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Abstract

Identifying key microRNAs (miRNAs) contributing to the genesis and development of a particular disease is a focus
of many recent studies. We introduce here a rank-based algorithm to detect miRNA regulatory activity in cancer-
derived tissue samples which combines measurements of gene and miRNA expression levels and sequence-based
target predictions. The method is designed to detect modest but coordinated changes in the expression of
sequence-based predicted target genes. We applied our algorithm to a cohort of 129 tumour and healthy breast
tissues and showed its effectiveness in identifying functional miRNAs possibly involved in the disease. These
observations have been validated using an independent publicly available breast cancer dataset from The Cancer
Genome Atlas. We focused on the triple negative breast cancer subtype to highlight potentially relevant miRNAs in
this tumour subtype. For those miRNAs identified as potential regulators, we characterize the function of affected
target genes by enrichment analysis. In the two independent datasets, the affected targets are not necessarily the
same, but display similar enriched categories, including breast cancer related processes like cell substrate adherens
junction, regulation of cell migration, nuclear pore complex and integrin pathway. The R script implementing our
method together with the datasets used in the study can be downloaded here (http://bioinfo-out.curie.fr/projects/
targetrunningsum).

Background
MicroRNAs (miRNAs) are endogenous ~22 nucleotide
RNA molecules that act as fundamental repressors of
gene expression in many biological systems. In animals,
they target mRNAs by recognizing and directly binding
to multiple partially complementary sites preferentially
located in the 3’ untranslated regions (UTRs) of tran-
scripts. Watson-Crick base-pairing to the 5’ end of miR-
NAs, especially to the so-called ‘seed’ region that
comprises nucleotides 2-7, is considered crucial for tar-
geting [1,2], even if recently developed techniques for
ligation and sequencing of miRNA-target RNA duplexes
highlight widespread noncanonical seed interactions,
containing bulged or mismatched nucleotides [3].
Although molecular mechanisms of miRNA action

remain intensely debated [4], multiple studies revealed
that mammalian miRNAs repress genes predominantly
by destabilization of target mRNAs [5,6]. By computa-
tional and experimental approaches it was established
that thousands of human protein-coding genes are regu-
lated by miRNAs [7,8]. Given the wide scope of their
targeting, miRNAs are considered as an additional layer
of regulatory circuitry in the cell. Experimental observa-
tions suggest that miRNAs are regulators of develop-
ment and cellular homeostasis through their control of
diverse biological processes, from differentiation and
proliferation to apoptosis [9]. Their role in regulating
fundamental cell mechanisms suggests that they could
be involved in cancer and indeed their expression is
strongly deregulated in almost all human malignancies.
Functional characterization of these aberrantly expressed
microRNAs indicates that they might function as onco-
genes and tumor suppressors [10,11].
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Identifying key miRNAs contributing to the genesis
and development of a particular disease is a focus of
many recent studies. Statistical methodology for this
task is not fully established due to the mild effect of
miRNAs on the expression of their targets. A major
source of information to infer the actual regulatory
activity of miRNAs derives from high-throughput
experimental data such as transcriptome profiles. The
underlying assumption is that regulatory activity by
miRNAs could be reflected by the expression changes of
their target transcripts. For miRNAs that promote
mRNA decay, there would be a negative correlation
between miRNA and mRNA expression. Existing tools
based on this assumption mainly rely on case-control
mRNA profile experiments involving strong perturba-
tions such as the knockout/knockdown/overexpression
of one or few miRNAs [12-14]. In data originating from
less controlled conditions, such as mRNA profiles of
pathological tissue collected from patients, detecting
miRNA-mediated target destabilization is more challen-
ging due to presence of multiple cell types in samples,
the activity of additional regulatory factors and complex
RNA cross-regulation such as the miRNA sponge effect
[15-17]. The recent study of a large cohort of breast
tumour samples [18] suggests that miRNAs exert their
effect by modulating mRNAs rather than acting as on-
off switches. Other studies inferring miRNA regulation
on tumour sample transcriptome exploit additional
molecular information such as AGO2-PAR-CLIP bind-
ing-site data [19] or DNA copy number and promoter
methylation at the mRNA gene locus [20].
We introduce here a rank-based method to detect

miRNA regulatory activity combining three sources of
information, namely measurements of gene and miRNA
expression levels from the same biological samples and
sequence-based target predictions. Rank-based approaches
such as Gene Set Enrichment Analysis (GSEA) [21] are
designed to detect modest but coordinated changes in the
expression of sets of functionally related genes. This is par-
ticularly suitable to infer miRNA regulatory effect from tis-
sue expression profiles, in which this effect is subtle at the
level of individual genes but affects a large number of
genes. The original GSEA algorithm ranks all genes based
on the correlation of their expression with a phenotype of
interest and looks for predefined groups of functionally
related genes that are enriched at either the top or bottom
of the ranked list. We propose here a new scoring scheme
in which the enrichment profile is based on both the cor-
relation between gene and miRNA expression levels and
the confidence of sequence-based target prediction. The
defined enrichment score for a given miRNA is expected
to be high if most of its predicted targets are at the top or
at the bottom of the ranked list. The significance of the
enrichment score is evaluated by a permutation procedure.

As final result we obtain miRNAs showing a statistically
significant enrichment score, which we consider as poten-
tial regulators in the analyzed conditions. The analysis
pipeline is summarized in Figure 1. It has been implemen-
ted as a freely available R script (code available at http://
bioinfo-out.curie.fr/projects/targetrunningsum).
We applied our method to elucidate the regulatory

effect of miRNAs on the breast cancer transcriptome.
Breast cancer is classified into various subtypes mainly
based on the immunohistochemical staining of estrogen
(ER), progesterone (PR) and HER-2 (ERBB2) receptors.
The complex nature and heterogeneity of this disease,
particularly with regard to gene expression profiles,
make it difficult to detect the shaping effect of miRNAs
on the transcriptome. We applied our algorithm to a
breast carcinoma dataset including gene and miRNA
expression from normal and breast tumour samples
(which we refer to as Maire dataset [22,23]) and we
show that it is able to identify miRNAs with statistically
significant enrichment score. These results are then
compared with those obtained on an independent data-
set of normal and breast tumour samples from The
Cancer Genome Atlas (TCGA) [24]. We further focus
on the triple negative breast cancer (TNBC) to highlight
miRNAs potentially relevant in this particular tumour
subgroup. This subtype is intensively studied due to the
lack of effective targeted therapies. We ran our algo-
rithm including only samples characterized as triple-
negative breast tumours and identified a set of miRNAs
showing statistically significant signal in both Maire and
TCGA datasets.
Finally, we investigated miRNAs identified as potential

regulators to characterize the function of their targets.
In the proposed algorithm, hundreds of genes account
for the enrichment signal of a single miRNA and we
expect a subset of them to participate in common cellu-
lar functions. We use multiple annotation databases to
infer biological processes affected by the identified
miRNAs. For those identified in both datasets, the
corresponding sets of target genes were analyzed
separately. We observe that even if the specific genes
accounting for the enrichment of biological categories
among miRNA target genes detected in the Maire data-
set and in the TCGA datasets are not necessarily the
same, they are associated to common cancer-related
pathways

Results
Functional miRNAs in breast cancer
The analyzed dataset includes 129 tumour and healthy
breast tissues for which both miRNA and mRNA expres-
sion profiles are available (see Material and Methods). In
this study, we used sequence-based target sets obtained
from TargetScan version 6.2 [8,25], a widely used algorithm
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which takes into account sequences that match the seed
region of each miRNA and evaluate their conservation in
several species. The confidence of target predictions is cal-
culated as described in Methods. We include in our study
394 miRNAs for which both expression data and TargetS-
can predictions are available.

We identified 136 miRNAs as potential regulators with
FDR < 0.1 (results are reported in Additional File 1,
Table S1). Among the top significant miRNAs, we found
several ones that are known to function as oncomirs,
such as the members of miR 17-92 cluster and its paralog
cluster miR-106b-25, miR-15 and miR-16 [26].

Figure 1 Schematic summary of the pipeline.
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To validate these results, we applied our algorithm to an
independent dataset of 521 healthy and cancerous breast
tissue samples from the TCGA project (see Material and
Methods). This study includes 260 miRNA for which both
expression data and TargetScan predictions are available.
Of these, 142 miRNAs are identified as regulators with
FDR < 0.1. The intersection between results obtained in
both datasets contains 44 miRNAs (see Figure 2a and
Table 1) which corresponds to a statistically significant
overlap (hypergeometric p − value < 0.05).
For a limited subset of 7 commonly identified miRNAs,

the enrichment score obtained for the Maire dataset has
opposite sign compared to that obtained for the TCGA
dataset. In these cases, predicted targets are enriched
among genes whose expression is positively correlated
with the expression of the miRNA. The observation of
miRNAs positively correlated with their predicted targets
is in agreement with analogous integrated analysis of

miRNA-mRNA correlation in tissue samples [27]. An
interesting hypothesis suggests that this effect can be
explained by common transcriptional regulation confer-
ring robustness to gene expression program and ensuring
tissue identity. Consistently, architectural features of the
mammalian miRNA regulatory network reveal that the
coordinated transcriptional regulation of a miRNA and
its targets is an abundant motif in gene networks [28-30].
In our analysis, we consider both positive and negative
correlation of predicted targets as a good evidence to
infer miRNA regulation. We investigated whether the
correlation sign of the miRNA expression with that of its
targets is associated to a different proportion of corre-
lated targets or a different correlation strength. For each
significant miRNA we extracted the leading-edge subset
of genes, corresponding to those genes in the set Sm that
appear in the ranked list before the point where the run-
ning sum achieves the ES (see Figure 3). This can be

Figure 2 Venn diagrams showing the overlap between results obtained in Maire cohort and TCGA when using all samples (a) and
when restricting the analysis to the TNBC subtype samples (b).
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interpreted as the core of a gene set that accounts for the
enrichment signal. We plotted the size of the leading-
edge subset and the maximum correlation value as func-
tion of the correlation sign. Despite the size of the lead-
ing-edge subset and its maximum correlation value do

not differ significantly according to the sign of the corre-
lation, results show a trend toward stronger correlations
of negatively correlated leading targets (Additional File 2,
Figure S1).

Triple negative breast cancer specific study
Of all breast tumours, TNBC is a very malignant sub-
type with poorly characterized molecular pathogenesis
[31]. To elucidate the role of miRNA regulation in this
specific cancer subtype, we applied our algorithm to the
Maire dataset including only TNBC samples (n = 37).
Similarly, we performed the analysis on the TCGA data-
set selecting only TNBC samples (n = 82). Tumors were
assigned to this subgroup according to ER, PR and
HER2 negative status. Using TargetScan predictions, the
algorithm identified 166 significant miRNAs in the
Maire dataset (89 of them included in the common uni-
verse of miRNAs analyzed in both datasets) and 75 (64)
in the TCGA dataset with FDR < 0.1. The agreement
between results obtained in the two datasets is highly
significant (41 commonly identified miRNAs, hypergeo-
metric p − value < 10−4). Results are reported in
Figure 2b and Table 2.
A group of 20 miRNAs is identified specifically in the

TNBC study. Remarkably, some of these are already
associated with aggressive breast cancer: miR-29a, miR-
29c and miR-148a have been shown to be downregu-
lated and associated to aberrant hypermethylation in
basal-like cell line [32], miR-27a is involved in endothe-
lial differentiation of breast cancer in a basal-like cell
line [33] and in the MDA-MB-231 basal-like cell line
[34] and miR-139-5p is described as a regulator of
breast cancer cell motility and invasion [35].

Identification of biological processes targeted by miRNAs
To assess the biological relevance of miRNAs identified
as potential regulators, we investigated whether the
genes that account for the enrichment signal of a given
miRNA participate in the same cellular process or sig-
nalling pathway. The assumption that some miRNAs
downregulate a group of genes participating in the same
pathway is supported by multiple experimental studies
[36-38]. Based on this hypothesis, for each significant
miRNA we tested the leading-edge subset of genes for
functional enrichment using curated annotation data-
bases, such as Gene Ontology [39], KEGG [40], BioCarta
[41], Reactome [42] and ACSN [43].
For miRNAs identified in both Maire and TCGA data-

sets, the corresponding subsets of leading-edge targets
were analyzed separately. Interestingly, these subsets of
genes display highly significant overlap and similar
enriched categories, supporting the relevance of miRNA
regulatory role in breast cancer. We report in Additional
File 3, Table S2 the complete list of enriched categories

Table 1 Common predicted miRNAs in Maire cohort and
TCGA for the analysis including all samples.

MiRNA ID ES MAIRE PV Adj MAIRE ES TCGA PV Adj TCGA

hsa-miR-19b-3p 16.668 0.000 17.181 0.000

hsa-miR-19a-3p 16.050 0.000 17.233 0.000

hsa-miR-15b-5p 14.857 0.000 19.846 0.000

hsa-miR-17-5p 13.045 0.000 16.832 0.000

hsa-miR-106b-5p 12.655 0.000 15.708 0.000

hsa-miR-20a-5p 12.376 0.000 14.488 0.000

hsa-miR-26a-5p 12.045 0.000 6.143 0.000

hsa-miR-93-5p 11.830 0.000 12.905 0.000

hsa-miR-361-3p 11.819 0.000 12.931 0.000

hsa-miR-130b-3p 11.199 0.000 16.182 0.000

hsa-miR-18a-5p 10.669 0.000 11.522 0.000

hsa-miR-92a-3p 10.370 0.000 9.645 0.000

hsa-miR-16-5p 10.361 0.000 17.605 0.000

hsa-miR-20b-5p 10.307 0.000 7.941 0.000

hsa-miR-301a-3p 10.190 0.000 16.762 0.000

hsa-miR-222-3p 10.120 0.000 8.887 0.000

hsa-miR-331-3p 9.968 0.006 -14.024 0.000

hsa-miR-135b-5p 9.326 0.040 10.203 0.000

hsa-miR-107 9.113 0.021 11.283 0.000

hsa-miR-103a-3p 8.676 0.025 9.991 0.000

hsa-miR-141-3p 8.086 0.012 16.792 0.000

hsa-miR-29b-3p 7.733 0.000 15.204 0.000

hsa-miR-326 7.189 0.006 7.303 0.082

hsa-miR-193a-3p 7.008 0.000 7.302 0.000

hsa-miR-9-5p 6.933 0.025 7.196 0.045

hsa-miR-200c-3p 6.481 0.000 13.554 0.000

hsa-miR-150-5p 6.404 0.006 5.402 0.057

hsa-miR-193b-3p 6.038 0.054 9.071 0.028

hsa-miR-33a-5p 5.783 0.000 10.703 0.000

hsa-miR-205-5p 4.988 0.000 5.519 0.000

hsa-miR-92b-3p 4.873 0.038 4.876 0.000

hsa-miR-105-5p 3.729 0.091 7.058 0.000

hsa-miR-186-5p 3.680 0.006 7.578 0.000

hsa-miR-194-5p 3.443 0.006 4.639 0.003

hsa-miR-210 2.976 0.021 3.725 0.079

hsa-miR-339-3p 1.763 0.033 -2.476 0.072

hsa-miR-374a-5p -2.640 0.000 4.346 0.039

hsa-miR-374b-5p -3.187 0.000 5.686 0.000

hsa-miR-181c-5p -6.795 0.000 -6.447 0.000

hsa-miR-582-5p -6.816 0.000 7.163 0.006

hsa-miR-181d -6.882 0.000 -5.433 0.000

hsa-miR-130a-3p -7.903 0.015 8.103 0.034

hsa-miR-218-5p -11.517 0.000 -9.091 0.065

hsa-miR-424-5p -14.091 0.000 8.753 0.000
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with Bonferroni corrected p-values below 10−2. The
most enriched categories include breast cancer related
processes like cell substrate adherens junction, regula-
tion of cell migration, nuclear pore complex and integ-
rin pathway.

Conclusions
High-throughput mRNA and miRNA expression data from
large cohorts of normal and pathological tissue samples can
be exploited to detect miRNA regulatory activity. The rank-
based algorithm introduced here is able to detect miRNA-
mediated target destabilization from normal and breast can-
cer expression profiles. Reproducible results were obtained
in two independent datasets, providing a list of miRNAs
potentially relevant in breast cancer. Moreover, the associa-
tion of these miRNAs to cancer related processes is sup-
ported by functional enrichment of affected target genes.
The fact that a better overlap was obtained between

Maire cohort and TCGA when restricting the analysis to
the TNBC subtype compared to when using all samples
may at first seem counterintuitive since using more samples
should allow better power to detect correlations. However,
this observation may be explained by the fact that when
considering all breast cancer subtypes and healthy samples
together, a larger part of the variation in the transcriptome
data will arise from factors that are not directly linked to

miRNA activity. For example, when putting together data
from the luminal and non luminal subtypes, much of the
variation will be associated with the status of the estrogen
receptor pathway. Such variation can induce an important
correlation structure in the data that may confuse the detec-
tion of the much subtler variation associated with miRNA
regulation. The proposed algorithm can be considered a
suitable tool to elucidate the regulatory role of miRNAs in
physiological conditions.

Methods
Computational framework
The proposed algorithm requires as input genome-wide
miRNA and gene expression data from the same biological
samples and sequence-based predicted miRNA target sets.
A three step procedure is applied to each miRNA m:

1. All genes are ranked according to the correlation
between gene expression and the expression of
miRNA m
2. The enrichment score defined in Equation (1) is
computed for the sequence-based target set Sm asso-
ciated to the miRNA m
3. The significance of the enrichment score ES(Sm) is
evaluated by a permutation procedure estimating an
empirical p-value PV(ES(Sm))

Figure 3 An illustration of statistically significant enrichment score and selection of the leading-edge targets tested for functional
enrichment. For a given miRNA, the red line in the plot corresponds to the running sum profile obtained for the ranked list of predicted
targets while the gray lines correspond to the profiles obtained when permuting the original list. Orange dashed lines indicate levels of
significance with p < 0.1, p < 0.05 and p < 0.01.
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The ranking scheme and the enrichment score defini-
tion are described as follows.
Let G = {g1, g2, ...gN } denote the list of all genes

included in a genome-wide transcriptome experiment.
For a given miRNA m, we sort this list according to the
non-parametric (Spearman) correlation between gene
expression and the expression of the miRNA m and get a
ranked gene list Gm = {gm1, gm2, ...gmN}. Given the

sequence-based target set Sm ⊂ G associated with the
miRNA m and the corresponding prediction confidence
weights Wm, we define the enrichment score as the run-
ning sum’s maximal deviation from zero over all genes:

ES (Sm) = max
1≤i≤N

⎧⎨
⎩

i∑
j=1

(
smj ·

∣∣rmj
∣∣α− < sm · |rm|α)

⎫⎬
⎭ with Wm =

{
smj for gmj ∈ Sm
0 elsewhere

}
(1)

where rmj is the correlation between the expression of
gene j and the expression of miRNA m, < sm · |rm|

a > is
the average of prediction confidence-weighted correla-
tions for the set Sm. The parameter a controls the con-
tribution of the correlation rmj such that correlation
values can contribute linearly (a = 1) or non-linearly in
the running sum. Similar to the original GSEA algo-
rithm, in this study, we set a = 1. According to this
equation, the running sum is incremented by value (smj ·
|rmj|

a− < sm · |rm|
a >) when encountering a gene in Sm

and decreased by < sm · |rm|
a > when not.

The statistical significance of the enrichment score ES
(Sm) is assessed by a permutation based p-value. The
enrichment score of the randomly shuffled list Gm is
computed for Np=1000 permutation rounds and the
empirical null distribution of ES(Sm) is generated. An
empirical p-value PV(ES(Sm)) is estimated for the
positive and the negative region of the distribution by the
proportion of permutations that result in larger ES(Sm)
than originally observed (or lower ES(Sm) for the negative
region). Once PV(ES(Sm)) for a miRNA m is below a
fixed threshold, the regulatory activity of miRNA m on
the transcriptome is inferred. The PV threshold is set
according to False Dicovery Rate (FDR) obtained by the
Benjamini-Hochberg method [44]. In our study, the PV
threshold was set according to FDR < 0.1.

Tissue collection
Healthy samples from mammary plastic surgery and
tumor samples were obtained from patients treated at
the hospital of Institut Curie (Biological Resource Cen-
ter, Paris, France) as described previously [22,23].
Experiments were performed in agreement with the
Bioethic Law No. 2004-800 and the Ethic Charter from
the French National Institute of Cancer (INCa), and
after approval of the ethics committee of our Institution.
From the initial dataset, we retained only the samples
for which both mRNA and miRNA data were available,
numbering to 129, including 11 healthy breast tissue
samples, 37 TNBC, 28 ER-/HER2+, 24 Luminal A and
29 Luminal B breast tumour samples as characterized
by immunohistochemical staining.

MiRNA expression data
Samples were hybridized on the Agilent miRNA microar-
ray kit (V3). One hundred ng of total RNAs was hybri-
dized to the microarrays according to the manufacturer’s

Table 2 Common predicted miRNAs in Maire cohort and
TCGA for the TNBC specific analysis.

MiRNA ID ES MAIRE PV Adj MAIRE ES TCGA PV Adj TCGA

hsa-miR-361-3p 20.919 0.000 18.085 0.006

hsa-miR-29c-3p 13.774 0.000 10.705 0.000

hsa-miR-15b-5p 13.253 0.000 19.566 0.046

hsa-miR-423-5p 12.453 0.050 21.584 0.000

hsa-miR-27a-3p 11.658 0.000 13.731 0.000

hsa-miR-141-3p 11.144 0.000 15.045 0.000

hsa-miR-19a-3p 10.867 0.000 18.985 0.000

hsa-miR-17-5p 10.668 0.000 18.850 0.000

hsa-miR-29a-3p 10.612 0.000 11.034 0.000

hsa-miR-200c-3p 10.544 0.000 13.382 0.000

hsa-miR-93-5p 10.335 0.000 14.912 0.000

hsa-miR-107 10.263 0.019 12.125 0.034

hsa-miR-23a-3p 10.164 0.071 14.869 0.000

hsa-miR-19b-3p 9.860 0.000 19.694 0.000

hsa-miR-148a-3p 9.336 0.057 10.190 0.074

hsa-miR-20a-5p 9.117 0.000 18.901 0.000

hsa-miR-224-5p 9.020 0.000 6.678 0.006

hsa-miR-221-3p 8.173 0.000 5.772 0.019

hsa-let-7a-5p 7.996 0.027 7.920 0.006

hsa-miR-20b-5p 7.947 0.000 10.067 0.000

hsa-miR-30b-5p 7.538 0.027 8.141 0.000

hsa-miR-194-5p 7.528 0.000 5.670 0.034

hsa-miR-30a-5p 7.527 0.000 8.302 0.019

hsa-miR-429 7.443 0.000 11.493 0.000

hsa-miR-363-3p 7.183 0.007 8.978 0.000

hsa-miR-25-3p 7.011 0.000 13.278 0.000

hsa-miR-200a-3p 6.747 0.030 12.170 0.000

hsa-miR-222-3p 6.733 0.030 6.654 0.000

hsa-miR-106b-5p 6.726 0.014 16.857 0.000

hsa-miR-18a-5p 6.644 0.000 12.022 0.000

hsa-miR-155-5p 6.425 0.030 6.756 0.000

hsa-miR-200b-3p 6.383 0.000 11.561 0.000

hsa-miR-92a-3p 5.829 0.019 14.132 0.000

hsa-miR-192-5p 5.057 0.030 5.066 0.028

hsa-miR-576-5p 4.037 0.064 6.135 0.011

hsa-miR-127-3p 1.878 0.024 2.382 0.011

hsa-miR-374b-5p -4.373 0.000 4.464 0.070

hsa-miR-139-5p -6.743 0.000 -9.074 0.000

hsa-miR-218-5p -8.715 0.000 -10.619 0.000

hsa-miR-26a-5p -9.097 0.000 5.674 0.070

hsa-miR-130a-3p -11.434 0.000 11.721 0.000
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instructions. Hybridized microarrays were scanned with a
DNA microarray scanner (Agilent G2565BA) and features
were extracted using the Agilent Feature Extraction image
analysis tool with default protocols and settings. Data were
first transformed using the reverse hyperbolic sine func-
tion and quantile normalized. The data were then cor-
rected for a hybridization batch effect using a linear model
including the hybridization series as a fixed effect. Next,
probes with negative intensity values in 95% or more of
the arrays were discarded, leaving 516 miRNAs for analy-
sis. When technical replicates for a sample were present,
they were subsequently averaged. Two samples displayed
an outlier behavior evident from Principal Component
Analysis (data not shown) and were discarded from this
analysis. The dataset can be downloaded here at the fol-
lowing address: http://bioinfo-out.curie.fr/projects/
targetrunningsum.

Gene expression data
For the protein-coding transcriptome, the data from
Affymetrix U133plus2 arrays was processed as described
[22]. In summary, we used the brainarray HGU133-
Plus2-Hs-Entrez version 13 custom chipset definition
file [45], data were then normalized with GC-RMA [46],
technical batch artefacts were corrected using a linear
model, and genes with noise-level expression in 95% or
more arrays were filtered out leaving 11543 probesets
each corresponding to a unique Entrez Identifier.

MiRNA and gene expression data from TCGA
We conducted our study on the publicly available data of
tumour and healthy breast tissues from TCGA described
in [24]. We selected 500 tumors and 21 tumor-adjacent
normal breast tissue samples for which both mRNA and
miRNA data were available. Of the 500 tumors, 82 were
assigned to the TNBC subtype according to ER, PR and
HER2 negative status. In this dataset mRNA expression
levels were determined by Agilent custom 244K whole
genome microarrays and miRNA abundance was mea-
sured by Illumina sequencing technology. Level 3
released data contain quality controlled and processed
data done by Broad Institute’s TCGA workgroup with
expression call for genes per samples. Gene level expres-
sion data were normalized by using Robust Multi-array
Average (RMA) and expression values were gene cen-
tered. MiRNA expression was given as read counts nor-
malized to relative read frequency in each sample.
Detected miRNAs were defined as having more than 10
reads in at least 10% of the samples, leaving 332 miRNAs
for analysis.

Target predictions by TargetScan
In the TargetScan algorithm, the prediction score of a
miRNA binding site depends on the level of conservation

and sequence context criteria such as the distance of the
target from the 3’UTR end and the AU composition of
the flanking area. For each miRNA, we take as predic-
tion confidence weight of its targets the total context
scores generated by the algorithm for 3’UTRs aggregat-
ing the binding site scores. By construction, the total
context scores range between -1 and 0. When total con-
text score for multiple 3’UTR isoforms are predicted, we
take the total context score of the longest 3 ’UTR
isoform.

Additional material

Additional File 1: Table S1 - MiRNAs identified in the Maire cohort
for the analysis including all samples.

Additional File 2: Figure S1 - Boxplot showing the number of the
leading-edge targets (a) and the maximum correlation value (b) as
function of the correlation sign between the expression of the
miRNA and that of its targets.

Additional File 3: Table S2 - Predicted biological processes targeted
by miRNAs identified in both Maire and TCGA datasets. The file
contains one datasheet for the analysis including all samples and one
datasheet for the TNBC specific results.
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