low DNase I sen-
sitivity. Our results for HMGDI1 are consistent with those
from recent studies of HMGN1 (the human homolog of
D. melanogaster HMGD1), which found that this protein
is enriched around DNasel hypersensitive sites at the pro-
moters of actively transcribed genes [35]. This suggests
that the HMGD1 distribution at promoter regions is likely
a broadly conserved feature of HMG proteins. Recently,
genome-wide distributions of the histone H1 variants H1d
and H1c have been obtained from human embryonic stem
cells [51]. As with histone H1 in Drosophila S2 cells, these
histone variants are depleted from regions of active chro-
matin and are enriched in heterochromatic regions [51].

Our results suggest that H1 and HMGD1 are part of a
mechanism that establishes or maintains repressed and
active chromatin states. How HMGD1 or H1 are re-
cruited to distinct chromatin regions remains unknown,
but our data argue that reciprocal binding of these archi-
tectural proteins to the same chromatin region is im-
portant [22]. The high on/off rates of these proteins’
chromatin association may provide a window of oppor-
tunity where one CAP can replace the other to cause a
change in chromatin state. For instance, specific HMGs
may be able to displace H1 and locally destabilize chro-
matin so that other proteins can be recruited to initiate
transcriptional activation [52-54]. Consistent with this
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notion, we found that depletion of HMGD1 results in
H1 binding to previously HMGD1-bound promoters
(Figure 8B), with a subsequent decrease in gene expres-
sion. On the other hand, depletion of H1 only slightly
increases in HMGD1 occupancy at a subset of previ-
ously bound H1 promoters, and had varied effects on
gene expression, with 2 of 5 genes showing a significant
increase in expression (Figure 8).

The expression level of H1 was previously known to
affect the genome-wide average NRL [25]. We found
additionally that depletion of HMGD1 affects the
genome-wide NRL. We hypothesize that HMGs may be
responsible for the reduction in nucleosome repeat
lengths in active chromatin regions [55]. Changes in NRL
are likely very important in gene regulation, because even
a single base pair (bp) shift in linker length changes the
DNA helical twist, resulting in a 36° torsional angle
change in the neighboring nucleosome position [56]. It is
therefore possible that changes in nucleosome spacing in-
troduced by CAPs such as HMGD1 modulate the accessi-
bility of regulatory factor binding sites and have
downstream consequences on transcription factor binding
and gene expression.

Conclusion

In summary, we have shown that HMGDL1 is localized to
genomic loci with transcriptionally active histone modi-
fications and DNase I hypersensitive sites, whereas H1 is
primarily associated with heterochromatic regions. Both
proteins contribute to the spacing of nucleosomes and it
is likely that the depletion of H1 in transcriptionally ac-
tive regions reflects the competitive and mutually exclu-
sive binding of HMGs to linker sequences. While we
have studied the genomic localization of HI1 and
HMGD1, other CAPs are also likely to play important
roles in gene regulation, nucleosome spacing and chro-
matin compaction. For example, competition between
H1 and Poly-ADP-ribose polymerase can elicit specific
transcriptional outcomes [54]. An important future dir-
ection will be to study how CAPs compete with each
other and whether their different isoforms and post-
translational modifications affect their function. Already
some data suggest that H1 and HMGD1 act differently
depending on their post-translational modifications or
binding partners [28,30,53,57-60]. Finally with this data,
we provide a platform to determine in fine detail, the
interplay between chromatin architectural proteins, epi-
genetic factors (histone PTMs, PTMs on CAPs them-
selves, DNA methylation) and gene expression.

Methods

S2 cell culture and siRNA knockdown

D. Melanogaster S2-DRSC cells (obtained from the
Drosophila Genomics Resource Center) were cultured in
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Schneider’s Drosophila medium (Invitrogen) supplemented
with 10% FCS (Hyclone). Knockdowns in S2 cells were
done using the following constructs: an H1 construct ob-
tained from [11] and HMGD1 PCR products were ob-
tained from the Drosophila RNAi screening center
(DSRCQ). Production of both dsRNA and transfection were
done according to protocols from DSRC.

Antibodies

The following antibodies were used in this study: anti-H1
(Active motif- 39575), anti-HMGD1 (custom-made anti-
body from Thermo Fisher Scientific), anti-H4 (Abcam-
ab10158), anti-H4K16ac (Activ motif 39167).

Salt fractionation of chromatin

S2 cell chromatin was fractionated into putative eu-
chromatin, heterochromatin, and pelleted heterochro-
matin using a modification of the method of [61]. S2
cells were incubated with NP-40 lysis buffer (10 mM
Tris [pH 7.4], 10 mM NaCl, 3 mM MgCl,, 0.5% NP-40,
0.15 mM spermine, 0.5 mM spermidine, complete Prote-
ase Inhibitor Cocktail). After two washes with wash buf-
fer A (10 mM Tris [pH 7.4], 15 mM NaCl, 60 mM KCl,
0.15 mM spermine, 0.5 mM spermidine), nuclei were re-
suspended in ice-cold MNase digestion buffer (10 mM
Tris [pH 7.4], 15 mM NaCl, 60 mM KCl, 0.15 mM
spermine, 0.5 mM spermidine, 1 mM CaCl,). Chromatin
was digested with predetermined MNase concentration
at RT for 5 mins. The digestion reaction was stopped by
the addition of EDTA to a final EDTA concentration of
10 mM (on ice). Undigested chromatin (P1) was re-
moved by centrifugation at 14,000 x g for 30 min at 4°C.
200 mM MgCI2 was added dropwise (end concentration =
2 mM), to the supernatant while stirring at 4°C. After a
4°C overnight rotation, the suspension was centrifuged
as above resulting in a magnesium insoluble DNA-pellet
(P2) and magnesium soluble-supernatant (S2) fraction
(Pellet in Figure 1C).

Nucleosome repeat length (NRL) determination in
knockdown cells

30 x 10° cells were used for each type of experiment.
From these, nuclei from wildtype and knockdown cells
were extracted and MNase digestion was performed as
described above (Salt fractionation of chromatin). Diges-
tion was done at different time points at room tempera-
ture with predetermined MNase concentration. DNA was
purified and separated on a 3.3% Nusieve agarose gel. The
NRL at each time point was calculated using the regres-
sion line generated with size (bp) of polynucleosomes
[25,62], and the values extrapolated to time “0” as previ-
ously described [63].
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Sucrose gradient fractionation of chromatin

S2 cells were crosslinked with 1 ml of 1% formaldehyde
in PBS for 10 min at room temperature to preserve
chromatin structure. The protocol was performed ac-
cording to [33] with minor modifications. The cross-
linked reaction was stopped by the addition of
0.125 mM glycine and cells were washed with ice-chilled
PBS twice. Next cells were washed with NP-40 lysis buf-
fer (10 mM Tris [pH 7.4], 10 mM NaCl, 3 mM MgCl,,
0.5% NP-40, 0.15 mM spermine, 0.5 mM spermidine,
complete Protease Inhibitor Cocktail). After two washes
with wash buffer A (10 mM Tris [pH 7.4], 15 mM NaCl,
60 mM KCl, 0.15 mM spermine, 0.5 mM spermidine),
nuclei were resuspended in ice-cold MNase digestion
buffer (10 mM Tris [pH 7.4], 15 mM NaCl, 60 mM KClI,
0.15 mM spermine, 0.5 mM spermidine, 1 mM CaCl,).
Chromatin was digested with a predetermined MNase
concentration at RT for 5 min to yield a wide MW size
range of the DNA (0.1 to > 2 kb). The lysates were then
spun down briefly (700 g, for 5 min) to remove debris,
and layered onto a 9.5 ml sucrose gradient (6—40%) in
1.1% Triton X-100, 0.01% SDS, 16.7 mM Tris—HCI
(pH 8.0), 1.2 mM EDTA, 167 mM NaCl, and complete
Protease Inhibitor Cocktail (sigma P8340) in a polyallo-
mer centrifuge tube (#331374, Beckman). Ultracentrifu-
gation was run at 43,000 x g for 3 h at 4°C. 0.5-ml and
fractions were collected from the gradient by pipetting
from top to bottom using a micropipette. Aliquots from
each fraction were analyzed for protein or DNA ana-
lyses. For DNA analyses, aliquots were reverse cross-
linked at 65°C overnight, treated with RNase A and
Proteinase K (Sigma R4642 and P4850 respectively),
followed by extraction with phenol/chloroform for DNA
analyses. After precipitation by ethanol supplemented
with 10 pg of glycogen, purified DNA from each fraction
was loaded onto a 3% nusieve agarose gel in a Tris—gly-
cine buffer. Protein samples were run on 8 - 12% SDS
Invitrogen NuPAGE gels (part # NP0322BOX) and ana-
lyzed further by western blot.

ChIP of H1 and HMGD1 bound nucleosomes

Chromatin fixation and immunoprecipitation were per-
formed essentially as described by [64,65] with minor
modifications. Cells (7.5 x 10%) were fixed in 10 mL of
medium with 1% formaldehyde for 10 min at room
temperature. Cross-linked cells were digested with micro-
coccal nuclease (Sigma N3755) to produce chromatin
fragments of an average size of ~450 bp equivalent to ~2-
3 nucleosomes. Soluble chromatin was separated from
insoluble material by centrifugation. The supernatant
containing chromatin was used for immunoprecipitation.
Resultant eluates were subjected to both agarose gel elec-
trophoresis for DNA analyses and western blots for
protein analyses. To determine whether formaldehyde
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crosslinking and pull-down with respective antibodies
allowed efficient pull-down of H1- or HMGD1-bound nu-
cleosomes, we probed eluates with antibodies for our pro-
teins of interest and H4. No mononucleosomal DNA or
histone H4 enrichment was observed in the IgG controls,
suggesting that pull downs were sufficiently selective. Fi-
nally, the mononucleosomal fragments from these ChIP
experiments were adapted for deep-sequencing analyses
via paired-end or single-end SoLiD life technology and se-
quenced to high coverage. In total, we created 2—4 replica
each for each ChIP.

Immunoprecipitation-quantitative real-time PCR assay
ChIP was performed on MNase digested chromatin frag-
ments like before using anti-H1 and anti-HMGD anti-
bodies. 6 pg of antibody, 100 pl of dynal beads and
400 pg of chromatin DNA were used for each ChIP. IgG
was used as a no-antibody control. Eluted DNA was
subjected to real-time PCR using the PerfeCTa SYBR
Green FastMix (Quanta Biosciences Inc, USA) and
Biorad CF96 following the manufacturer’s instructions.

The primers used to amplify selected gene promoters
were as follows:

CG13613:

F: 5-AGACAATGAAGTGGTCTGGATT-3’;
R: 5SATCAGGGTGATCAGCAGCAG-3’;
CG17784:

F: 5-TCGTGGCTGAGATCCAAGTTT-3’;
R: 5-CAGGTCAGAACTCTGTGGACC-3};
CG8715:

F: 5-ACTCAGAATCCAGTCAGCACAG-3}
R: 5-CGCCTGAACGAGTTTGTGTG-3};
CG12770:

F: 5-GGCCACACTGTCAAATCCCT-3};

R: 5-AGCTCGGGACTTTGTTCCTG-3’

20 pl reactions were set up using 1 pl of ChIP DNA,
10 pl of 2x PerfeCTa SYBR Green FastMix (Quanta) and
0.5 uM each of gene specific primers. The cycling condi-
tions were: 95°C for 2:00 m; 40 cycles of 95°C for 30 s,
55°C for 30 s and 72°C for 1:00 m. Fluorescence was
measured right after each elongation step. Dissociation
curves were used to confirm specificity of PCR products.
The “signal over background” normalization method was
used to calculate fold enrichment from Ct values.

Gene expression and real time quantitative PCR

Total RNA was isolated using QIAGEN RNeasy accord-
ing to the manufacturer’s extraction protocol (Qiagen
74106) which included the DNase step (Qiagen 79254).
c¢DNA was generated from 1 pg of total RNA using the
Superscript III First-Strand Synthesis System (Life Tech-
nologies). Analysis of mRNA was then accomplished
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using primers specific to each of the target mRNAs. RT-
qPCR reactions were performed using PerfeCTa SYBR
Green FastMix (Quanta Biosciences Inc, USA) and
Biorad CF96 following the manufacturer’s instructions
and the resulting Ct values were normalized to ||-actin.
Primers used are listed below:

CG13613:

F: 5-CTCCAGCTGACCTCATCCAT-3};

R: 5-TTCATCTGGAAGCCCATGTC-3

CG17784:

F: 5-CAGACCGACAAGGAGCAGTC-3;
R: 5-GTGTTCCAAAAGCTCCACCA-3
CG8715:

F: 5-ACGTGTTAAGCTGCCACCAC-3;
R: 5-CACGTCCAGGTAGCCAATGT-3

CG12770:

F: 5-AAGCTACGCCTGCAGATCAA-3’;
R: 5-GGACAGGCGATTCATGTTGT-3

Preparation of ChlIP-seq libraries

Sequencing libraries were prepared with the SoLiD ABI
technologies as described in [66]. After adapter ligation,
library fragments of ~160 bp were isolated from agarose
gel. The DNA was PCR amplified with SoLiD primers
for 10 cycles, purified, and loaded on a SoLiD flow cell
for cluster generation.

Gene sets

The gene sets used in these analyses were from BDGP
Release 5 and the Release 5.12 annotations (Oct. 2008)
provided by FlyBase.

MNase-seq and Nucleosome-ChIP-seq processing
HMGDI1 colorspace fasta reads were converted to fastq
format by the University of Chicago Genomics core
using a custom script. We sorted HMGD1 reads into
separate library files based on their barcodes, and
mapped them to the Drosophila genome using BWA
v0.6.1 [67]. We estimated the mean fragment length of
each library by computing the offset that gave the high-
est covariation of read depth between the forward and
reverse strands. We estimated HMGDI1 nucleosome
midpoint locations as the read start plus the offset (or
minus the offset for those that mapped to the reverse
strand).

We aligned the MNase-seq and H1 paired-end reads
to the genome using the standard SOLID pipeline [68]
and discarded those where only one side of pair mapped.
We estimated the distribution of fragment sizes from
separation of read pairs, and discarded read pairs outside
of the central 95% of distribution (101-191 bp). We esti-
mated nucleosome midpoints as the midpoint between
read pairs.
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Gene expression

We downloaded aligned RNA-seq reads from S2 cells in
BAM format from modENCODE [69]. We counted the
number of sequence tags that overlapped with annotated
exons in each transcript, added a pseudocount and nor-
malized by transcript length to obtain reads per kb per
million mapped reads (RPKM). For most analyses we used
the log RPKM value as our expression measurement.

Correlations with gene expression

We divided regions around each TSS into windows that
corresponded to the typical locations of each positioned
nucleosome and the nucleosome depleted regions as es-
timated from aggregate gene plots (Figure 3). We com-
puted the Pearson correlation between gene expression
and the density of H1, HMGD, and nucleosome mid-
points (center) density in each region. We additionally
computed correlation with the ratio log2 (HMGD dens-
ity/H1 density). To assess whether the ratio gave a
significantly better fit that either measure alone, we
compared F-statistics from the model expr ~ log2 (H1) +
log2 (HMGD) to those from the univariate models expr
~log2 (H1) and expr ~ log2 (HMGD).

Correlations with DHS distance

We obtained a list of previously identified DHSs for S2
cells [34] and calculated the distance to the nearest DHS
for each base in the genome. We divided the genome
into non-overlapping 1 kb windows and assigned each
window the following values: DHS_dist = log2(mean
(DHS_distance)), HMGDI = log2(mean(HMGD1_midpoint_
depth)) and HI = log(mean(HI1_midpoint_depth)). We
then calculated Pearson correlations across windows
and fit linear models by least squares. We used an F-
test to compare the fit of the linear model DHS_dist ~
HMGDI + HI to that of the models with only one
predictor (DHS_dist ~ HMGD1 and DHS_dist ~ HI).
The linear model with both predictors gave a signifi-
cantly better fit than the single predictor models (P <
107 for both).

Correlations with histone modifications

We downloaded processed and smoothed ChIP-chip
data from the modENCODE project [34]. We used data
from a total of 84 experiments (including replicates) that
were performed in Drosophila S2 cells using antibodies
for specific histone post-translational modifications. We
took 2 kb windows surrounding all annotated TSSs and
computed mean values for each histone modification
experiment in each window. For the same windows, we
also computed normalized values for the HI1 and
HMGD1 experiments by dividing the number of mid-
points from a given experiment by the number total
nucleosome midpoints and taking the log. We then
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computed Pearson correlations, R, across windows for
all possible pairs of experiments and performed hier-
archical clustering of the experiments, using 1-R as a
distance metric.

Data access
All data are publically available from GEO (http://www.
ncbi.nlm.nih.gov/geo/) under accession GSE49526.

Additional file

Additional file 1: Supplementary Information. This file contains
Figures S1-S7 and Table S1.
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