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Abstract

Background: Phylogenetic birth-death models are opening a new window on the processes of genome evolution
in studies of the evolution of gene and protein families, protein-protein interaction networks, microRNAs, and copy
number variation. Given a species tree and a set of genomic characters in present-day species, the birth-death
approach estimates the most likely rates required to explain the observed data and returns the expected ancestral
character states and the history of character state changes. Achieving a balance between model complexity and
generalizability is a fundamental challenge in the application of birth-death models. While more parameters
promise greater accuracy and more biologically realistic models, increasing model complexity can lead to
overfitting and a heavy computational cost.

Results: Here we present a systematic, empirical investigation of these tradeoffs, using protein domain families in
six metazoan genomes as a case study. We compared models of increasing complexity, implemented in the Count
program, with respect to model fit, robustness, and stability. In addition, we used a bootstrapping procedure to
assess estimator variability. The results show that the most complex model, which allows for both branch-specific
and family-specific rate variation, achieves the best fit, without overfitting. Variance remains low with increasing
complexity, except for family-specific loss rates. This variance is reduced when the number of discrete rate
categories is increased.

Model choice is of greatest concern when different models lead to fundamentally different outcomes. To
investigate the extent to which model choice influences biological interpretation, ancestral states and expected
events were inferred under each model. Disturbingly, the different models not only resulted in quantitatively
different histories, but predicted qualitatively different patterns of domain family turnover and genome expansion
and reduction.

Conclusions: The work presented here evaluates model choice for genomic birth-death models in a systematic
way and presents the first use of bootstrapping to assess estimator variance in birth-death models. We find that a
model incorporating both lineage and family rate variation yields more accurate estimators without sacrificing
generality. Our results indicate that model choice can lead to fundamentally different evolutionary conclusions,
emphasizing the importance of more biologically realistic and complex models.
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Background

Analysis of genomic characters in the context of a spe-
cies phylogeny is a rich source of insight into genome
evolution. Parsimony methods for ancestral state recon-
struction are well established, but can lead to incorrect
conclusions when the data does not satisfy the underly-
ing assumptions and cannot be used for inferring rates
of evolution. Probabilistic approaches for ordered, dis-
crete characters have been adapted from birth-death
Markov models of population size [1] and have been
used to model the evolution of gene, protein, fold, and
domain family sizes [2], protein-protein interaction net-
works [3,4], microRNAs [5] and copy number variation
[6]. Probabilistic models of genome character evolution
have been further elaborated by integrating birth-death
models in a phylogenetic context [7-14,6].

Developing such models requires achieving a balance
between conflicting goals: A model must capture the
important features of the biological system. The calcula-
tions required to estimate the associated probabilities
must be theoretically feasible. From a practical perspective,
it must be possible to estimate the parameters in a reason-
able amount of time without overfitting. Mathematical fea-
tures added for computational convenience may have
unintended biological consequences and these must be
avoided.

Current phylogenetic birth-death models differ in how
they approach these trade-offs. An implicit assumption in
the birth-death framework is that all families were present
in the common ancestor. This assumption is avoided in
models that also include a gain or innovation event, which
allows for later emergence of new families and can also be
used to model horizontal transfer. To model family evolu-
tion in genomes at equilibrium, Hahn and colleagues
[15,16] added the assumption that the birth and death
rates are the same. The resulting model can be used to
identify families that reject the hypothesis of neutral evolu-
tion, but is not well suited to genomes undergoing rapid
expansion (e.g., whole genome duplication) or contraction
(e.g., genome collapse in emerging pathogens). Evidence
for both lineage-specific and family-specific rate variation
for many processes of genome evolution, including substi-
tution rates [17], genomic rearrangements [18], and gene
duplication [16], suggests that rate variation is an impor-
tant property to model. Some models require that a tree
with branch lengths be provided; others infer branch
lengths from the data. Our current understanding of these
trade-offs on real data sets is limited.

Here, we compare the robustness and stability of three
models of increasing complexity using Count [8], soft-
ware that offers one of the most general phylogenetic
birth-death and gain models currently available. Count’s
event model captures gains of novel families, as well as
expansion and contraction of existing families. It
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accommodates rate variation across phylogenetic
lineages and across families, does not assume equality of
birth and death rates, and does not require an ultra-
metric tree with known branch lengths.

We investigated the impact of model complexity on
model fit and the stability of the estimators using a
benchmark data set of 4650 PFAM families in six high-
quality, well-annotated metazoan genomes (provided in
Additional file 1). We compared the importance of
branch-specific and family-specific rate heterogeneity to
the stability of the model, and assessed the impact of
increasing the number of rate categories on estimator
variance. We also considered to what extent a more
complex model could lead to fundamentally different
evolutionary conclusions.

Methods

Birth-death-gain model

In this study, we used the Count software package [8] to
investigate the impact of model complexity on robust-
ness and stability. Count takes as input a species tree,
T = (V, B), with nodes V and branches B, and a set of
phylogenetic profiles representing each family on L(7),
the leaves of T . Each phylogenetic profile is a vector of
length |L(T)|, such that element s of the profile corre-
sponds to the number of members of that family in spe-
cies s € L(T).

The Count analysis proceeds in two passes. In the first
pass, Count estimates the parameters of the model by like-
lihood maximization. The parameters include the event
rates, the lengths of the branches in T, if these are not spe-
cified by the user, and the distribution of ancestral family
sizes at the root of T. In all models, family sizes on the
root are assumed to follow a Poisson distribution with
mean ®. In the second pass, Count uses the estimated
parameter values to calculate the expected size of each
family in every ancestral species (i.e., every internal node
of T) and the expected number of gain, loss, expansion,
and contraction events along each branch in B.

Count’s birth-death and gain model is a continuous-
time Markov process, with a transition probability that
depends on the branch length, ¢, and the rates of Expan-
sion (L), Gain (x), and Loss (4). A population of size i
increases with probability (Ai + )¢ and decreases with
probability uit. We denote the ensemble of these model
parameters by IT = {¢, A, &, y4}.

Count offers a series of nested models of increasing
complexity. In the full model, each parameter is the pro-
duct of a branch component and a family component:
IT = {tpts Aphs upits Kpkg. The number of branch para-
meters can be reduced by one through normalization.
Count assumes unit loss rates (4, = 1) by default. Alterna-
tively, one may assume ¢, = 1 and allow the loss rates
to vary, as we did in this study, resulting in II, = {t; =
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1, Ay Uy, Kp}. The variation of each family-specific
parameter in Ilr = {£; As s kg is modeled by a discre-
tized gamma distribution with ¢ rate categories, where
the rate associated with each category is the mean of
the corresponding quantile.

Count also allows for a model with fewer parameters
under the assumption that all families evolve at the
same rate within any given branch (Ily = {1, 1, 1, 1}). In
the simplest model, each parameter takes on a single
value for all families and all branches: IT" = {1, A, /f, /{*}.

Data
We use protein domain families as test data for this
study. Domains are sequence fragments that encode pro-
tein modules with a distinct structure and function, the
basic building blocks of proteins. Here, we use the term
“domain” as an abstraction of a particular structural fold
or functional motif and define a domain family to be the
set of all instances of that domain in a given set of pro-
teomes. The set of all domains encoded in a genome can
be viewed as the protein function toolkit of the species.
For this study, we are not concerned with how domains
are distributed across individual proteins. The history of
the domain family complement provides a view of the
evolution of the functional capabilities of the proteome.
In this case study, we considered the evolution of
domain family sizes in six completely sequenced gen-
omes from two invertebrate (worm and fly) and four ver-
tebrate species (human, mouse, chicken, and zebrafish).
We chose these species because of the size and the com-
plexity of domain families encoded in vertebrate gen-
omes. Further, these are well-studied genomes with good
annotation quality, reducing the risk that annotation
errors will confound the analysis. The species tree for
these genomes (Figure 1) reflects the coelomate hypoth-
esis supported by Zheng et al. [19]. This branching order
is controversial; increasing evidence supports the

Bilateria
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Vertebrates
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Mammals
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Figure 1 Species tree and family sizes. Species tree for the six
genomes analyzed in this study, annotated with the number of
protein domain families in each genome.
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ecdysozoa hypothesis placing nematodes and flies as sis-
ter groups [20]. Since we focus here on model fit, robust-
ness, and inference rather than biological interpretation,
the structure of the tree is less of a concern.

For the purpose of this study, we defined domain
families in terms the PFam database [21]. The genomic
sequences for Homo sapiens (Human), Mus musculus
(Mouse), Gallus gallus (Chick), Danio rerio (DanRe),
Drosophila melanogaster (DroMe), and Caenorhabditis
elegans (CaeEl) were downloaded from the Panther 7.0
database [22]. Domain families in these six species were
identified by scanning the genomic sequences with the
set of identifying HMMs from the PFam 24.0 database
[23], using the default settings. The size of a domain
family in a given species is defined to be the number of
amino acid sequence fragments annotated with a given
PFam family identifier. This resulted in phylogenetic pro-
files of 4,650 PFam families that appear in at least one of
the six genomes used in the study (see Additional file 1).
Of these, 2476 families (53%) are present in all six species
and 336 families (7%) are unique to a single species.
Mean family sizes ranged from 3.7 in fly to 8.6 in mouse.
While most domain families are relatively small (less
than 15 copies per species), a few are very large (see
Figure S1 in Additional file 2). For example, the zinc fin-
gers and the WD40 domain family have 6,799 and 5,192
members, respectively. This ensemble of phylogenetic
profiles, together with the species tree (Figure 1), formed
the input of our birth-death analyses.

Inference

We inferred the rates of domain family expansion, gain,
and loss for four models of increasing complexity - the
Constant model, the Lineage model, and the Family-
Lineage model with two rate categories (FL2) and with
three rate categories (FL3) - defined as follows:

Constant (C) model: Rates are constant across
lineages and families; TT = TT" in all species and for all
families. This model has four parameters: A", 4, x,
and ®@. Recall, that ¢ = 1.

Lineage (L) model: Rates vary across lineages, but are
constant across families. For all families, IT = I1,, Vb € B.
This model has 3|B| + 1 parameters.

Family-Lineage (FL) model: Rates vary across both
lineages and families. Each parameter has a branch-
specific component, I1,, and a family-specific com-
ponent, Il This model has 4c + 3|B| + 1 para-
meters, where ¢ is the number of rate categories.

To facilitate convergence, we carried out the para-
meter estimation procedure in stages of increasing
model complexity, as recommended in the Count man-
ual [24]. Initially, IT" and @ are estimated in the C
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model. In the second stage, the branch-specific para-
meters, I1,, were estimated under the assumptions of the
L model, using the values of IT from stage one as initial
estimates. In the third stage, all parameters were (re)esti-
mated in the FL2 model, using the estimates from the
previous stage (the L model) as a starting point. Finally,
the parameters were estimated using the FL3 model, with
initial estimates obtained from the FL2 parameter values.
At each stage, parameters were estimated using an itera-
tive, numerical optimization procedure [25] that termi-
nates when the increase in In(L) between consecutive
iterations is less than 0.01. Following each estimation
stage, the expected events and family sizes were calcu-
lated from the posterior probabilities.

To assess model fit, we calculated the Bayesian Infor-
mation Criterion [26], BIC = m In(n) - 2 In(L), and the
Akaike Information Criterion [27], AIC = 2m - 2 In(L),
where m is the number of parameters and # is the num-
ber of domain families. We used the bootstrap [28] to
evaluate the variance of the estimators. Each bootstrap
replicate was constructed by sampling 4,650 phyloge-
netic profiles with replacement. We generated 100 boot-
strap replicates and inferred event rates for each
replicate, following the full four-stage estimation proce-
dure described above. For one bootstrap replicate, the
gain and loss rate estimators were more than nine stan-
dard deviations from the mean on almost all branches
in the L model. Therefore, we removed this outlier from
further analysis. The expected ancestral states and
events were calculated using the estimated parameters
for each of the remaining 99 replicates. From the result-
ing distributions, the variance and standard error were
calculated for all inferred parameters, events, and ances-
tral nodes. Count returned “NaN” for 58 domain
families (1.2%) during the second pass for the FL3
model. These families were removed from all models
when comparing the results from the second pass.

The recommended progression in increasing model
complexity is to introduce first lineage-specific rate var-
iation and then add family-specific rate variation. For
comparison, we also introduced a model that incorpo-
rates only family-specific rate variation. Under the
Family Only (FO) model, rates vary across families, but
not lineages. Each parameter has a family-specific com-
ponent, Il; and a branch component, II, = IT, that is
constant across all species: IT = Hfl'l This model has
4c + 4 parameters. Parameters were estimated for the
FO model with two rate categories (FO2) using IT from
the C model as an initial estimate.

Results and discussion

Robustness and model complexity

For birth-death models in general, and Count in particu-
lar, model choice involves balancing a more descriptive
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model and more accurate parameter estimation against
increased running time and the risk of overfitting. To
better understand the nature of this trade-off for our
benchmark, we first considered whether the more com-
plex models improved fit without sacrificing generaliz-
ability, as assessed by In(L), AIC, and BIC.

According to all three measures (Figure 2 and Table S1
in Additional file 2), models incorporating both family-
and lineage-specific rate variation represent a dramatic
performance improvement over models that incorporate
only one of these. Increasing the number of rate categories
from two to three results in an additional performance
increase, but this improvement is relatively modest. To
determine whether further increases in the number of rate
categories yield additional benefits, we also tested models
with four (FL4) and five (FL5) rate categories. As seen in
Figure 2, increasing the number of rate categories above
three does not appreciably improve model fit.

The time required to complete each model stage
depends on the number of iterations required to reach
convergence and the time per iteration. In our study,
Count’s numerical likelihood maximization procedure
converged for all models for the original data set and
for all bootstrap replicates. The total number of itera-
tions increased with model complexity (Figure 2 (b)). In
the transition from the C to the L model, a substantial
increase in the number of iterations was offset by a
small increase in the time per iteration, so that the over-
all increase in running time was relatively small. The
number of additional iterations required by the Family-
Lineage models is modest, increasing by a factor of 1.5,
on average, for each additional rate category. Fitting
family rates in each iteration took much longer. The
mean time per iteration was 34 minutes for FL2 and 57
minutes for FL3, resulting in a doubling of total running
time for each additional rate category.

The number of iterations required to reach convergence
varies considerably across boot-strap replicates. Interest-
ingly, bootstrap replicates that required a large number of
iterations to reach convergence in one stage converged
quite quickly in the next stage, and vice versa (Figure S3 in
Additional file 2). A possible explanation for this is that
spending more time in one stage results in a better para-
meter estimate, leading to faster convergence in the next
stage.

In general, increasing the number of model parameters
will result in a better fit to the data, but may also increase
the standard error of the estimators. Scanning Figure 3
from left to right shows the change in standard error
with increasing model complexity. For Expansions, the
standard error is modest on all branches and for all mod-
els. For Gains, the standard error in both Family-Lineage
models is noticeably higher than in the Lineage model,
especially in the highest rate categories. The standard
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errors associated with the lowest rate categories remain
low, however. This is possibly the result of the long tails
in the gamma distributions for I1; where the fastest rate
categories cover a wider range of rates than the lower
categories, which are more densely clustered near zero.
In contrast, the standard errors associated with the Loss
rate estimator are extremely large in FL2.

To better understand estimator variance, we plotted the
gamma distributions specified by the shape parameter esti-
mators inferred for each bootstrap replicate under the FL2
and FL3 models (Figure 4). For the Gain and Expansion
rates, the gamma distributions are quite similar and the
standard errors of the means of all rate categories are small.
Interestingly, there is little difference between the means of
the two lowest rate categories in the FL3 model. The
Branch length distributions are more variable, especially in
the FL3 model, but the standard errors are still fairly low.
In contrast, the Loss rate distributions are extremely vari-
able in shape. For the FL2 model, the standard errors are so
large that they exceed the boundaries of the figure. Adding
a third rate category substantially reduces, but does not
eliminate, this variance. The good news is that despite large
standard errors in the inferred rates, the estimates of the
expected events varied much less (Figures S11-S16 in Addi-
tional file 2). Moreover, the expected events inferred with
the L and FL models, although quantitatively different, had
similar trends.

Comparing the FL2 and FL3 models suggest that two
rate categories are adequate to model the Expansion and
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Gain rates; a third category confers little additional benefit
for these events. In contrast, two categories are insufficient
to model Loss rates, and Loss rate variance is still high in
the FL3 model. Inspired by these observations, we also
tested a model with two rate categories for Expansions,
Gains, and Branch lengths, and four rate categories
(FL2242) for Losses. Surprisingly, this model did not lead
to greater stability. Increasing from two to four rate cate-
gories does not reduce the standard errors of the Loss
rates (Figures S7 and S8 in Additional file 2). Moreover,
these standard errors are substantially larger in the
FL2242 model than in the FL3 model. Note that while the
standard errors of the Loss rates decreased when the num-
ber of rate categories increased from two to three, the
standard error of the family-specific Branch lengths
increased. Since the probability of an event occurring on a
branch depends on both the event rate and the family-spe-
cific Branch length, ¢, it is possible that including a third
Branch length category facilitates Loss rate inference, and
that this flexibility is lacking in the FL2242 model.

We also compared the Family Only model with the
Lineage and Family-Lineage models. Interestingly, the FO
model obtained substantially better log-likelihood and BIC
scores than the L model (Figure S2 in Additional file 2).
Despite good performance with respect to general mea-
sures, a more careful look at the behavior of the FO2
model reveals poor convergence properties. In the first
pass, the standard errors for the Expansion and Loss rates
(Figures S5 and S6 in Additional file 2) are high compared
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Figure 4 Gamma probability distributions for family-specific parameter estimates. Estimated distributions for the family components of
the Expansion rate, Gain rate, Loss rate, and Branch length parameters. Distribution for the original data shown in green (blue) for the FL2 (FL3)
model. Distributions for all bootstrap replicates shown in gray. Green (blue) vertical lines represent the mean value of the estimator for each
category, based on the original data for the FL2 (FL3) model. Error bars represent standard errors calculated from the bootstrap replicates.
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with all other models, which is particularly striking given
the small number of parameters associated with this
model. In the second pass, Count was unable to make
rate category assignments for 195 families (4.5%) with
the FO2 model, returning “NaN” for these families.
Further, while the expected gains and losses obtained
with the L, FL2, and FL3 models exhibited similar
trends, the FO2 model yielded a very different pattern
of expected events (Figures S11-S16 in Additional file
2). For example, the FO2 model generally predicted
much higher levels of gene family Gain and Expansion.
In summary, the variation in convergence times and the
high standard errors in inferred rates suggest that the
FO2 model lacks stability, consistent with a weakly
defined, multimodal likelihood landscape. This poor
performance is not surprising, given the wealth of evi-
dence for lineage-specific rate vatiation in the published
literature.

Impact of model choice on biological interpretation

Using a more complex model results in a better fit, but
does it lead to fundamentally different conclusions or to
similar conclusions that differ only in degree? To explore
the extent to which biological conclusions are influenced
by model choice, we compared the expected ancestral
domain content and the expected events predicted by the
C, L, FL2, and FL3 models (Figures S11-S16 in Additional
file 2). Note that the goal of the following discussion is to
examine the extent to which model choice could influence
the conclusions of genome evolution studies. It is not our

Page 7 of 10

intent in this paper to make any definitive statements
about domain family evolution in bilateria.

Within the amniotes, all four models predict similar
patterns of domain family Gain, Loss, Expansion and
Contraction (Figures 5 and 6 and Figures S9 and S10 in
Additional file 2), although there are quantitative differ-
ences. All models predict a net Gain of families on the
branches leading to amniotes and mammals, a net Loss
in the fish and chicken lineages, and little change in
mouse and human. The expected number of families that
expanded and contracted on these branches are also
similar across the L, FL2, and FL3 models.

In contrast, a comparison of Figures 5, 6, and S10
(Additional file 2) reveals that the evolutionary trends
associated with the basal lineages are qualitatively differ-
ent. In the Lineage model (Figure 5), the dominant
trend is ancestral genome expansion, with a net Gain of
100 families and Expansion of 600 families in the coelo-
mate lineage and an even stronger pattern of Gain and
Expansion in the vertebrate ancestor. In the invertebrate
lineages, net family Loss combined with family Expansion
is predicted. This pattern is especially pronounced in
worm, with more than 200 Losses and less than 20 Gains,
on the one hand, and a whopping 1200 Expansions on the
other. In the Family-Lineage models (Figure 6 and Figure
S10 in Additional file 2), Loss and Contraction dominate
in the coelomate lineage, instead of a pattern of genomic
elaboration. No families were gained and very few grew in
size. On the branch leading to vertebrates, the number of
net expected Gains is 30% larger than in the Lineage
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Figure 5 Expected events along each branch under the L model. The expected number of families gained, lost, expanded (exp), and
contracted (cont), as well as the net change. The expected fraction of families with 0, 1, or More than one (M) domain in the bilaterian ancestor
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model. The worm lineage is characterized by Loss, as
before, but to a much greater extent. In fly, on the other
hand, the trend is reversed: The expected net change is
positive, with a net Gain of ~150 families.

Overall, the evolutionary trends predicted by the two
models are quite different. In the Lineage model, the pro-
tein domain complement expanded in the lineages leading
to the coelomate and vertebrate ancestors. The pattern in
the invertebrates is consistent with specialization, with a
reduction in the total number of families and Expansion
in the size of families that were retained. The Family-Line-
age models suggest Contraction on the coelomate lineage
and re-expansion on the branch leading to vertebrates.
More Losses and Contractions and fewer Expansions are
predicted in the worm genome, a pattern that is more sug-
gestive of reduction than specialization. The net expected
Gains in the fly genome, on the other hand, indicate an
Expansion of the protein toolkit in that lineage. The
Family-Lineage model also suggests different genome
dynamics: the reduction in domain families in coelomates,
followed by Expansion in the vertebrate and fly lineages,
implies ongoing domain family turnover during protein
evolution, compared with the Lineage model which pre-
dicts steady expansion.

In summary, for our data set, adding family-specific
rate variation to the model suggests qualitatively differ-
ent conclusions about genome evolution, at least for
some lineages. In contrast, comparison of the FL2 and
FL3 models shows that adding a third rate category
does not change the interpretation of the data in a fun-
damental way.

Conclusions
The recent development of phylogenetic birth-death mod-
els represents an important advance for studying the evolu-
tion of gene families and other census-type characters on a
genome scale. Models have been proposed that vary in the
genomic properties modeled, the number of parameters
that must be estimated, and the simplifying assumptions
used to make parameter inference tractable. A better
understanding of how these compromises influence out-
comes is important for guiding future method development
and genomic analyses. Here we report an empirical case
study of the impact of model complexity on model fit and
the variability of the estimators. Using Count [8], a program
that implements one of the most general birth-death mod-
els available, we investigated the influence of branch- and
family-specific rate variation on outcomes in a typical geno-
mic data set. Model fit was evaluated with respect to the
likelihood, AIC, and BIC. In addition, we used a bootstrap-
ping approach to assess the variability of the estimators.
This is, to our knowledge, the most comprehensive eva-
luation of model choice for genomic birth-death models
to date and the first to assess estimator variance in a sys-
tematic way. Several authors have commented on aspects
of model choice and robustness observed in the course of
a particular biological analysis [25,29]. A number of arti-
cles announcing new birth-death models or software
include empirical studies comparing the behavior of the
new software with existing software [12,14,6]. However,
none of these studies represent a comprehensive charac-
terization of the impact of model choice on the robustness
of birth-death models.
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Our results show that a model that captures both line-
age-specific and family-specific rate variation is superior,
yielding more accurate estimators without sacrificing
generality. Branch-specific rates alone were not sufficient
to capture the rate variation in our data set. Adding a
third family rate category further improved model fit, but
not dramatically. The benefit of additional rate categories
was negligible. Family-specific rate variation substantially
improves model fit, but at a computational cost. In our
study, each additional rate category roughly doubled the
running time. That being said, our results suggest that a
large number of rate categories are not needed. For our
data set, three rate categories were sufficient.

Our bootstrapping approach reveals that the variability
of the estimators increased with model complexity, as
expected. Loss rates had particularly high standard
errors. Estimating the parameters of birth-death Markov
models using likelihood maximization requires summing
over many latent variables. Latent variable models are
frequently characterized by poorly defined, multimodal
likelihood functions, and this appears to be the case
here.

Our case study demonstrates that model selection can
substantially impact model fit, estimator variance, run-
ning times and, most important, biological conclusions.
While it is not clear to what extent these results can be
generalized to other data sets, it certainly suggests that
expanded studies on the complexity of birth-death mod-
els is a valuable direction for future work. One impor-
tant course of development would be to simulate data
sets with various properties and determine how well
those properties can be recovered by models of increas-
ing complexity. Tests using simulated data will allow
comparison of inferred results with “known” histories.
Simulated data would also make it possible to vary the
number of families, the number of branches, and the
complexity of various features of the model indepen-
dently, in order to determine how these factors interact.

Systematic investigation of the impact of errors in
phylogenetic profiles is another important direction for
future investigation [13]. Ancestral reconstructions are
sensitive to errors in genome sequencing and assembly,
and to thresholding in algorithms used for partitioning
domains into families. Genomes that are systematically
less well-annotated than others in the same data set
may masquerade as genome reduction. To avoid these
sources of error as much as possible, we focused on
well-studied model organisms, all of which have either
finished or high quality draft genomes. Further, because
we tested different models on the same data set, the
impact on performance comparisons should be limited.

Future simulation studies would be useful in assessing
how tree size, tree shape, and taxon sampling influence
model performance. Our data set included only six
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species, with a maximally unbalanced tree topology. We
saw the greatest changes in inference on branches near
the root of the tree. An important question for future
work is whether birth-death models are sensitive to tree
shape or to proximity to the root. The model organisms
we chose for this study are evolutionarily distant and the
branches represent long time intervals. It is likely that
better taxon sampling would lead to more accurate
reconstructions.

Model choice is of greatest concern when different
models lead to fundamentally different outcomes. For
our data set, the conclusions implied by the Lineage and
Family-Lineage models were fundamentally different for
some lineages. This observation could have broad impli-
cations. For example, there is mounting evidence for a
“revolving door” trend in gene family evolution, charac-
terized by high duplication and loss, but low net change
[16]. While we also observed this trend, in our case
study, the extent of inferred turnover depends on the
model used. For example, the L model inferred heavy
traffic through the revolving door in the coelomate line-
age, while the FL models inferred none.

Genome streamlining is another trend recently uncov-
ered by birth-death models, in which surges of genome
expansion and innovation are followed by widespread
genome reduction [25,30]. We see examples of streamlin-
ing in our data as well, but only some of these are sup-
ported by all models. For example, all four models
support a history of genome reduction in Chicken, con-
sistent with similar reports based on other types of evi-
dence [31,32]. In contrast, the Constant and Lineage
models inferred substantial losses in the fly lineage, con-
tradicted by both Family-Lineage models, which inferred
a net gain in fly. In short, the degree of genome stream-
lining observed could be influenced by model choice;
more complex models may reveal more nuanced patterns
of genome expansions and contractions. Our results
underscore the importance of revisiting the conclusions
of these, and similar, studies using more complex models.
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