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Abstract

Background: Many cancer cells show distorted epigenetic landscapes. The Cancer Genome Atlas (TCGA) project
profiles thousands of tumors, allowing the discovery of somatic alterations in the epigenetic machinery and the
identification of potential cancer drivers among members of epigenetic protein families.

Methods: We integrated mutation, expression, and copy number data from 5943 tumors from 13 cancer types to
train a classification model that predicts the likelihood of being an oncogene (OG), tumor suppressor (TSG) or
neutral gene (NG). We applied this predictor to epigenetic regulator genes (ERGs), and used differential expression
and correlation network analysis to identify dysregulated ERGs along with co-expressed cancer genes. Furthermore,
we quantified global proteomic changes by mass spectrometry after EZH2 inhibition.

Results: Mutation-based classifiers uncovered the OG-like profile of DNMT3A and TSG-like profiles for several ERGs.
Differential gene expression and correlation network analyses revealed that EZH2 is the most significantly over-
expressed ERG in cancer and is co-regulated with a cell cycle network. Proteomic analysis showed that EZH2
inhibition induced down-regulation of cell cycle regulators in lymphoma cells.

Conclusions: Using classical driver genes to train an OG/TSG predictor, we determined the most predictive
features at the gene level. Our predictor uncovered one OG and several TSGs among ERGs. Expression analyses
elucidated multiple dysregulated ERGs including EZH2 as member of a co-expressed cell cycle network.

Background
The epigenetic landscape has become an important
research topic within oncology. Epigenetic regulatory
mechanisms include DNA methylation, covalent histone
modification, and chromatin remodeling mediated by the
SWI/SNF complex. DNA methylation typically reduces
gene expression and is catalyzed by three major DNA
methyltransferases (DNMTs) [1]. In comparison, a larger
and more diverse panel of proteins regulates gene expres-
sion as writers, readers or erasers of posttranslational his-
tone modifications [2,3] (Additional file 1). Acetyl marks

are written by histone acetyltransferases (HATs), read by
bromodomain containing proteins, and erased by histone
deacetylases (HDACs). Analogously, histone methyl
marks are written by methyltransferases (HMTs) and
erased by demethylases (HDMTs). The multi-subunit
SWI/SNF chromatin-remodeling complex modulates
gene expression via nucleosome repositioning [4].
Perturbing the epigenetic machinery can lead to

uncontrolled cellular proliferation and altered apoptosis
[5,6]. Consequently, alterations of epigenetic regulators
and histone marks are frequently observed in cancer and
numerous compounds have been reported to be effective
against cancer cells by inhibiting epigenetic proteins and
reversing the effect of epigenetic modifications [7,8].
Clinically approved epigenetic drugs include the DNMT
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inhibitors vidaza and decitabine [9,10], and HDAC inhi-
bitors vorinostat and romidepsin [11,12] for treatment of
myelodysplastic syndrome and cutaneous T cell lym-
phoma, respectively. Multiple pharmaceutical companies
are targeting the histone methyltransferase EZH2 for
cancer treatment. EZH2 inhibitors EPZ-5687 [13] from
Epizyme® and GSK-2816126 [14] from GlaxoSmithK-
line® for the treatment of non-Hodgkin’s lymphoma are
currently in clinical phases I/II and I, respectively.
The increasing interest in the role of epigenetic

mechanisms in cancer has been accompanied by techno-
logical breakthroughs and large-scale initiatives to profile
large numbers of human tumors. The TCGA network
has produced genome and transcriptome sequencing
data for thousands of tumors, allowing systematic analy-
sis of molecular defects in cancer [15-17]. Integrative
analyses as seen in the TCGA Pan-Cancer project [18]
can uncover OGs and TSGs, identify novel biomarkers,
and classify molecular subtypes. Most of the current dri-
ver identification approaches aim to uncover somatic
alterations, point mutations in particular, that occur at a
statistically significant rate in cancer. Alternatively, using
genomic profiles of known OGs and TSGs as a reference,
machine learning based predictors can be trained to iden-
tify cancer genes [19].
Both methodologies are founded on features of classical

drivers, which are mainly characterized by significant
mutation or copy number patterns. Many other genes
show consistent deregulated expression in cancer, but are
not classified as drivers, because their impact on the
development of cancer is not clear. Mutation based ana-
lyses might therefore underestimate the roles of genes
that drive cancer via increased or decreased expression.
Here we analyze the genomic landscapes of thousands of
tumors to pinpoint molecular aberrations within ERG
families. We used mutation, expression, and copy num-
ber alterations as features to predict OGs and TSGs
among 187 epigenetic regulators based on both published
and reprocessed TCGA data. Differential gene expression
analysis revealed ERGs with frequent distorted expression
in cancer. We further aimed to identify genes that are
co-expressed with ERGs.

Materials and methods
Definition of ERGs and application of predictors
We classified ERG families by the presence of domains
associated with writing, reading and erasing epigenetic
marks, and defined the relationships between their
members by sequence similarity. For deacetylases,
methyltransferases, demethylases, and bromodomain-
containing proteins, the amino acid sequences of the
corresponding domains were used to determine conser-
vation by multiple sequence alignment. Domain annota-
tions were retrieved from the UniProt database (http://

www.uniprot.org) [20]. Sequences of ‘SET’, ‘SAM-depen-
dent MTase PRMT-type’ and ‘DOT1’ domains were
derived for methyltransferases. ‘JmjC’ and ‘SWIRM’
domains were characteristic for demethylases. Deacety-
lases contained ‘Histone deacetylase’ or ‘Deacetylase sir-
tuin-type’ domains, while each bromodomain containing
protein contained at least one domain described as
‘Bromo’ or ‘Bromo 1’ in UniProt. When proteins had
multiple copies of a domain, the N-terminal domain
was used. Full-length sequences were used for acetyl-
transferases and members of the SWI/SNF complex,
since their catalytic domains are not clearly defined.
We created multiple sequence alignments for each
family with ClustalW2 (http://www.ebi.ac.uk/Tools/
msa/clustalw2/) [21] using default parameters. Phyloge-
netic trees were calculated with Jalview 2.8 [22] based
on average distance minimization and visualized in
iTOL 2.1 (http://itol.embl.de) [23,24].

Mutation and copy number data
To create gene-alteration profiles for all human genes,
mutation and copy number data from tumors across the
following published TCGA cancer types were retrieved
using cBioPortal (http://cbioportal.org) [25,26]: urothelial
bladder carcinoma (BLCA) [27], breast carcinoma
(BRCA) [28], colon and rectal carcinoma (COAD, READ)
[29], glioblastoma (GBM) [30], chromophobe renal cell
carcinoma [31] (KICH), clear cell renal carcinoma
(KIRC) [32], acute myeloid leukemia (LAML) [33], lung
adenocarcinoma (LUAD) [34], lung squamous cell carci-
noma (LUSC) [35], ovarian carcinoma (OV) [36], gastric
adenocarcinoma (STAD) [37], papillary thyroid carci-
noma (THCA) [38], and endometrial carcinoma (UCEC)
[39]. The CGDSR R package functions getMutationData
and getProfileData were recursively applied for all RefSeq
genes. We distinguished between missense mutations
with high (HiFI) or low (LoFI) functional impact based
on MutationAssessor [40]. Mutations with predicted
“medium” or “high” functional impacts were defined as
HiFI mutations, while mutations with predicted “neutral”
or “low” functional impacts were defined as LoFI muta-
tions. Loss of function (LOF) mutations were determined
as the sum of nonsense and frameshift mutations. In
addition to non-synonymous mutations from cBioPortal,
we retrieved silent mutations directly from the TCGA
Data Portal (https://tcga-data.nci.nih.gov/tcga/). Benign
mutations were defined as the combination of silent and
LoFI mutations. Copy number levels from cBioPortal
were classified as ‘deep loss’, ‘single-copy loss’, ‘diploid’,
‘low-level gain’ or ‘high-level gain’ by GISTIC [41]. The
extents of copy number deletions and amplifications for
each gene in each cancer study were determined as the
proportions of tumors with ‘deep loss’ and ‘high-level
gain’ changes, respectively. R [42] was used to format
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mutation and copy number data for annotation of trees
in iTOL.

Expression data and differential gene expression analysis
To identify differential gene expression between tumors
and healthy tissues, TCGA RNAseq raw reads were
downloaded for available tumor types (BLCA, BRCA,
COAD, KICH, KIRC, LUAD, LUSC, STAD, TCHA,
UCEC) and processed by our GSNAP [43] based tran-
scriptome analysis pipeline [44]. RNAseq data for both
tumors and healthy tissues were not available for GBM,
LAML and OV. RNAseq reads were first aligned to ribo-
somal RNA sequences to remove ribosomal reads.
Remaining reads were aligned to the human reference
genome (NCBI Build 37) using GSNAP version ‘2012-01-
11’, allowing maximum of 2 mismatches per 75 base
sequence (parameters: “-M 2 -n 10 -B 2 -i 1 -N 1 -w
200000 -E 1 –pairmax-rna = 200000”). Gene expression
was quantified with RPKM values (reads mapping to a
gene per kilobase of transcript per million reads
sequenced) and variance stabilized counts derived from
the number of reads mapped to each RefSeq gene. The
DESeq R package [45] was applied to estimate size fac-
tors, obtain dispersion estimates, and measure differential
gene expression between tumors and healthy tissues
using default parameters. Results were reported as fold
changes and associated adjusted p-values. In addition to
DESeq based negative binomial generalized linear models
for differential expression significance, we defined genes
with tumor exclusive expression (genes that are
expressed in tumors but not in healthy tissues), if their
90% quantile expression levels in all healthy tissues were
equal to the expression levels of pseudo counts, but mini-
mum 1 RPKM in the tumors of at least one cancer type.

Prediction of OGs and TSGs
Following the methodology for parameter tuning as
described in the TUSON explorer [19], we applied the
Lasso approach [46] to identify the most reliable fea-
tures for predicting OGs and TSGs. Lasso minimizes
the residual sum of squares (RSS) with a constraint (“L1
penalty”) on the sum of the absolute values of the coeffi-
cients bj for all predictors p:

RSS + λ
∑p

j=1
|βj|

The L1 penalty has the effect of shrinking some of the
coefficients to zero when the tuning parameter l is suf-
ficiently large. As a result, lasso models select the most
predictive subsets of features at specified l values.
For both feature selection and training, we used 49

OGs and 49 TSGs from the Cancer Gene Census (CGC)
[47] with experimentally validated involvement in
tumorigenesis as provided by TUSON. Genes that have

not been associated with cancer development according
to CGC or the Entrez gene database formed a set of
10,900 NGs. Using TCGA data we employed 48 features
associated with mutation, expression, or copy number
alterations for each human gene (Additional file 2).
To prevent imbalanced classifications, we created 1000
random NG sets of size 150 each. Feature selections and
predictions were conducted for OGs and TSGs
separately.
Using the ‘cv.glmnet’ function from the R package

glmnet [46], we trained lasso based binomial classifica-
tion models for each random NG set against all OGs or
TSGs. We used 20-fold cross validations to determine
tuning parameter l yielding minimum cross-validated
errors. Features were defined as reliable for OG or TSG
prediction, respectively, if the associated b coefficients
were not zero in at least 90% of the 1000 resulting clas-
sifiers. While TUSON applied the lasso approach for
feature selection only, we also used the resulting fitted
logistic regression models for prediction. We applied
glmnet’s ‘predict’ function to each of the 1000 fitted
models based on optimal l values and the respective
optimal feature subsets. This resulted into 1000 sets of
predicted OGs and TSGs. Using a bagging based ensem-
ble classification approach, we applied binary classifica-
tions of all human genes based on a 90% majority vote.
Notably, we used all 49 OGs and 49 TSGs as positive

sets for training. In the absence of a separate test set,
prediction accuracies were therefore measured as aver-
age 20-fold cross validation based areas under the curve
(AUC) across the 1000 classifiers from the training step.

Co-expression analysis
To estimate the strength of the pairwise linear relationship
between the expression levels all human genes in healthy
tissues, Pearson’s correlation coefficients were calculated
based on WGCNA, an R package for weighted correlation
network analysis [48]. Using DESeq [45], variance stabi-
lized RNAseq count data were used as a measure of gene
expression. Expression data of all non-tumor samples
were merged and analyzed in a combined approach. We
applied hard thresholding (R > 0.85) to convert the result-
ing 19,115 × 19,115 similarity matrix into an adjacency
matrix. Using R we turned the adjacency matrix into a
network file that can be imported in Cytoscape [49].
Known cancer genes were defined by the Cancer Gene
Census (CGC) [47]. In total 25 out of 501 CGC genes
were ERGs.

Sample preparation and mass spectrometry analysis
To analyze the effect of EZH2 inhibition on the pro-
teome, we applied quantitative mass spectrometry based
proteomics to a non-Hodgkin’s lymphoma B cell line,
WSU-DLCL2. Cells were cultivated in SILAC RMPI
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1640 medium containing 13C615N2-lysine (Lys8) and
13C615N4-arginine (Arg10), as described [50]. After fully
labeling, as assessed by quantitative mass spectrometry,
cells were treated with the EZH2 inhibitor EPZ-6438
(Epizyme®, Cambridge, MA) (provided by LT Pharma-
Tech Inc®) (250 nM) for 2, 4, 6 or 8 days.
Cell pellets were lysed in 8 M Urea, 20 mM HEPES

buffer by sonication and clarified by centrifugation at
16,000 × g for 10 min. Protein content was measured
using the Pierce BCA protein assay (Thermo Scientific)
by fluorescence spectrometry. SILAC-labeled proteins
were combined with an equal amount of unlabeled pro-
teins. Proteins were reduced with dithiothreitol and
alkylated with iodoacetamide prior to tryptic in-gel
digestion. 100 µg of the heavy/light protein mix was
loaded and separated by SDS-PAGE on a 4-12%
NuPAGE Bis-Tris gel (Invitrogen) and stained with Sim-
plyBlue Coomassie (Invitrogen). Gel bands were excised,
separated into 16 fractions, and destained followed by
overnight trypsin digestion at 37°C in 50 mM ammo-
nium bicarbonate.
Nanoflow LC-MS/MS analysis of tryptic peptides was

conducted on an LTQ-Orbitrap XL (ThermoFisher) in
combination with a Waters nanoAcquity UPLC system,
as described [50]. The mass spectrometer was operated
in data-dependent mode and tandem mass spectra were
searched against the UniProt human database using
Mascot and a maximum false positive rate of 2% for
proteins.

Histone purification and H3K27me3 quantification
H2A, H2B, H3, and H4 histones were purified with a
commercially available histone purification kit (Active
Motif) accordingly to the manufacturer’s instruction.
Histone concentrations were measured using the Direct
Detect® Spectrometer (EMD Millipore). Heavy and light
amino acid-labeled histones were mixed in a 1:1 ratio.
Histones were propionylated, quenched by hydroxyla-
mine followed by tryptic digestion overnight and phenyl
isocyanate labeling. Histone peptides were then analyzed
by capillary reverse phase ultra high-pressure liquid
chromatography-electrospray ionization tandem mass
spectrometry on an Orbitrap mass spectrometer. Briefly,
1 µg of desalted histone peptides were injected on
1.7 µm BEH-C18 column (Waters) and eluted over the
course of 90 minutes with an acetonitrile gradient. Spec-
tra were acquired in a “top-15” data-dependent experi-
ment. Data were further processed with Fishtones
(http://research-pub.gene.com/fishtones-js/howto/.)

Clustering of time courses
Using the R package Mfuzz [51], log2 ratios of protein
intensity time profiles were clustered based on the fuzzy
c-means (FCM) soft partitioning clustering algorithm.

We used c = 3 and m = 1.7 as parameters, where c is
the number of clusters and m is the fuzzification para-
meter. Membership values ranging from 0 to 1 reflect
the similarities of each time profile to its associated
cluster.

Gene ontology analysis
We used Cytoscape [49] and BinGO [52] to derive biolo-
gical functions that were significantly overrepresented in
co-expressed gene networks or proteins with intensity
changes after EZH2 inhibition. The significance of over-
represented gene ontology annotations in these sets com-
pared to entire human proteome was calculated on the
basis of hypergeometric models and Benjamini Hochberg
false discovery rate correction.

Results
Definition of ERG families
We defined ERG families and their members by the pre-
sence of domains associated with writing, reading and
erasing epigenetic marks as described [53]. The resulting
panel of 187 epigenetic regulators comprised 3 DNMTs,
58 HMTs, 32 HDMTs, 18 HATs, 18 HDACs, 41 bromo-
domain proteins, and 20 members of the SWI/SNF
complex (Additional files 1, 3 and 4). Their phylogenetic
relationships were estimated by the sequence similarity
of associated domains. Using mutation, copy number
and expression data from 5943 tumors across 13 TCGA
cancer types, we set out to determine the involvement
of the defined ERGs in human cancer by OG/TSG pre-
diction, differential expression and correlation network
analysis.

Prediction of cancer driver genes
The most common approach to uncover cancer driver
genes is to identify somatic alterations that occur at a
statistically significant rate. As an alternative approach,
machine learning based classifications use characteristics
of known OGs and TSGs as a reference (training set) to
predict cancer genes [19]. We implemented a similar
approach to test its applicability in our tumor panel and
to identify cancer drivers within ERG families.
Construction of gene-alteration profiles
To characterize known cancer drivers and to identify
genes with similar features, we constructed ‘alteration
profiles’ for all human genes in each individual cancer
type as well as in the combined set of tumors (Addi-
tional file 5, Materials and Methods). Each gene profile
contained 48 features measuring various types of altera-
tions in cancer (Additional file 2). For members of the
defined ERG gene families, we applied iTOL to visualize
four of the 48 established features (Figure 1 and Addi-
tional file 6). These include the proportions of tumors
with significant copy number alterations, non-synonymous
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sequence mutations within the gene coding region, and
the degree of differential expression between tumors and
adjacent normal tissues. The frequencies of copy number
deletions or amplifications for each gene were determined
as the proportions of tumors with ‘deep loss’ or ‘high-level
gain’ changes based on GISTIC calculations [41], respec-
tively. To measure the degree of dysregulated expression
for each gene, we developed fold-change and p-value
based scores reflecting the significance of differential gene
expression based on negative binomial generalized linear
models (Materials and Methods). The majority (44 of 48)
of the integrated features, however, describe the frequen-
cies of various sequence mutation classes. To exclude the
effect of protein size [54], we normalized mutation fre-
quencies by the background mutation rate or coding
sequencing length. To distinguish between missense muta-
tions with high (HiFI) or low (LoFI) functional impact, we
used MutationAssessor [40], which is known to have high

accuracy [55]. Loss of function (LOF) mutations were
defined as the combination of nonsense and frameshift
mutations. Benign mutations (as the combination of silent
and LoFI) mutations reflect the background mutation rate
of each gene. As a measure of the preferred occurrence of
specific point mutations within a gene, termed ‘mutation
hot spots’, we calculated entropy based ‘mutation selection
scores’ as described [19].
Selection of features reliable for OG and TSG prediction
For the training of binary classifiers and for the selection
of predictive features, we obtained OGs and TSGs from
the Cancer Gene Census (CGC) [47] as well as NGs, as
described [19]. To select features from the generated
gene-alteration profiles that distinguish cancer drivers
from NGs, we followed the methodology for parameter
tuning from the TUSON (TUmor Suppressor and ONco-
gene) explorer [19] (Materials and Methods). We used
the least absolute shrinkage and selection operator

Figure 1 Visualizing genomic alterations of bromo domain containing genes. The core of the plot reflects the phylogenetic relationships
between bromo domain containing proteins estimated by the sequence similarity of their associated domains. The inner circle displays the
expression fold-changes between tumors and healthy tissues. High expression in tumors is indicated in red, while low expression in tumors is
shown in blue. The outer circle illustrates the proportion of tumors with ‘deep loss’ (blue) or ‘high-level gain’ (red) changes. Mutation rates are
reflected by the outer stacked bar plots.
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(Lasso) method [46] to identify the most reliable out of
48 parameters for predicting cancer genes.
For OG prediction, the most reliable parameters were

the occurrence of mutation hot spots, represented by
the mutation selection score (p = 5.8 × 10−13, one-tailed
Mann-Whitney U test, b coefficient = 5.3), the ratio of
HiFI to LoFI missense mutations (p = 2.2 × 10−3, b =
0.06), and the amplification frequency (p = 1.8 × 10−5,
b = 2.48) (Figure 2A). These features indicate that cano-
nical OGs are characterized by copy number amplifica-
tions or recurrent missense mutations with high impact
on protein function. Examples for such somatic muta-
tion hot spots include V600E in BRAF (265 tumors),
H1047R in PIK3CA (113 tumors), or G12D in KRAS
(63 tumors) (Figure 2B, Additional file 7). Overall, BRAF
(Sm = 2.71), PIK3CA (Sm = 1.25), KRAS (Sm = 1.11), and
IDH1 (Sm = 0.82) showed the highest selection scores

for missense mutations (Sm) among OGs. Interestingly,
known copy number driven OGs including MYC (Sm =
0), ALK (Sm = 0), and SOX2 (Sm = 0) showed signifi-
cantly low preference for mutation hot spots (p = 2.7 ×
10−18, one-tailed Mann-Whitney U test comparing
amplified versus non-amplified OGs based on CGC
annotation). Notably, none of the expression parameters
was selected as predictive feature (p > 0.4) implying that
the OGs from the training set are not consistently over-
expressed in cancer.
The most reliable feature set for TSG prediction

included the ratio of LOF to benign mutations (p = 2.1 ×
10−26, b = 2.13), splicing to benign mutations (p = 3.1 ×
10−22, b = 1.85) and the frequency of homozygous copy
number losses (p = 1.1 × 10−8, b = 1.08) (Figures 2A and
2D). In addition, given the significant underrepresenta-
tion of TSGs in amplicons, the Lasso approach also

Figure 2 Selecting features for OG and TSG prediction. A) Box plots illustrate feature differences between OGs (red), TSGs (blue) and NGs
(gray). Associated p-values on the top of each box plot are based on one-tailed Mann-Whitney U tests and reflect the differences between OGs
and NGs, and TSGs and NGs. B) Dots reflect the frequencies of protein altering mutations in the combined set of tumors from seven cancer
types. OGs (red), TSGs (blue) and NGs (gray) are sorted alphabetically on the x-axis. C) Proportions of loss of function (LOF) to benign mutations
are plotted against the entropy based mutation selection scores for all human genes. Blue indicates high fractions of LOF mutations, while red
indicates high mutation selection. D) Stacked bar plots present the relative frequencies of mutation classes in the combined tumor panel for
OGs, TSGs and NGs.
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selected the amplification frequency as predictive (p = 2.8
× 10−3, b = −1.06). This indicates that canonical TSGs are
characterized by copy number loss or mutations that
have deleterious effects on protein function. Interestingly,
multiple TSGs showed significantly recurrent LOF or
splice site mutations including APC (R1450*; 22 tumors)
and VHL (V155splice; 13 tumors) as well as missense
mutations including TP53 (R175H; 51 tumors) and
PTEN (R130G; 26 tumors) (Figure 2B, Additional file 7).
Consequently, the selection scores for non-synonymous
mutations (p = 4.1 × 10−18, b = 1.89) were high in the
training set (Figures 2A and 2C) and thus selected for
TSG prediction by Lasso. Expression parameters were
not selected as reliable features (p > 0.4) for TSG
prediction.
Applying cancer gene classifiers to ERGs reveals more TSGs
than OGs
To uncover cancer drivers among ERGs, we applied the
trained classification models that were used for feature
selection. We used all 49 known OGs and TSGs for the
training and feature selection step, because the size of
the positive set was relatively small for machine learn-
ing. Therefore, the assessment of our predictors relied
on 20-fold cross-validations instead of an independent
test set. The average areas under the curve (AUC) as
measure of prediction accuracy for OG and TSG classi-
fications were 84.21% and 92.17%, respectively (Materi-
als and Methods).
To identify cancer genes that are driven by mutation,

we applied the predictors to the defined ERGs using the
most predictive mutation parameters only. Overall five
ERGs including the SWI/SNF complex subunits
PBRM1, ARID1A, and SMARCD1 were classified as
TSGs (Figure 3A). Exclusion of copy number data from
the feature set yielded the same set. ARID1A had the
highest ratio of LOF to benign mutations among ERGs,
and was mutated in 25.4% of urothelial bladder tumors,
31.1% of gastric tumors, and 33.5% of endometrial
tumors. Overall 72.2% of all non-synonymous mutations
in ARID1A were LOF. PBRM1 was mutated in 36.5% of
clear cell renal carcinomas, of which 75.0% were LOF.
SETD2 was also classified as TSG with 39.9% of all non-
synonymous mutations classified as LOF. Consistent with
the mutation profiles of TSGs in the training set, multiple
LOF mutations had a non-random distribution within
predicted TSGs in more than one tumor (Figures 3B and
3C). ARID1A, for example, showed a frameshift mutation
at position 1848 in 20 tumors (Figure 3C). Overall, with
the exception of alterations in DNMT3A, the most recur-
rent mutations within ERG families were associated with
loss of function (Figure 3B).
Using the missense mutation selection score and the

ratio of HiFI to LoFI mutations, only DNMT3A was pre-
dicted as OG. This result reflects the lack of recurrent

and potentially activating hotspot missense mutations
within ERG families in our tumor panel. With the
exception of DNMT3A, we detected nonsense muta-
tions and indels, but no missense point mutations
among ERGs that occurred in more than four tumors.
The driver classification of DNMT3A by our OG pre-
dictor can be attributed to the occurrence of a mutation
hot spot in acute myeloid leukemia. In total 28 (14.4%)
of the 195 tumors showed a missense mutation on posi-
tion 882 resulting in an overall mutation selection score
of 0.55.
We expected EZH2 to be classified also as an OG,

since it is a validated target pursued by multiple phar-
maceutical companies. Activating mutations within the
SET domain of EZH2 are frequent in non-Hodgkin’s
lymphoma [56], but were not found as recurrent in the
analyzed cancer types.
With copy number data as an additional feature, com-

pleting the set of selected predictive parameters,
ACTL6A and ATAD2 were the only predicted OG
among ERGs. However, since the amplified genomic
regions harboring these genes were typically very large,
with an average length exceeding 50 Mb, it is equally
likely that both genes are only amplified as a passenger
genes.

Detection of ERGs with consistent over- or under-
expression in cancer
The Lasso-based feature selection for OG/TSG predic-
tion showed that canonical cancer drivers are usually
characterized by significant mutation patterns or copy
number alterations (Figure 2A), but not by consistent
gene expression patterns. Consequently, while our
machine learning approach enabled us to uncover cancer
driver-like mutation and copy number alterations among
ERGs, significant gene expression patterns could not be
detected by prediction.
To pinpoint ERGs with consistently higher or lower

expression in cancer, we determined the differential
expression significance across the ten cancer types
with available RNAseq data using negative binomial
generalized linear models (GLM) [45] (Materials and
Methods). To assess the overall significance of differ-
ential expression in cancer for each gene, we combined
the p-values resulting from the cancer type specific
analyses using Fisher’s probability test. Overall 11
ERGs showed consistent up-regulation in all cancer
types with combined p-values (pF) lower than 0.001
(Figure 4A, Additional file 8). EZH2 showed the most
significant over-expression in tumors (pF = 3.18 × 10
−112) (Figure 5A) not correlating with copy number
alterations (p = 0.87 based on linear regression
between RPKM expression levels and total copy num-
ber) (Materials and Methods). The MYC cofactor
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[57,58] bromodomain reader ATAD2 (ATPase family,
AAA domain containing 2) was the second most sig-
nificantly over-expressed ERG (pF = 2.6 × 10−25).
Expression levels of ATAD2 correlated significantly
with copy number changes (p = 3.1 × 10−12) consistent

with the length of the MYC amplicon that spans the
genomic region of ATAD2 in 98% of the cases. Other
ERGs with homogeneous over-expression in cancer
included PRDM13, DPF1, DNMT1, SUV420H2,
WHSC1, TRIM28, BAZ1A, PRMT1, and HDAC10.

Figure 3 Predicted TSGs and most recurrent mutations in the ERG family. A) Predicted TSGs are listed along with the proportions of
mutated samples in each indication and overall frequencies of LOF to benign mutations. B) Most recurrent mutations within the ERG family (del:
deletion, *: nonsense mutation, fs: frameshift). C) Mutation profiles of ARID1A and PBRM1. Non-synonymous mutations are represented as solid
circles, with color distinguishing different cancer types. Circle sizes are proportional to the mutation frequencies.

Figure 4 Epigenetic regulators with significant gene expression profiles in cancer. Significantly (A) over- and (B) under-expressed ERGs are
ranked according to the combined p-values (based on Fisher’s probability test) over all cancer types. Numbers reflect log2-fold changes, while
colors reflect associated p-values. ERGs with consistently over-expression in tumors included EZH2 (pF = 3.2 × 10−112), ATAD2 (pF = 1.9 × 10−76),
PRDM13 (pF = 2.7 × 10−27), DPF1 (pF = 1.0 × 10−19), DNMT1 (pF = 8.3 × 10−19), SUV420H2 (pF = 1.7 × 10−15), WHSC1 (pF = 3.3 × 10−15),
TRIM28 (pF = 1.2 × 10−8), BAZ1A (pF = 2.2 × 10−7), PRMT1 (pF = 9.6 × 10−6), and HDAC10 (pF = 8.1 × 10−5). ERGs with consistently lower
expression in tumors included KAT2B (pm = 1.0 × 10−74), EZH1 (pm = 2.3 × 10−42), SMARCA2 (pm = 2.0 × 10−25), NCOA1 (pm = 1.2 × 10−10),
ZMYND11 (pm = 3.6 × 10−9), PRDM2 (pm = 9.5 × 10−7), BAZ2B (pm = 3.5 × 10−6) and SIRT1 (pm = 8.1 × 10−6).
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Quantile-based differential expression analysis (Materials
and Methods) revealed that BRDT, PRDM9, and
PRDM13 were exclusively expressed in tumors but not
in paired healthy tissues (Figure 5B). With high expres-
sion levels across several cancer types, the testis-specific
BRDT gene [59,60] displayed characteristics of a cancer-
testis (CT) gene. CT genes are genes with normal
expression restricted to adult testicular germ cells, and
yet are aberrantly activated and expressed in various
cancer types [61]. As such CT genes are interesting tar-
gets in cancer therapy. As previously observed in non-
small cell lung cancers [62], differential expression ana-
lysis between BRDT expressing and non-expressing
LUSC tumors revealed co-expression with canonical CT
genes such as MAGE-A11, GAGE4, GAGE5, GAGE6
and GAGE12I (Additional file 9, Materials and Meth-
ods). Almost all co-expressed genes also showed tumor-
specific expression in LUSC. PRDM9 and PRDM13 also
showed exclusive expression in cancer, but their biologi-
cal roles in these tumors are unclear.
Consistently down-regulated ERGs included KAT2B,

EZH1, SMARCA2, NCOA1, ZMYND11, PRDM2, BAZ2B
and SIRT1, which showed significantly lower expression (pF
< 0.001) in tumors compared to healthy tissues (Figure 4B).
Comparing the sets of over- or under-expressed ERGs

showed that closely related genes such as KAT2A and
KAT2B exhibited different expression profiles. EZH2 and
EZH1, for example, form PRC2 (Polycomb repressive com-
plex 2) complexes with similar functionalities [63], but
opposite expression profiles. As another example, while
PRDM9 and PRDM13 were exclusively expressed in tumors,
PRDM2 was consistently down-regulated in tumors.
Taken together the resulting panel of significantly

over- or under-expressed ERGs form an interesting can-
didate set of genes that potentially drive the develop-
ment of cancer via dysregulated expression. This model
is generally not applicable to classical OGs and TSGs,
but might hold true for ERGs.

Co-expression network analysis
In addition to the identification of significant expression
patterns in tumors, we used the expression levels in
healthy tissues to detect co-expressed genes under nor-
mal conditions. The main objective of this analysis was to
uncover the involvement of ERGs in co-expression net-
works, which frequently form jointly regulated functional
modules [64]. Co-expressed genes can have similar biolo-
gical activities and even physically interact. In some cases
co-expression may reflect that one gene encoding protein
regulates the activity of the other gene.

Figure 5 Expression plots of significantly expressed ERGs. Gene expressions of (A) EZH2, ATAD2, EZH1, and (B) BRDT, PRDM13 and PRDM9
are shown in RPKM units (black: healthy tissues, red: tumors). Gene expression levels are reflected by RPKM values.
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Using variance stabilized TCGA RNAseq count data
as a measure of gene expression, we analyzed co-expres-
sion networks by estimating pairwise linear relationships
between all protein coding human genes (Materials and
Methods).
Based on hard thresholding (r > 0.85) we converted

the resulting 19,115 × 19,115 similarity matrix into an
adjacency matrix, which contains binary information (0:
no co-expression; 1: co-expression) about pairwise co-
expression. Transforming the adjacency matrix into
nodes (genes) and edges (co-expression) resulted in one
major network with 2465 genes including 37 ERGs, and
11 separate networks with 8 to 112 genes (Figure 6A).

EZH2 is a member of a cell cycle network
Using gene ontology enrichment (Materials and Meth-
ods) we found that the discrete co-expression networks,
which were not connected to any node of the main net-
work, were associated with specific biological functions
such as muscle contraction (pGO = 8.9 × 10−11),
collagen fibril organization (pGO = 4.4 × 10−10), tissue
development (pGO = 1.4 × 10−5), oxidative phosphoryla-
tion (pGO = 3.1 × 10−24), or regulation of secretion
(pGO = 2.3 × 10−3) (Additional file 10). Two co-expres-
sion modules contained 37 members of the protocad-
herin family representing tightly linked gene clusters a
and g, consequently associated with cell-cell adhesion

Figure 6 Co-expression network analyses. A) Using Cytoscape co-expressed genes are visualized as networks with nodes representing genes
and edges reflecting pairwise co-expression relationships in healthy tissues. B) Numbers of co-regulated cancer genes in healthy tissues (right
panel of the plot) are shown along with the mutation frequencies (left panel of the plot). Mutation frequencies are presented as stacked bars
with cancer type dependent coloration. ERGs are sorted on the y-axis by the overall mutation frequencies. C) A subnetwork within the main co-
expression network contains 24 co-expressed ERGs. Colors indicate the corresponding ERG families. D) EZH2 (green) and 99 co-expressed genes
form one co-regulated network that is significantly enriched for cell cycle regulators. Genes that are directly connected with EZH2, because they
show a very high degree of co-expression (R > 0.85), are highlighted in orange. Genes that are present in the network, but not directly
connected with EZH2 are shown in blue. F) Examples of positive correlations between EZH2 and co-expressed cell cycle regulators. Each dot
reflects the gene expression level (represented by variance stabilized RNAseq count data) of EZH2 (x axis) and the co-expressed gene (y axis).
Dots are colored according to tissue type.
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(pGO = 2.7 × 10−34, 1.8 × 10−25). Another network
included nine members of the UDP glucuronosyltrans-
ferase 1 family, significantly associated with various
metabolic processes.
Strikingly, we identified a distinct network with 100

genes, almost exclusively associated with the regulation
of the cell cycle (pGO = 4.4 × 10−57) (Figure 6D). EZH2
is the only epigenetic regulator in this module. In total
62 genes in the network were annotated cell cycle regu-
lators with consistent up-regulation in tumors, including
cell division cycle genes CDC6, CDC45, and CDC25C,
cyclins CCNA2, CCNB1 and CCNB2, genes encoding
for aurora kinase B (AURKB) and its interaction partner
NUF2, mitotic checkpoint protein kinase TTK, RAD51,
checkpoint activator FANCI, DLGAP5, polo-like kinases
(PLK) 1 and 4 along with interacting cyclin regulator
FOXM1. Other essential cell cycle genes included
BUB1, BUB1B, CHEK2, CDK1, and several members of
the kinesin family.
Multiple members of the cell cycle network are known

to regulate or physically interact with each other. For
example, the expression of EZH2 is known to be regu-
lated by the co-expressed transcription factor E2F2 [65].
The exact role of EZH2 as the only ERG in the cell
cycle network, however, is not clear.
Co-expression patterns in the main network
Analyzing the main network revealed multiple pairwise
co-expressions between ERGs and cancer genes. While
we took only a subset of genes of the CGC to train our
predictors, we defined all genes from the CGC as cancer
drivers in the co-expression analysis. Some examples for
positive correlations between ERGs and drivers are illu-
strated in Figure 6E and Additional file 11. Interestingly,
genes encoding longer proteins showed more co-
expressed genes, presumably because they provide
increased surfaces for interaction. Consequently, without
normalizing for coding sequence length, frequently
mutated ERGs correlated with more cancer genes than
rarely mutated ERGs (p = 2.3 × 10−5 using permutation
test) (Figure 6B).
Overall, we found seven cases, where the expression of

one ERG was negatively correlated with the expression
of another gene (R < −0.85) (Additional file 12). The
transcription factor BUD31 was involved in three of the
seven instances including ASH1L, KAT6A, and KDM3B.
Without known functional causalities, however, it is dif-
ficult to interpret these negative correlations.
Identifying sub-networks by investigating highly co-

expressed gene pairs (directly linked nodes) within the
major network revealed 24 inter-connected co-expressed
ERGs (Figure 6C). This sub-network was composed of
members from different ERG families. Similar to all
observed co-expression patterns, this finding may not
only imply common functionality, but also reflect that

the epigenetic machinery is partially controlling itself or
is commonly controlled by another regulatory
mechanism.

Proteomic analysis of the antiproliferative effect of EZH2
inhibition in mutant lymphoma cells
While the exact role of EZH2 in the identified cell
cycle network is not clear, EZH2 is known as direct
transcription repressor or activator of several cell cycle
regulators (Additional file 13). As member of the Poly-
comb-group family, EZH2 acts as transcription repres-
sor of several cell cycle-related tumor suppressor genes
such as CDKN1C through methylation of histone
H3 on lysine 27 (H3K27) [66,67]. In an alternative
model for EZH2 mediated regulation, EZH2 promotes
tumorigenicity by direct activation of OGs such as
STAT3 [68].
Inhibition of EZH2 has been suggested to induce cell

cycle arrest in G1 phase and antiproliferative response
in the mutant-bearing lymphoma cell line WSU-DLCL2
(EZH2Y641F) [13]. The associated study further showed
that proliferation of EZH2 wildtype cells was not
affected by the same treatment. After only 2 days of
compound treatment cell cycle genes were found signifi-
cantly down-regulated in the mutant cell line based on
microarray experiments. Overall, we identified 11 out of
the 30 most down-regulated cell cycle genes from this
study in our co-expressed network (CDC6, BUB1,
CDC25C, BUB1B, TTK, CCNB1, CCNA2, PKMYT1,
E2F2, CDC20, PLK1).
To analyze the effect of EZH2 inhibition on the pro-

teome, we treated WSU-DLCL2 cells with the selective
EZH2 small molecule inhibitor EPZ-6438 (Epizyme®,
Cambridge, MA) [69,70] and measured global proteomic
changes after 2, 4, 6 and 8 days using SILAC (stable iso-
tope labeling by amino acids in cell culture) based mass
spectrometry (Materials and methods).
Consistent with previous findings [13], we observed

decreased viability of WSU-DLCL2 cells after EZH2
inhibition. Concordant with EZH2 as member of the
PRC2 complex, which trimethylates histone 3 on lysine
27, the level of the H3K27me3 histone mark decreased
by a factor of 2 and 3.3 after 2 and 5 days respectively
(Additional file 14).
We identified 2530 proteins on average and quantified

their intensity changes between EPZ-6438 treated cells
(heavy labeled) and their respective non-treated control
cells (light labeled) (Additional file 15). The combined
proteome profiles over all time points comprised 3066
proteins. Overall 1852 proteins were commonly identi-
fied in all time point experiments. Clustering the asso-
ciated time courses revealed three different profiles
representing up-, down-, and non-regulated proteins
(Additional file 16).
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In total 267 and 202 proteins showed minimum 2-fold
increase or decrease in expression levels respectively.
Based on gene ontology (GO) analysis, the set of down-
regulated proteins was significantly enriched for genes
associated with cell cycle (p = 2.25 × 10−9) and DNA
replication (p = 6.97 × 10−17) (Additional file 17).
Among the 59 down-regulated cell cycle proteins were
CDK2, CND1, MCM7, RFC2 and several regulators that
were co-expressed in the EZH2 cell cycle network
including CDK1, CND3, FANCI, BUB1, KIF11, TOP2A,
TOPK, and UHRF1 (Figures 7A,B). Overall, 24 cell cycle
associated proteins were up-regulated after EZH2 inhibi-
tion including tumor suppressors ATM, BRCA2 and cell
cycle inhibitor CDN2C.
Our proteomics results do not distinguish whether
EZH2 inhibition acts directly on the expression of cell
cycle genes or more generally induces cell cycle arrest.
However, coupled with the known regulatory roles of
EZH2 as a member of the PRC2 complex and results
from previous studies [13], these data suggest a regula-
tory function of EZH2 in controlling it’s co-expressed
cell cycle network.

Discussion
Alterations in the epigenetic machinery that lead to
uncontrolled cellular proliferation have become an
important research topic in the field of oncology. By
training cancer gene predictors based on TCGA data,
we found that classical cancer drivers are characterized
by significant mutation or copy number patterns, but

not by altered expression. Among ERGs we identified
multiple TSGs with significant proportions of loss of
function mutations. Given the lack of recurrent muta-
tion hot spots within the ERG families in the tumor
panel, DNMT3A was the only ERG that showed an OG-
like alteration profile. However, whether DNMT3A acts
as OG or TSG has been debated, and additional studies
are required to understand the exact role of DNMT3A
in cancer. The classification of DNMT3A as OG driver
can be attributed to the identification of a mutation hot
spot on position 882 in acute myeloid leukemia. This
shows that our predictor, which was trained on the com-
bined set of all tumors, was capable to detect significant
alterations within a single cancer type. It also makes
clear, however, that the approach is biased towards
included cancer types. Activating mutations within the
catalytic SET domain of EZH2, for example, are known
in non-Hodgkin’s lymphoma [71], but were absent in our
tumor cohort.
Many ERGs, which were not predicted as drivers, had

dysregulated expression in cancer. The role of dysregu-
lated genes in cancer is generally difficult to determine
[72], but the discovered expression profiles among ERGs
were remarkable. EZH2 was the most significantly up-
regulated gene. Strikingly, co-expression network analy-
sis uncovered EZH2 as the only ERG in a co-expressed
cell cycle module. Selective inhibition of EZH2 has been
shown to decrease expression of multiple cell cycle reg-
ulators [13], many of which are in our co-expressed net-
work. Despite the limitations of mass spectrometry to

Figure 7 Quantitative mass spectrometry based proteomic analysis after EZH2 inhibition. A) Protein expression differences of selected cell
cycle regulators in EPZ-6438 (Epizyme®, Cambridge, MA) versus DMSO treated lymphoma cells (WSU-DLCL2) are represented as log2 ratios. B)
Global protein expression changes after 8 days of EPZ-6438 treatment. Down-regulated cell cycle regulators are highlighted in dark blue.
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identify a subset of the whole human proteome only, we
confirmed the down-regulation of cell cycle proteins
and showed a decrease of the PRC2-associated H3K27
methylation mark after EZH2 inhibition. We cannot
determine, however, whether EZH2 inhibition acts
directly on the expression of cell cycle genes or more
generally induces cell cycle arrest. Interestingly, the
EZH2 homolog EZH1 has been proposed to form PRC2
complexes with similar functions [63], EZH1 is com-
monly down-regulated in cancer, which contradicts its
involvement as a cell cycle promoting PRC2 subunit.
Several other ERGs were significantly over-expressed

in tumors. BRDT, PRDM9 and PRDM13, for example,
were exclusively expressed in tumors. BRDT showed
characteristics of a CT gene, and was co-expressed with
other known CT genes. The underlying mechanisms
that induce the co-expression of these genes or the
effect on the cancer cell are not known, but BRDT may
present a potential candidate for initializing their
expression as an epigenetic regulator.
While overexpression of ATAD2 and ACTL6A are

related to their genomic locations on large frequently
amplified chromosome regions, DNMT3B, KAT2A,
SUV420H2 and several other ERGs showed ubiquitous
significant up-regulation in cancer, therefore presenting
an interesting candidate set for potential therapeutic
targets.
Taken together, our prediction method identified sev-

eral ERGs with mutation alteration profiles characteris-
tic of classical TSGs. DNMT3A was the only predicted
OG-like ERG with mutation hot spots in acute myeloid
leukemia. Expression analysis further supports the role
of EZH2 as an OG. Our study provides the first sys-
tematic analysis of the epigenetic regulators, thus pro-
viding basis for further prioritization of such players as
candidates for therapeutic target discovery.

Additional material

Additional file 1: Epigenetic regulators of gene expression as
writers, erasers and readers of covalent DNA and histone
modifications. The upper panel provides an overview of writers (DNMTs,
HATs, and HMTs), erasers (DNDMTs, HDACs, and HDMTs), and readers
(bromo domain containing and methyl binding proteins) of epigenetic
marks. Epigenetic regulators can be identified by the presence of specific
associated domains, which are listed on the right of the lower panel. The
sequence similarities between contained domains or total protein
sequences formed the phylogenetic trees for each epigenetic gene
family as shown on left.

Additional file 2: Description of genomic features.

Additional file 3: List of members of ERG families.

Additional file 4: Illustration of the SWI/SNF complex.

Additional file 5: Overview: Cancer gene prediction applied to ERGs.

Additional file 6: Genomic alterations of HATs, HDACs, HMTs, HDMs
and members of the SWI/SNF complex. The compositions of the plots
are explained in Figure 1.

Additional file 7: List of frequent mutations in TCGA.

Additional file 8: Differential gene expression analysis results.

Additional file 9: Co-expression of cancer testis genes. A) Volcano plot
resulting from the differential expression analysis between BRDT
expressing and BRDT non-expressing LUSC tumors. B) Gene expression
levels of co-expressed cancer testis in LUSC (black: healthy tissues, red:
tumors).

Additional file 10: Gene ontology enrichment analysis of identified
co-expression networks. For some of the identified networks, gene
ontology enrichment analyses were performed. “X” is the total number of
annotated genes in the given network, while “x” is the number of
annotated genes in the network that are associated with the given gene
ontology accession (GO-ID). “N” is the number of annotated genes in the
background set, while “n” is the number of genes from the background
set that are associated with the given gene ontology accession (GO-ID).

Additional file 11: Examples of co-expression between ERGs and other
genes in healthy tissues. Each dot reflects the gene expression levels
(represented by variance stabilized RNAseq count data) of the ERG (x
axis) and the co-expressed gene (y axis). Dots are colored according to
the associated tissue indication.

Additional file 12: Negative correlations between expression levels of
ERGs and other genes. Analogously gene expression (variance stabilized
RNAseq count data) of the epigenetic regulator (x axis) and the co-
expressed gene (y axis). Colors indicate the associated tissue indication.

Additional file 13: Known models for EZH2 as cell cycle regulator. Two
established models describe a cell cycle regulating role of EZH2: With its
transcription repressing role as member of PRC2 complex (left panel),
EZH2 enhances the expression of cell cycle regulators indirectly by
repressing associated tumor suppressors such as CDKN1C. In an
alternative model, EZH2 acts as a direct activator (right panel).
Phosphorylated EZH2 activates STAT3 via methylation, which in turn
activates the cyclin D1/CDK2 complex. Interestingly CDK1 and CDK2 have
been shown to phosphorylate EZH2. In addition EZH2 has been shown
to inhibit BRCA1 phosphorylation presumably via interaction with Akt-1
resulting into increase of cell cycle promoting CDC25C.

Additional file 14: Mass spectrometry based quantitation of
H3K27me following EZH2 inhibition.

Additional file 15: Mass spectrometry results. List of identified proteins
and corresponding quantitative results.

Additional file 16: Clustered time series. Using fuzzy c-means clustering,
time course profiles formed three clusters of down-, up-, and non-
regulated proteins. Colors reflect the similarities between specific time
series and the associated cluster.

Additional file 17: Gene ontology enrichment analysis of regulated
proteins.
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