Popik et al. BMC Genomics 2014, 15(Suppl 12):S7
http://www.biomedcentral.com/1471-2164/15/512/S7

BMC
Genomics

RESEARCH Open Access

Analysis of signaling networks distributed over
intracellular compartments based on protein-

protein interactions

Olga Vasilevna Popik’, Olga Vladimirovna Saik', Evgeny Dmitrievich Petrovskiy', Bjérn Sommer?, Ralf Hofestadt?,
Inna Nikolaevna Lavrik'?, Viadimir Aleksandrovich Ivanisenko'*

From IX International Conference on the Bioinformatics of Genome Regulation and Structure\Systems

Biology (BGRS\SB-2014)
Novosibirsk, Russia. 23-28 June 2014

Abstract

approach was discussed.

preliminary analysis of different protein networks.

Background: Biological processes are usually distributed over various intracellular compartments. Proteins from
diverse cellular compartments are often involved in similar signaling networks. However, the difference in the
reaction rates between similar proteins among different compartments is usually quite high. We suggest that the
estimation of frequency of intracompartmental as well as intercompartmental protein-protein interactions is an
appropriate approach to predict the efficiency of a pathway.

Results: Using data from the databases STRING, ANDSystem, IntAct and UniProt, a PPI frequency matrix of intra/
inter-compartmental interactions efficiencies was constructed. This matrix included 15 human-specific cellular
compartments. An approach for estimating pathway efficiency using the matrix of intra/inter-compartmental PPI
frequency, based on analysis of reactions efficiencies distribution was suggested. An investigation of KEGG pathway
efficiencies was conducted using the developed method. The clusterization and the ranking of KEGG pathways
based on their efficiency were performed. “Amino acid metabolism” and “Genetic information processing” revealed
the highest efficiencies among other functional classes of KEGG pathways. “Nervous system” and “Signaling
molecules interaction” contained the most inefficient pathways. Statistically significant differences were found
between efficiencies of KEGG and randomly-generated pathways. Based on these observations, the validity of this

Conclusion: The estimation of efficiency of signaling networks is a complicated task because of the need for the
data on the kinetic reactions. However, the proposed method does not require such data and can be used for

Background

Estimation of efficiency of signaling networks is one of
the most relevant problems in the study of biological
systems. Analysis of effectiveness of biological networks
is needed to meet the challenges of medicine and bio-
technology [1,2]. In particular, search for drug targets
[3,4], prediction of gene expression [5], engineering of
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organisms and plant systems [6] can be performed via
analysis of various regulatory networks. Common meth-
ods for systems analysis of signaling pathways are pre-
sented by different modeling approaches, such as flux
models [7], kinetic models [8], Boolean models [9,10],
Petri net models [11,12] or stochastic modeling methods
[13]. Each method has both advantages and limitations.
Ordinary Differential Equation (ODE) modeling provides
qualitative and quantitative information about processes,
though the search of parameters for the reactions is a
time-consuming and difficult task. Flux and Boolean
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models allow steady-state analysis, but do not give a
description of the process dynamics. Modeling and ana-
lysis using stochastic methods are computationally
expensive. All methods require evaluation of reaction
parameters, which in turn implies the need for experi-
mental data.

One of the difficulties in modeling a signaling pathway is
that biological processes in cells are allocated to different
intracellular compartments [14]. Thus, the effectiveness of
a pathway can be directly influenced by the distribution of
involved proteins over intracellular localizations.

Previously we developed the CELLmicrocosmos
PathwaylIntegration (CmPI) to support and visualize the
subcellular localization prediction of protein-related data
such as protein-interaction network [15]. Here, we pro-
pose a method for evaluating the pathway efficiency on
the basis of data on the intracellular localization of pro-
teins involved in protein-protein interactions (PPI). Cur-
rent analysis showed that proteins involved in PPI are
localized preferably in the same cellular compartment.
Moreover, it is shown that Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways [16] significantly differ
in efficiency from random pathways. All KEGG pathways
have been clustered in eight groups by the distribution of
their reactions efficiencies. Clusters statistically differ by
average efficiency. Ranking of functional classes of the
KEGG pathways based on their efficiency was carried out.

Results and discussion

Method for estimating efficiency of signaling pathways
The method for estimating the efficiency of the pathway
is based on consideration of PPI frequencies between
different intracellular compartments. We assume that if
PPI in general occurs more frequently between proteins
from particular compartments, the interactions which
contain proteins located in these compartments would
be more effective within the pathways. Thus, the optim-
ality of a pathway reaction distribution over the intracel-
lular localization may reflect the efficiency of the
pathway, with the most optimal distribution being the
one where the frequency of observed interactions
between proteins localized in intracellular compartments
involved in the pathway has a maximum value.

To analyze the effectiveness of intra/inter-compart-
mental interactions, 15 major locations of eukaryotic
cells were selected: Cytoplasm, Nucleus, Secreted, Mem-
brane, Chromosome, Endoplasmic reticulum, Golgi
apparatus, Endosome, Lysosome, Mitochondrion, Cell
junction, Lipid-anchor, Cell projection, Peroxisome and
cytoplasmic vesicle. The localizations were selected by
following rules. We considered only the highest hierar-
chy level of localizations presented in UniProt [17], data
on underlying in hierarchy localizations were added to
localizations with the highest hierarchy level. Finally we
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took 15 localizations containing more than 200 numbers
of proteins with available PPI data. We used data on
16,000 human proteins with the information about their
compartmentalization (Figure S1). For this group of pro-
teins, 600,000 cases of PPI were reported.

On the basis of these data we find efficiency of a reac-
tion and a molecular-genetic network by following
approach:

Let L;, Lj be compartments i and j, mi and ™M; be the
numbers of proteins that are localized in compartments
L; and Lj, correspondingly. Pr, 1, - the number of interac-
tions between all proteins from L; and all proteins from
Lifound in the databases. Then, the efficiency of any
molecular reaction of proteins localized in L; and L;j is
calculated as follows:

EpL = Pt )

Y myxm

Ep,1, is a symmetric matrix (Additional file 1 Table S1).
The efficiencies Ey, 1, of reactions occurring in the same
compartment L, are presented on the diagonal of the
matrix. The efficiencies Ef, 1, reflect efficiencies of reac-
tions of proteins from different localizations L; and Lj,
i #j. In most cases diagonal elements Ej, 1, have higher
values in comparison with other elements from the row
Ep,1;(j # k) or column Ep, 1, (i # k). It can be observed that
reactions of proteins from the one compartment take
place in more efficient way than reactions of proteins from
different compartments. The only exception is the mem-
brane compartment. In this case the diagonal element is
the smallest compared to other compartments.

The efficiency EQ of a molecular-genetic network Q
involving N reactions is defined as a function of efficien-
cies of the reactions: EQ = EQgep (EL[Rq[pl]],L[Rq[Pz]])’
where in case of PP, Ry is the reaction number g of the
network Q, Py and P, are proteins, reacting in Ry In
case of not PPI, we consider proteins P; and P, from
reactions Ry and Ry.1.

L[R,4[P1]]andL[R4[P>]] - are localizations of proteins
Py and P, correspondingly. Thus we can estimate the
statistical significance of difference between analyzed
networks efficiencies and random networks based on
distribution of reaction efficiencies. To compare molecu-
lar-genetic networks between each other we can use
either distribution or mean value of reaction efficiencies:

N
2 q-1 RLIR [P L LIR [P, ]
N

Eff =

KEGG pathways analysis

There were 282 KEGG human pathways analyzed,
including totally 50.000 reactions (Additional file 2
Table S2).
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On the first step, efficiency distributions of all reac-
tions from KEGG pathways were compared with the
same distribution for “random reactions” (Figure 1A).
Random reactions are obtained by permutation of
KEGG reactions, in which we randomly replaced pro-
teins by ones from list of all proteins from KEGG path-
ways. These two efficiency distributions have statistically
significant difference by the chi square test [p-value
<10E-16]. The average efficiency of the reactions from
KEGG pathways exceeds two times the one of random
reactions.

To compare the mean efficiency (Eff) of KEGG path-
ways with the one of random pathways, Eff distributions
of 282 KEGG pathways and more than 10000 random
pathways were calculated. Random pathways were gen-
erated by permutation of KEGG pathways in following
way: for each KEGG pathway we generated 1000 of ran-
dom pathways by replacing the proteins in each reaction
by randomly chosen ones from the list of all KEGG pro-
teins. If one protein is involved in several reactions of
the pathway - we replace it in all these reactions by the
same random protein. It was found that the Eff distribu-
tion of KEGG pathways (Figure 1B) has a statistically
significant difference over the Eff distribution of random
pathways using chi square test (p-value <10E-5).

Also, it was important to check whether there is a
correlation between the length of the pathways and
their efficiency. The value of Pearson correlation coeffi-
cient was equal to R =- 0.1 (p-value <0.01). The value of
R was low, so we cannot make any concrete conclu-
sions. However, it is negative, suggesting a weak recipro-
cal relationship with the length of the pathways.

To identify similar KEGG pathways, hierarchical clus-
tering was performed on the basis of the correlation dis-
tance between pairs of pathways (Figure 2). The
correlation distance between a single pair of KEGG
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pathways was calculated as Pearson correlation between
a pair of distributions of pathways reactions efficiencies.

Seven major clusters can be identified in the dendo-
gram presented in Figure 2. These clusters significantly
differ by the distribution of the mean efficiencies (Eff) of
the pathways (Additional file 1 Figure S2). Distribution
of functional classes of KEGG pathways over clusters is
shown in Figure 3. There are several classes that mainly
lay in one of the clusters. For example, “Cancers”,
“Immune systems”, “Genetic Information Processing”
and “Endocrine system” are represented in the cluster 1
(more than 50% of all the pathways of each class). Path-
ways that are included in these classes have the similar
efficiency. Another group is represented by pathways of
the “Signaling molecules and interaction” and “Environ-
mental Information Processing” classes, which appear in
the cluster 2. Clusters 3, 5 and 7 are mainly presented
by unique classes, thus “Carbohydrate metabolism”
belongs to the cluster 3, “Nervous system” could be
assigned to the cluster 5 and “Amino acid metabolism”
could be assigned to the cluster 7. “Metabolism” could
be classified as consisting of pathways with the most
diverse efficiencies, thus this class is about equally
represented in all clusters.

KEGG functional classes of pathways were ranked by
the mean efficiency of included pathways. The highest
efficiency is observed within pathways from “Amino
acid metabolism”, “Genetic information processing” and
“Carbohydrate metabolism” classes.

“Metabolism” class consists of various subclasses,
therefore it is located in the middle of the list. The less
effective pathways include “Lipid metabolism”, “Nervous
system” and “Signaling molecules interaction” classes.
Despite the fact that the average efficiency varies slightly
between some classes (Figure 4), the distributions of
efficiencies of reactions involved in pathways from the
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Figure 1 Comparison of KEGG and random pathways by distribution of reaction efficiencies (A) and the mean efficiency of pathways
(B). Random pathways are shown in blue. KEGG pathways are shown in red.
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Figure 2 The dendogram of all KEGG pathways, clustered by the correlation distance between distributions of pathways reactions
efficiencies.
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Figure 4 Mean efficiencies of pathways from functional classes.

functional classes differ more (Additional file 1 Figure
S3), as localizations of reactions are taken into account.
This can explain the allocation of different functional
classes of the KEGG pathways in different clusters.

Conclusion

Evaluation of the efficiency of the signaling networks
currently remains an important issue. The method for
preliminary analysis of networks lacking the data on
kinetic parameters was suggested to avoid one of the
main obstacles on the way to practical application of
existing methods for modeling the dynamic of the
molecular genetic systems. The matrix of intra/inter-
compartmental interactions efficiencies was constructed
for 15 specific human cellular localizations based on PPI
data and data on protein distribution over cellular com-
partments. The analysis of the matrix revealed that the
frequency of PPI of proteins from the same compart-
ment is higher in comparison to frequency of PPI of
proteins from different compartments. A new method
for evaluating pathway efficiency was proposed; all
KEGG human pathways were estimated by mean effi-
ciency and clustered based on correlation distances
between the distributions of pathway reaction efficien-
cies. The distribution of pathway functional classes over
clusters shows that some classes are mainly presented in
one cluster.

The proposed method can be used for the preliminary
analysis of the effectiveness of various signaling networks,
including networks, for which there is not enough data for
modeling them with more accurate methods.

Material and methods

PPI data was extracted from STRING [18], IntAct [19],
and ANDSystem [20]. STRING is a database containing
known and predicted protein interactions. The interac-
tions include direct (physical) and indirect (functional)
associations. IntAct is a database containing protein-
protein interaction data. All interactions are derived
from literature curation or direct user submissions. The
ANDSystem is designed to reconstruct and analyze asso-
ciative gene networks. The ANDSystem incorporates
utilities for automated knowledge extraction from
Pubmed-published scientific texts, and analysis of infor-
mation from various databases. In addition, the
ANDCell database contains information on molecular-
genetic events retrieved from texts and databases. Data
on subcellular localization of human proteins was
extracted from ANDSystem that contains - in addition
to the text mining-based information - also data from
the UniProt database. The classification of the pathways
by their efficiency was conducted on a set of pathways
from the KEGG database. 282 human pathways were
analyzed (Release 70.1, June 1, 2014).



Popik et al. BMC Genomics 2014, 15(Suppl 12):S7
http://www.biomedcentral.com/1471-2164/15/512/S7

Additional material

Additional file 1:
Additional file 2:

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

OVP, OVS and VAI conceived the method. INL and RH carried out expert
assessment and interpretation of results. OVP and OVS implemented the
method and BS tested the method. EDP performed the statistical analyses.
OVP and VAI drafted the manuscript. VAI supervised the whole studies. All
authors read, corrected and approved the final manuscript

Acknowledgements

The work was financial supported from Russian Science Foundation grant
"Programmed cell death induced via death receptors: Delineating molecular
mechanisms of apoptosis initiation via molecular modeling “No 14-44-
00011."

Declarations

Publication of this article has been funded by Russian Science Foundation
grant No 14-44-00011.

This article has been published as part of BMC Genomics Volume 15
Supplement 12, 2014 Selected articles from the IX International Conference
on the Bioinformatics of Genome Regulation and Structure\Systems Biology
(BGRS\SB-2014): Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcgenomics/supplements/15/512.

Authors’ details

'The institute of Cytology and Genetics, The Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, Russia. “Bielefeld University, Faculty of
Technology, Bioinformatics Department, Bielefeld, Germany. 30tto von
Guericke University Magdeburg, Medical Faculty, Department Translational
Inflammation Research, Magdeburg, Germany. “Novosibirsk State University,
Novosibirsk, Russia.

Published: 19 December 2014

References

1. Karlebach G, Shamir R: Modelling and analysis of gene regulatory
networks. Nature Reviews Molecular Cell Biology 2008, 9(10):770-780.

2. Hopkins AL: Network pharmacology: the next paradigm in drug
discovery. Nature chemical biology 2008, 4(11):682-690.

3. Csermely P, Agoston V, Pongor S: The efficiency of multi-target drugs: the
network approach might help drug design. Trends in Pharmacological
Sciences 2005, 26(4):178-182.

4. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PWN:
Metabolic control analysis in drug discovery and disease. Nature
biotechnology 2002, 20(3):243-249.

5. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED: Metabolic network
structure determines key aspects of functionality and regulation. Nature
2002, 420(6912):190-193.

6. Shachar-Hill Y: Metabolic network flux analysis for engineering plant
systems. Current opinion in biotechnology 2013, 24(2):247-255.

7. Kauffman KJ, Prakash P, Edwards JS: Advances in flux balance analysis.
Current opinion in biotechnology 2003, 14(5):491-496.

8. Ishii N, Suga Y, Hagiya A, Watanabe H, Mori H, Yoshino M, Tomita M:
Dynamic simulation of an in vitro multi-enzyme system. FEBS letters 2007,
581(3):413-420.

9. Chaves M: Robustness and fragility of Boolean models for genetic
regulatory networks. J Theor Biol 2005, , 235: 431-449.

10.  Fumid HF, Martins ML: Boolean network model for cancer pathways:
predicting carcinogenesis and targeted therapy outcomes. PloS one 2013,
8(7):e69008.

11, Baldan P, Cocco N, Marin A, Simeoni M: Petri nets for modelling
metabolic pathways: a survey. Natural Computing 2010, 9(4):955-989.

Page 6 of 6

12. Voss K, Heiner M, Koch I: Steady state analysis of metabolic pathways
using Petri nets. In silico biology 2003, 3(3):367-387.

13.  Cazzaniga P, Pescini D, Besozzi D, Mauri G, Colombo S, Martegani E:
Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in
the yeast Saccharomyces cerevisiae evidences a key regulatory function
for intracellular guanine nucleotides pools. Journal of biotechnology 2008,
133(3):377-385.

14. McConnachie G, Langeberg LK, Scott JD: AKAP signaling complexes:
getting to the heart of the matter. Trends in molecular medicine 2006,
12(7):317-323.

15. Sommer B, Kormeier B, Demenkov PS, Arrigo P, Hippe K, Ates 0,

Hofestadt R: Subcellular localization charts: a new visual methodology for
the semi-automatic localization of protein-related data sets. Journal of
bioinformatics and computational biology 2013, 11(01).

16. UniProt Consortium: The universal protein resource (UniProt). Nucleic
acids research 2008, 36(suppl 1):D190-D195.

17. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
Nucleic acids research 2000, 28(1):27-30.

18.  Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, von
Mering C: The STRING database in 2011: functional interaction networks
of proteins, globally integrated and scored. Nucleic acids research 2011,
39(suppl 1):D561-D568.

19.  Kerrien S, Alam-Faruque Y, Aranda B, Bancarz |, Bridge A, Derow C,
Hermjakob H: IntAct-open source resource for molecular interaction
data. Nucleic acids research 2007, 35(suppl 1).D561-D565.

20. Demenkov PS, Aman EE, Ivanisenko VA: Associative network discovery
(AND)-the computer system for automated reconstruction networks of
associative knowledge about molecular-genetic interactions. Comput
Technol 2008, 13(2):15-19.

doi:10.1186/1471-2164-15-S12-S7

Cite this article as: Popik et al: Analysis of signaling networks
distributed over intracellular compartments based on protein-protein
interactions. BMC Genomics 2014 15(Suppl 12):S7.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.biomedcentral.com/content/supplementary/1471-2164-15-S12-S7-S1.docx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-S12-S7-S2.xlsx
http://www.biomedcentral.com/bmcgenomics/supplements/15/S12
http://www.ncbi.nlm.nih.gov/pubmed/18797474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18797474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18936753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18936753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15808341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15808341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11875424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12432396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12432396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23395406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23395406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14580578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17239859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23922675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23922675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14700469?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14700469?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18023904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18023904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18023904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16809066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16809066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18045787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21045058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21045058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17145710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17145710?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Method for estimating efficiency of signaling pathways
	KEGG pathways analysis

	Conclusion
	Material and methods
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References



