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Abstract

Background: Meiotic recombination hotspots play important roles in various aspects of genomics, but the
underlying mechanisms for regulating the locations and strengths of recombination hotspots are not yet fully
revealed. Most existing algorithms for estimating recombination rates from sequence polymorphism data can only
output average recombination rates of a population, although there is evidence for the heterogeneity in
recombination rates among individuals. For genome-wide association studies (GWAS) of recombination hotspots,
an efficient algorithm that estimates the individualized strengths of recombination hotspots is highly desirable.

Results: In this work, we propose a novel graph mining algorithm named ARG-walker, based on random walks on
ancestral recombination graphs (ARG), to estimate individual-specific recombination hotspot strengths. Extensive
simulations demonstrate that ARG-walker is able to distinguish the hot allele of a recombination hotspot from the
cold allele. Integrated with output of ARG-walker, we performed GWAS on the phased haplotype data of the 22
autosome chromosomes of the HapMap Asian population samples of Chinese and Japanese (JPT+CHB). Significant
cis-regulatory signals have been detected, which is corroborated by the enrichment of the well-known 13-mer
motif CCNCCNTNNCCNC of PRDM9 protein. Moreover, two new DNA motifs have been identified in the flanking
regions of the significantly associated SNPs (single nucleotide polymorphisms), which are likely to be new cis-
regulatory elements of meiotic recombination hotspots of the human genome.

Conclusions: Our results on both simulated and real data suggest that ARG-walker is a promising new method for
estimating the individual recombination variations. In the future, it could be used to uncover the mechanisms of
recombination regulation and human diseases related with recombination hotspots.

Background
Meiotic recombination is a crucial step in the reproduc-
tion of many species. The reciprocal exchange of genetic
material between homologous chromosomes during the
meiosis (i.e. meiotic recombination) is an important evo-
lutionary force for increasing genetic diversity and also
essential for proper chromosome segregation. Knowledge

about recombination is important for understanding the
linkage disequilibrium (LD) structure of the genome [1],
phenotypic diversity and evolution in a population [2],
and a variety of genetic diseases [3]. Recombination
events do not occur randomly along the chromosomal
DNA, but would rather cluster on short chromosomal
intervals, typically 1-2 kb long, named recombination
hotspots [4]. Recent development in the construction of
genome-scale, high-resolution recombination map and
new biological techniques for analysing this cellular pro-
gress have provided a comprehensive view of the distri-
bution of recombination hotspots as well as insights into
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the regulatory systems that control the recombination
landscape. In particular, the PRDM9 protein was found
to be an important trans-regulator controlling the activ-
ity of recombination hotspots through binding to a
13-mer DNA motif (CCNCCNTNNCCNC) in the
human genome [5-8]. However, the binding motif of
PRDM9 does not cover all the human hotspots [7], and
there still exists a substantial gap in our understanding of
the regulatory system. Moreover, open questions and
challenges remain, such as the recombination variation in
association with gender and age, epigenetic regulators of
meiotic recombination, the roles of recombination hot-
spots in human diseases, etc. Thus finding other trans-
and cis- regulators that can also regulate recombination
hotspots is highly desired.
Most existing methods for the statistical analysis of

recombination mainly rely on the estimation of average
recombination rate from a population, such as coales-
cent based analysis of linkage disequilibrium (LD) [4,9].
Software tools have been developed to help researchers
identify recombination hotspots by LD analysis, such as
LDsplit [10-13] which has been applied to disease study
[14]. Yet the power of individual recombination events
tends to be overlooked by most approaches despite the
accumulating evidence that recombination frequencies
differ significantly between ethnic groups, genders, and
also among individuals [15-17]. Although some methods
including pedigree analysis [17,18] and sperm typing
[19] can handle sex-specific and individual recombina-
tion analysis, they are limited by technical factors such
as the high cost, short regions, or low resolution. There-
fore, algorithms that can infer individual-specific recom-
bination rates both on a large scale and with high
resolution would be very useful for genomic studies of
recombination hotspots.
Ancestral recombination graph (ARG) is a topological

structure that captures the genealogical history of indivi-
duals, including historical mutations, recombination
events and merging, back to a common ancestor. Thus
ARG is indispensable for study of the recombination
events in various evolutionary scenarios. Despite the
computational complexity of the ARG inference, in
recent years, there emerged several methods that have
largely solved this problem. For example the algorithm
of IRiS [20] can detect past recombination events based
on a graph reconstruction algorithm [21] followed by
integrating these recombination events into a subARG;
ACG [22] estimates the full likelihood of the ARG using
a Bayesian Markov chain Monte Carlo (MCMC) proce-
dure; ARGweaver [23] can infer ARGs from genome-
wide data based on hidden Markov models (HMM).
In this paper, we propose a graph mining method,

namely ARG-walker, to infer the different strengths of a
recombination hotspot among individuals in a sample.

Given a set of extant haplotypes, we first adapt the IRiS
algorithm to detect the recombination events and inte-
grate them to construct the ARG; then a random walk
method is applied on the ARG to estimate the indivi-
dual-specific recombination propensities; as such, ARG-
walker can translate SNP sequences to a recombination
profile, i.e. a vector of floating numbers each represent-
ing the corresponding individual strength of a recombi-
nation hotspot. This method can be used to exploit the
power of the variation in individual recombination fre-
quency, to shed light on the regulatory system of recom-
bination hotspots. Our extensive simulation tests
demonstrated the statistical power of ARG-walker in
detecting phenotypic variations of recombination rate.
Then, applying ARG-walker on the HapMap phased
SNP data for GWAS of recombination hotspots, we
detected strong association signals of cis-regulation, cor-
roborated by the enrichment of the aforementioned
13-mer PRDM9 binding motif CCNCCNTNNCCNC in
proximal regions of SNPs identified by our GWAS.
Through further analysis of the flanking DNA sequences
of associated SNPs, we found two new motifs, AAAA-
TANA and CNGCCTCC, which could be potential cis-
regulators of the meiosis recombination hotspots in the
human genome. Moreover, by screening the GWAS
results on MHC (major histocompatibility complex)
region in human chromosome 6, we detected two signif-
icantly associated SNPs, rs576205 and rs2061915. The
two SNPs are located in the coding regions of KSR2 and
ZNF708 protein respectively, both of which have been
reported to have regulatory roles in T-cell activation. It
demonstrates the potential of ARG-walker for detecting
trans-factors of meiotic recombination hotspots, and for
study of recombination hotspots important in the
human immune system.

Methods
Experimental data
The input data of ARG-walker consist of SNP data gener-
ated by simulations or collected by the HapMap project.
Our simulation data was generated by a Python script
which we developed using Python 2.6 and based on simu-
POP (version 1.0.3) [24] which is an open source frame-
work for forward simulation of population genetics. To
evaluate the performance of ARG-walker under different
situations, we set multiple groups of parameters in simu-
POP according to different scenarios. Each simulation
data set consists of haplotypes of 90 individuals, each
individual has two homologous haplotypes of about
100 SNPs (the number of SNPs was randomly generated
to be near 100) spanning 200 kb, and each SNP has two
alleles, denoted as 0 and 1 (Additional File 1). For testing
ARG-walker on the real data, we used the SNPs in the 22
human autosome chromosomes of HapMap Phase 3 data
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and recombination hotspots therein detected by LDhat
[25]. We first extracted the haplotypes of 22 autosome
chromosomes of JPT+CHB (Japanese and Chinese)
population of the HapMap Phase 3 dataset. The length of
each haplotype sequence was set to 100 SNPs and over-
lapped haplotypes were filtered, also the pre-processing
required for running the IRiS software was applied to fil-
ter SNPs with minor allele frequency (MAF) less than
0.01, and non-tag SNPs were removed from the
sequences. In this way we obtained 8,721 haplotype
sequences with hotspots in the middle. Then, the haplo-
types were fed to ARG-walker to estimate the individual-
specific strengths of the recombination hotspot located
inside the 100-SNP window. For each hotspot, a profile
of the estimated recombination strengths will be output.
For the genotype data, we applied the FastTagger [26]
tool to select all tag SNPs with MAF higher than
0.3 from the HapMap Phase 3 data of JPT+CHB popula-
tion. The minimal r2 was set to 0.9. As such we obtained
179,671 tag SNPs. The Python script for generating
the simulation data and Perl scripts for extracting
and pre-processing of these SNP data are available in
Additional File 1.

Description of ARG-walker
The main idea of ARG-walker is to estimate, through
analysis of ARG topology, the frequencies of historical
recombinations, which are then used to approximate the
recombination propensities of extant individual chromo-
somes. First, to reconstruct the ARG, we use the IRiS
algorithm which is able to infer historical recombination
events from a set of extant haplotypes and integrate these
events into an ARG [27]. Then, we apply a random walk
algorithm to mining the ARG in order to estimate the
recombination strengths of individuals corresponding to
the input haplotypes. With random walks on the ARG,
we assign positive weights indicating signals of recombi-
nation to the root nodes, and then like raindrop collec-
tion, the information flow runs from top to bottom of
the ARG. If one extant haplotype has more ancestral
recombination events in the history, then more informa-
tion flows, flowing downward along the paths in the
ARG, will be gathered at the downstream ARG leaf
nodes corresponding to the haplotypes in the end. As
such, individuals with different recombination histories
can be distinguished by the amounts of information they
collected from the random walks, which represent their
strengths of recombination hotspot. The algorithm of
ARG-walker, which consists of two stages, is illustrated
in Figure 1, and described as follows.

Stage 1: ARG construction and node classification
The input of our method consists of a sample of extant
human haplotypes. The software of IRiS is employed to

reconstruct the ARG from the input haplotype sample.
IRiS first cuts the haplotypes into segments, from which
phylogenetic forests can be inferred to explain the seg-
mentation. From the segments and forests, compatible
sub-networks are constructed using an algorithm called
DSR (dominant, subdominant or recombinant), which is
a greedy algorithm that attempts to minimize the num-
ber of recombinations needed to explain the given data.
These sub-networks are merged to construct the ARG
represented as a directed graph G(V, E). Readers inter-
ested in details of the algorithm behind IRiS are referred
to [20,21]. For each node ν ∈ V, three types of degrees
are calculated, i.e. indegree deg-(ν), outdegree deg+-(ν)
and degree deg(ν) = deg-(ν) + deg+(ν). With the infor-
mation of degrees, the nodes are classified into three
types: (1) the root nodes in set with deg-(ν) = 0 and
deg+(ν) > 0, (2) the recombination nodes in set Recomv

with deg-(ν) ≥ 2 and deg+(ν) > 0, and (3) the leaf nodes
with deg-(ν) > 0 and deg+(ν) = 0. Here each node is
represented by an integer, which is an index in the ver-
tex set V. Note that the ARG constructed by IRiS could
contain more than one root nodes because the recon-
structed graph is only partial ARG (or subARG), which
may contain only a subset of nodes and edges of the
true ARG. For conciseness, however, we will hereafter
still refer to the output of IRiS as ARG, rather than
subARG.

Stage 2: ARG mining using backward-forward random
walks
After the nodes are classified, a backward random walk
from the leaf nodes to the root nodes is conducted to
assign weights on the edges which are stored into an
edge-weight matrix Wn×n, where n is the number of
nodes in the ARG. Initially, each entry of the matrix W
is set to 0. Then, the matrix entries are iteratively
updated according to the topological structure of the
ARG, following the rule that Wij = 1 +

∑
k �=i,k∈V Wjk if

there is a directed edge from node j to node i in the
ARG. In other words, the weight of the edge from node
j to node i is set to be the number of all descendants of
node j plus one. If there is no edge from node j to node
i, the corresponding entry in the matrix W will be 0.
Due to its Y-shape structure in the ARG, a recombina-
tion node will be double-counted as two descendants,
and as a result, edges with more recombination nodes
as descendants can collect larger weights through the
backward walk. Later the edge weights will be passed
downward all the way to the leave nodes to reflect the
inherited propensity of recombination. To apply the for-
ward random walk on the ARG, we transform the edge-
weight matrix Wn×n into the transition probability

matrix Tn×n by normalization, i.e. Tij =
Wij∑
k∈V Wik

.
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Through forward random walk the signals of recombi-
nation will be passed from the root nodes layer by layer
towards the leaf nodes. For a coalescent node, the signal
will be split to two children proportional to the transi-
tion probabilities, whereas for a recombination node in
the next generation, the signals from two parental nodes
will be combined. The procedure is executed by itera-
tively updating two vectors, each consisting of n entries
corresponding to the ARG nodes. The first vector,
denoted by I, contains the amounts of signals flowed to
ARG nodes at the end of a step, which will be passed to
their children in the next step. The second vector,
denoted by VL, records the amounts of signals that the
leaf nodes will gather at the end of the random walk. At

the beginning, vector I is initialized by setting each
entry corresponding to a root note equal to the sum of
weights of its outgoing edges, and setting other entries

to 0, i.e. I [i] =
{∑

k∈V Wik, if i ∈ Rv

0, otherwise
for i = 1,2,...,n.

Vector VL consists of all 0s initially. For each iteration
of the forward random walk, the following two opera-
tions are carried out to update the two vectors: (1) I = I
× T, and (2) VL = VL + I. Note that an entry of the tran-
sition probability matrix, say Tuv , contains a positive
value if there is a directed edge from node u to node v,
and is equal to 0 otherwise. Thus, by the first operation
of I = I × T, the signal in a node i will all be passed to
its child nodes in proportion to the transition

Figure 1 The pipeline diagram of ARG-walker algorithm. ARG-walker consists of two stages. In Stage 1, from an input sample of haplotypes,
the IRiS program is used to reconstruct the ancestral recombination graph (ARG), and the nodes are classified into three types as illustrated with
different shapes and colours. In Stage 2, information flows indicating signals of recombination are first gathered to the root nodes through
backward random walk, then propagated downwards through forward random walk and in the end gathered by the leaf nodes. The red arrows
in Step (iii) and Step (iv) illustrate the start of the random walks.
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probabilities. This iterative procedure is repeated until
every entry of vector I is equal to 0, which means every
node has no more information to pass on. After the
repeated updates, the signals are collected in vector VL

by the second operation above. But we will set to 0 all
the entries in VL that do not correspond to the leaf
nodes, so that VL only contains signals of recombination
of the extant haplotypes. Moreover, the recombination
probability of each individual leaf node is estimated by

normalization of VL, i.e. Vp [i] =
VL [i]∑
j∈L VL

[
j
], where L is

the set of indices of leaf nodes in the vertex set of ARG,
and i ∈ L. Thus the final result of ARG-walker is a vec-
tor VL which contains the amount of information flow
gathered by each individual haplotype corresponding to
a leaf node in the ARG. This information flow is used
to represent the strength of recombination of each indi-
vidual chromosome. In addition, vector Vp is also output
to represent the recombination probability of each indi-
vidual chromosome. ARG-walker was developed in Perl
(v5.16.3) and the source code is available in Additional
File 2.

Filtering hotspots without variation in
recombination strength
In the simulation, we adapted the Hartigan’s dip test
[28] to test the unimodality of the distribution of esti-
mated recombination strengths. This is for the case
when there are only small variations of recombination
strength in a population, e.g. the majority of haplotypes
have cold (or hot) alleles, or it is hard to divide the
population into two phenotypic groups. In our method,
we assumed that when there are both hot and cold
alleles of a recombination hotspot, the distribution of
recombination strengths given by ARG-walker should be
more likely to be bimodal. In the dip test for these two
situations, we found significant difference of p values
between these two groups. With a threshold of 2.473 of
the dip −log10(p) value, we can filter out 88% samples
with non-variant recombination strengths, while keeping
87.8% samples of two-allele recombination strengths.
Applying this strategy in our GWAS analysis, we
selected 5,200 recombination hotspots (each with a pro-
file of individual strengths) as phenotypes.

Combination of recombination phenotype by
chromosome
Besides individual hotspot phenotype analysis, we also
merged recombination strengths of hotspots on the same
chromosome into one collective chromosome-wise phe-
notype. First, we did standardization for each hotspot
using formula (x - mean)/SD, and then we combined the
standardized hotspot phenotypes by chromosomes, i.e.

the mean value of all the standardized hotspot pheno-
types on the same chromosome was calculated to repre-
sent the chromosomal recombination strength of each
individual. Finally we got 22 combined chromosomal
recombination phenotypes. Each of this newly generated
phenotype was then mapped to the genotypes for GWAS
analysis.

Results and discussion
Simulation study
The evolution of meiotic recombination hotspots is
notoriously dynamic and complicated, partly due to pro-
cesses such as biased gene conversion (BGC). To slightly
simplify our simulation (without making the synthetic
data unrealistic), we focused on the common scenario of
two-allele variation of recombination, i.e. hot versus
cold alleles in a population. Currently large amounts of
evidence from both sperm typing and genetic analyses
suggest that the general patterns of recombination in
the human genomes are highly unstable throughout the
genome [4,9,29]. Hence, we tested different sets of para-
meters to simulate different recombination scenarios, of
which key parameters include the recombination rate,
the position of labelled SNP, MAF of the labelled SNP
and the BGC rate. For each set of parameters, we gener-
ated 50 samples, and fed each sample to ARG-walker.
Then, the accuracy was calculated and presented with a
boxplot. We compared the performance of ARG-walker
under different situations by the boxplot of accuracy
with the median accuracy connected with a red line in
Figure 2. First, we tested the change of recombination
rates including the crossover rates of the hot individuals
and the cold individuals. The ratio of these two cross-
over rates was set to 1 which means equal rate, 5, 10, 15
and 20. The result shows that our method has better
performance with the increase of hot/cold ratio from 0
to 5, while the accuracy is slightly decreased and seems
to become stable when the ratio is higher than 15. This
suggests that some recombination events are not
detected by ARG-walker, probably due to the loss of
traces on the patterns of linkage disequilibrium when
there is a high frequency of recombination. Then we
analysed the effect of the position of the SNP control-
ling crossover rate, from the centre to the far ends of
the window. The accuracy of our method does not fluc-
tuate much, but with a tendency that the accuracy gets
higher when the causal SNP is closer to the centre.
Another important factor we tested is the MAF of the
causal SNP. When the MAF is low, say between 0.1 and
0.2, the performance of ARG-walker is poor, with accu-
racy less than 0.5. A lower MAF means a lack of homo-
geneity of phenotype in the sample, which shall be
filtered out before using ARG-walker. When the MAF is
bigger than 0.3, however, ARG-walker is able to achieve
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a higher accuracy. Another key parameter is the BGC
rate along with a crossover. BGC was suggested to be in
favour of hotspot-disrupting alleles thus it has crucial
influence on the recombination hotspots and their evo-
lution [30]. Our result shows that ARG-walker can be
affected to some degree by BGC but it still achieved
good performance when the BGC rate is lower than 0.3
(Figure 2, bottom-right boxplot).
In addition to these tests of parameters, we also inves-

tigated two special cases, i.e. all-hot and all-cold. In
these two cases, there is no difference in recombination
strengths among individuals. Hartigan’s dip test was
used to test if our ARG-walker can identify these two
special cases (see details in Methods section). In con-
trast to two-allele cases, here the test shows a significant
difference on dip p-values, as shown in the boxplot in
Figure 3. Moreover, the ROC curve in Figure 4 shows a
very high AUC of 0.956 indicating that a threshold of
2.473 can dramatically differentiate these two scenarios
with a specificity of 0.88 and a sensitivity of 0.878.
In summary, with relatively higher differences in

recombination rates, an MAF of 0.3 or higher at the
causal SNP, and BGC rate less than 0.3, our ARG-
walker has a reasonably good performance of predic-
tion, with the average accuracy about 0.64 (Table 1).
In addition to the hot-cold variation, ARG-walker can
also identify the all-hot and all-cold cases, which is
important for GWAS of recombination phenotypes
later.

Genome-wide association study of recombination
hotspots
A major motivation of estimating the individual-specific
strengths of recombination hotspots is to perform gen-
ome-wide association study (GWAS) to identify trans-
and cis-regulators for meiotic recombination hotspots.
Encouraged by the results of our simulation study, we
performed a GWAS analysis on the real HapMap data.
For each pair of phenotype (i.e. a recombination hot-
spot) and genotype (i.e. a SNP), we used unpaired t-test
to get the p-value of association between the recombina-
tion strengths and the SNP. To view the association, we
did log transformation for the p-values and plotted the

Figure 2 The accuracy of prediction on simulation data with 4 main parameters. The changes in accuracy of ARG-walker were tested with
regard to four main parameters in our simulation study, i.e. average recombination rate, the position of the causal SNP, MAF of the causal SNP
and the biased gene conversion (BGC) rate. 50 sample files were generated for each simulation. For each test, the distribution of accuracies of
ARG-walker was plotted as a boxplot, where the red line connects the median values of accuracy.

Figure 3 Boxplot of log transformed dip p value of all-hot or
all-cold cases (on the top) and two-allele hot-cold cases (at the
bottom).
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result in Figure 5(a), where the gradient colour intensities
and sizes of dots represent the strengths of association.
From Figure 5(a), we can see that there are strong and
prevalent signals of cis-regulation shown as the diagonal
red line on the plot, compared with trans-regulation. It
could be that SNPs located inside or proximal to a
recombination hotspot may change the DNA sequence
thereby affecting the binding affinities of trans-factors.
With a threshold of 1e-7.3 for the p-value, we identified
15,920 significantly associated SNPs. Then we extracted
the flanking DNA sequences of these significant SNPs,
each with a length of 1 kb. Using the software of FIMO
[31], we matched the aforementioned 13-mer motif
CCNCCNTNNCCNC (the binding motif of PRDM9) to
these sequences. 45,293 motif occurrences were found in
these 15,920 sequences. The strong cis-regulatory signal
provides new evidence to confirm the relation of this 13-
mer motif with recombination hotspots previously
reported [6,9]. However, for the sophisticated regulation

with meiotic recombination, it is unlikely that there is
only one motif controlling all the recombination hot-
spots. In fact, this 13-mer motif can only explain a part
of human hotspots. To search for other potential motifs,
we fed these DNA sequences to the DREME software
[32] for discriminative DNA motif discovery. From the
output motifs, we selected three top-ranking motifs
shown in Figure 5(b). The first motif has 9,882 positive
occurrences in the 15,920 sequences with an E-value of
1.8e-591. The second motif has an E-value of 2.9e-565
with 3,537 positive occurrences in the sequences. The
third motif, which is quite similar to the second one but
ends with GG rather than CC, has 3,140 positive occur-
rences in the sequences with an E-value of 1.3e-456.
From the GWAS, we have not found any single SNP

that is significantly associated with hotspots from differ-
ent chromosomes. The number of hotspots affected by
each single SNP was quite small compared with the sam-
ple size of 5,200 hotspots. For the three SNPs, rs1874165,
rs16874441, and rs3805547, located inside Prdm9 gene,
we only find one significant association between the
three SNPs and one hotspot on Chromosome 5 as shown
in Figure 5(c). For a trans-regulator like PRDM9, it is
expected to show association with many hotspots, but it
seems not the case according to our analysis. A reason
might be that our GWAS method does not have suffi-
cient statistical power to capture the trans-regulatory sig-
nals, e.g. the association might have been eliminated due
to low MAF values in our pre-processing. It might also
be the case that the assumption of two-allele recombina-
tion strengths (i.e. hot vs. cold) does not always apply for
PRDM9. In addition, as demonstrated in [33], the hotspot
activity can be influenced by multiple loci including both
cis- and trans-effects.
To see whether the hotspot-SNP association is robust

across different resolutions of recombination rate, we
combined the recombination strengths of hotspots in
the same chromosomes into 22 chromosome-wise
recombination phenotypes. With the genotype of all tag
SNPs, we did a GWAS analysis for these 22 phenotypes.
The Manhattan plot in 6 shows the top 120 SNPs with
significant associations (p-value less than 1e-7.3). Inter-
estingly, these SNPs are mostly located near the ends of
the chromosomes, implicating there might be an enrich-
ment of regulators of genome stability at telomere
regions of chromosomes. From the flanking DNA
sequences of these 120 significant SNPs, two motifs
were found using DREME and they turned out to be the
same as the motif 1 and motif 2 found earlier by GWAS
of individual hotspots, as shown in Figure 5(b).

MHC screening
Recombination in the MHC (major histocompatibility
complex) region on human chromosome 6 is of particular

Figure 4 ROC curve of dip test for differentiating all hot/all
cold cases from hot-cold cases.

Table 1. Average performance of ARG-walker on
simulation data

Condition Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Variant recombination rate 71.48 57.13 64.16

Variant position of causal
SNP

71.72 54.64 63.08

Variant MAF of causal SNP 65.75 45.39 60.35

Variant BGC rate 70.49 53.06 61.55

Normal 81.73 59.37 70.19
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Figure 5 Grid dot plot of genome-wide association study of recombination hotspots, DNA motifs enriched in flanking sequences of
associated SNPs and regional plot of SNPs inside Prdm9 gene. (a) Dot plot of the genome-wide association between meiotic
recombination hotspots and tag SNPs with gradient colour intensity and size representing the strength of association. (b) Three top ranking
motifs detected by DREME from the 1 kb DNA sequences flanking significant SNPs predicted by ARG-walker and GWAS. (c) Regional plot of the
SNPs located inside Prdm9 gene with log transformed p-value of association, feature track, genes and LD.

Figure 6 Manhattan Plot of GWAS of chromosomal recombination phenotype. Manhattan plot of chromosomal GWAS result is shown,
where SNPs with p-values between 1e-10 and 1e-7.3 are labelled in blue, and SNPs with p-value less than 1e-10 are labelled in red.
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interest due to the roles of recombination in the genera-
tion of genetic diversity at HLA (Human Leukocyte Anti-
gen) loci and the functions of MHC genes in the human
immune system. Many studies have shown some associa-
tions between susceptibility to autoimmune diseases and
particular alleles of MHC genes [34]. However the func-
tional relationship between recombination and poly-
morphism of genes in MHC is not clear yet. Checking the
GWAS results of hotspots in the MHC region, we found
10 hotspots significantly associated with 105 SNPs
(p-value < 5e-8) (Additional File 3). All of these signifi-
cantly associated SNPs are located inside the MHC region,
except for two SNPs: rs576205 on chromosome 12, and
rs2061915 on chromosome 19. Interestingly, the
rs2061915 SNP is located inside the gene of ZNF708
which is one of the zinc finger genes reported to be
expressed in human T cells [35,36]. And rs576205 is
located in the gene of KSR2 which is a marker of immorta-
lization, and was predicted to have a role in cell prolifera-
tion [37]. KSR2 also has association with the IL-2
expression through mir-31 thereby affecting the T cell dif-
ferentiation [38]. These findings suggest that both ZNF708
and KSR2 proteins may participate in the regulation of
MHC activation or expression through the regulation of
recombination in that region, which however needs to be
verified through wet-lab experiments. Overall, our GWAS
on MHC suggests that using ARG-walker is promising to
help search for trans-regulators through GWAS.

Conclusions
In this paper, we proposed a method named ARG-
walker which is a graph mining algorithm for estimat-
ing individual-specific recombination strengths by ran-
dom walks on ancestral recombination graphs. Most
existing LD-based algorithms can only estimate the
average recombination rate of a population. To the
best of our knowledge, ARG-walker is the first compu-
tational method for estimating individual-specific
strengths of recombination hotspots using only
sequence polymorphism data. In most testing cases,
ARG-walker performed well. In our simulation, ARG-
walker can not only differentiate the recombination
alleles of individuals, but also detect the cases of no
variance in recombination frequency among indivi-
duals. Applying ARG-walker to the haplotype data of
JPT+CHB population of HapMap Phase 3, we detected
strong cis-regulatory signals that can corroborate the
function of the 13-mer PRDM9 binding motif
CCNCCNTNNCCNC, which is known to be critical for
the regulation of meiotic recombination hotspots of
human. In GWAS at both levels of hotspots and chro-
mosomes, we identified two new motifs in the flanking
regions of the significantly associated SNPs, i.e. AAAA-
TANA and CNGCCTCC, which could be cis-regulators

for the meiotic recombination hotspots of the human
genome. Moreover, the significantly associated SNPs
we detected in the combined chromosomal association
study are mostly located near the ends of the chromo-
somes. It would be interesting to investigate the func-
tional and evolutionary implication of this observation.
By screening the GWAS results on the MHC region,
two trans-regulatory SNPs were detected, and the
genes flanking these two SNPs are both functionally
related with the T-cell activation, demonstrating the
potential of ARG-walker for the detection of trans-
regulators of recombination hotspots. Nonetheless,
ARG-walker and GWAS of recombination hotspots
could be further improved by incorporating more
advanced algorithmic and statistical techniques and new
types of data (e.g. single-cell whole-genome sequencing
data). Moreover, it would be interesting to also apply
ARG-walker to understanding the relation of recombi-
nation hotspots with human autoimmune diseases.

Additional material

Additional file 1: Python and Perl scripts for generating simulation
data. Python scripts for generating simulated SNP data, and Perl scripts
for pre-processing the SNP data as input of ARG-walker.

Additional file 2: ARG-walker source code. Perl scripts for the
implementation of ARG-walker and a sample input file.

Additional file 3: Perl script for GWAS and supplementary MHC
screening result. A Perl script for the implementation of GWAS, and
SNPs significantly associated with hotspots in the human MHC region.
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