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Abstract

The genetic structure of human populations is extraordinarily complex and of fundamental importance to studies
of anthropology, evolution, and medicine. As increasingly many individuals are of mixed origin, there is an unmet
need for tools that can infer multiple origins. Misclassification of such individuals can lead to incorrect and costly
misinterpretations of genomic data, primarily in disease studies and drug trials. We present an advanced tool to
infer ancestry that can identify the biogeographic origins of highly mixed individuals. reAdmix can incorporate
individual’s knowledge of ancestors (e.g. having some ancestors from Turkey or a Scottish grandmother). reAdmix is
an online tool available at http://chcb.saban-chla.usc.edu/reAdmix/.

Background
The ability to trace individuals to the point where their
DNA was formed at the population level poses a formid-
able challenge in genetic anthropology, population genet-
ics and personalized medicine [1]. The vast progress
accomplished in developing resources for identifying can-
didate gene loci for medical care and drug development
[2] was largely unmatched by the field of biogeography
and ancestral inference. Only in the past decade have
researchers begun harnessing high-throughput genetic
data to improve our understanding of global patterns of
genetic variation and its correlation to geography. This is
not surprising, because the genetic variation is largely
determined by demographic history of inbreeding or
admixture which often vary between geographic regions.
Although in the past few years we have witnessed a grow-
ing interest in biogeography methods, only a few compu-
tational tools exist, particularly for analysis of mixed
individuals [3-6].
These methods can be either local (focusing on origin

of chromosomal segments), such as Lanc-CSV [7],

LAMP-LD [8], and MULTIMIX [9], global (average
ancestral proportions across the genome), such as
ADMIXTURE [10], STRUCTURE [11,12], or both, such
as HAPMIX [13], LAMP [8,14]. Some popular applica-
tions are PCA-based [3]. For humans, PCA was shown to
be accurate within 700 kilometers in Europe [3]. The
Spatial Ancestry Analysis (SPA) [4] is an advanced tool
that explicitly models allele frequencies. However, esti-
mated by the percentage of individuals correctly assigned
to their country of origin, the accuracy of both PCA and
SPA remain low for Europeans (40 ± 5% and 45 ± 5%,
respectively) and are even less for non-Europeans [4],
suggesting their limitation for biogeographic applications
[4,15,16]. Note, that the country of origin does not neces-
sarily correlate with ethnicity. SPAMIX [17] is reported
to have an accuracy of 550Km for two-ancestral admix-
tures, which is impressive but insufficient. Algorithms
like mSpectrum [18], HAPMIX [13] and LAMP [8]
achieve good accuracy at a continent resolution [18], but
do not achieve country-level resolution. Related tools like
BEAST [19], STRUCTURE [12], and Lagrange [20] are
either inapplicable to autosomal data or cannot be used
to study recent admixture in humans, animals, and
plants. We note that looking at Y chromosome and
mtDNA alone is insufficient for detailed biogeographic
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analysis, since closely related populations have similar
distributions of haplogroups.
To address these limitations, we have recently devel-

oped an admixture-based tool, Geographic Population
Structure (GPS), that can accurately infer ancestral ori-
gin on unmixed individuals [21]. GPS infers the geogra-
phical origin of individual by comparing the his/her
“genetic signature” to those of reference populations
known to exhibit low mobility in the recent past. GPS’s
accuracy was demonstrated by classifying 83% world-
wide individuals to their country of origin and 65% to a
particular region of the country. Applied to over 200
Sardinian villagers, GPS placed 25% of them in their
villages and ≈ 50% within 50 kilometers of their villages.
However, contemporary individuals often migrate to

different areas and bear off-spring of mixed geographical
origins. GPS would incorrectly predict such offspring to
the central point between the parental origins, which
would be unsuitable for pharmacology, forensics, and
genealogy; therefore, GPS is not equipped to handle
mixed individuals. Moreover, often individuals have an
indication of at least one of their possible origins, which
can be used to improve the prediction, but existing tools
are not designed to consider such information. To
address these limitations, we propose reAdmix, a novel
tool that models individuals as a mix of populations and
can use user input to improve its predictions. We
demonstrate the accuracy of reAdmix on a simulated
dataset and compare its performance with three alterna-
tive tools. reAdmix can be useful for professionals trying
to match cases and controls in disease studies, scientists
studying bio-diversity and origins of humans, animals,
and plants, as well as many people seeking answers about
their past.

Results and discussion
reAdmix expands the admixture based approach,
described in [21]. It requires building a dataset of world-
wide populations (reference set ), by applying an unsuper-
vised ADMIXTURE [10] analysis with various number of
components. As shown in Elhaik et al. [21], the most sui-
table number of components was verified using a PCA-
based analysis. After choosing an optimal number of
ancestral populations, K, allele frequencies inferred for
each of the ancestral populations with ADMIXTURE
formed a reference dataset for subsequent steps. Indivi-
duals were projected onto this reference dataset of
K ancestral populations using ADMIXTURE in a super-
vised mode. In other words, an individual’s genotype was
“broken down” into a predefined set of ancestral compo-
nents. These admixture proportions represent a tested
individual in the space of K putative ancestral popula-
tions (for example, in case of K = 9, the ancestral popula-
tions are North-East Asian, Mediterranean, South

African, South-West Asian, Native American, Oceanian,
South-East Asian, Northern European, Sub-Saharan
African). Details of the admixture components calcula-
tions are described in the Methods section. The task of
reAdmix is to present individual’s ancestry as a weighted
sum of modern reference populations (e.g. 25% French,
25% German, 50% Japanese) based on these K admixture
components. The goal is to find the smallest number of
reference populations that represent the tested individual
with the highest possible accuracy. We used the reference
population panel with known admixture components
relative to putative-ancestral population. Preparation of
this dataset is described in the Methods section of this
manuscript. reAdmix can operate in unconditional (noth-
ing is known about the tested individual) and conditional
(there is partial information about individual’s ancestors)
modes. If the prior information contradicts the indivi-
dual’s genotype, it is discarded. See Methods for detailed
description of the reAdmix approach.
Briefly, the tested individual and the N reference popu-

lations are represented as points inside the standard sim-
plex in K-dimensional space, via their K admixture
coefficients. For example, the genome of an individual
that consists of 50% population X, 25% population Y ,
and 25% population Z can be represented by the corre-
sponding point T as a convex combination:

T = 0.5X + 0.25Y + 0.25Z,

where each population is represented by a vector of K
admixture coefficients, for example:

X = [0.1, 0.15, 0.25, 0, 0, 0.5, 0, 0, 0].

Thus, the question of determining the population mix-
ture of an individual, i.e. the parental populations and
their proportions, can be translated into the following
problem in the K-dimensional admixture space: find a
representation of a given test point as a convex combi-
nation of a subset of N reference points.
Note that both test and reference points have the

property that their coordinates, being admixture propor-
tions, sum to one; therefore they belong to the standard
(K - 1)-dimensional simplex defined by the equation
∑K

k=1
xk = 1. The set of all convex combinations of the

N reference population points (their convex hull ) is a
polytope, a higher-dimensional analogue of polyhedron,
inside the standard simplex. Our problem has a solution
if the test point is located inside this polytope. The solu-
tion is not necessarily unique: when N exceeds K + 1,
the point can be represented by several convex combi-
nations of reference populations. Hence, there are multi-
ple mixture combinations can explain the individual’s
admixture. One way to get parametric uniqueness is to
find the smallest dimension simplex containing the
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given point and reduces the combinatorial freedom.
Although there may still be many simplices of the same
dimension containing the same point, it becomes unli-
kely when the dimension of the ambient space gets
higher. Another way is to take advantage of prior infor-
mation provided by the user (e.g. if the individual knows
some of his/her ancestry).
We conducted several tests of reAdmix accuracy

described below. The tests were performed on the com-
puter with Intel Xeon 2x5650@2.67GHz CPU (24 cores
HT), 24 Gb RAM, and took about 50 sec and 40 Mb
RAM per one sample. In optimization runs, five worker
threads were employed in parallel.

Comparison with GPS algorithm using unmixed
individuals
To test the performance of reAdmix we first applied it
to worldwide unmixed samples, whose admixture coeffi-
cients were averaged over individuals with the same
self-reported origin. The program was tested under two
conditions: either no prior information or random
incorrect prior information was supplied. reAdmix cor-
rectly identified the individuals as unmixed in 96% and
86% for these experiments, respectively. Two scores
were then computed: percent of individuals matching
the correct population and distance to correct popula-
tion. reAdmix correctly determined the population of
96% of the samples. The incorrectly predicted individuals
were placed within an average distance of 35 kilometers
to their reported location. When incorrect prior informa-
tion was provided, the quality did not drop drastically:
88% of samples was mapped to the reported population,
with an average distance of 165 kilometers to the correct
geographical location. These results indicate the robust-
ness of reAdmix.

Simulated marriages
Next, we simulated multiple mixture scenarios and
tested the ability of reAdmix to correctly identify the
populations in each mixture and their mixture propor-
tions. We considered several relevant scenarios for an
American of a European descent where individuals may
have two, three or four European/Near Eastern origins
and tested the ability of reAdmix to correctly identify
the populations and proportions in simulated mixed
families. These mixtures are currently common for big
cities in North America. Individuals of mixed origin
were simulated from admixture vectors of un-mixed
individuals. For each of the three scenarios, we ran-
domly generated 300 family structures by sampling from
population means from different populations in the
reference dataset and computed the weighted average of
their corresponding admixture coefficients with varying
error term:

T =
∑

wi × ri + ε ×N (
0,

∑
w2
i × σ 2(ri)

)
,

where � is the scaling parameter and the error is nor-
mally distributed with zero mean and the variance equal
to the weighted sum of variances for mixture compo-
nents. Notice, that admixture vectors do not contain
chromosomal positions, and, therefore, information
about haplotype blocks is not utilized in our approach.
We tested the algorithm in unconditional and condi-

tional modes. A single correct population was provided for
the tests of the conditional mode. We also tested the case
in which the mixture weights are known to be equal a
priori. Our simulation results are shown in Tables 1, 2.
The scenarios are named according to the percentage of
mixed ancestral population, e.g. “50 × 50”. The “Correct
position” is defined as a prediction within 320 km of
the reported location. The number of cases with at least
one correctly predicted origin in conditional mode gives
the number of cases in which the unknown population is
also predicted correctly, and hence it can be less than the
number of correctly predicted positions. Conditioning on
one population reduces the average distance to correct
population more than two-fold.
Next, in order to represent an increasing trend of mar-

riages between spouses of a different ethnicity we added
several Native American populations. The most common
type of cross-ethnic marriages in the US is European/
Latino couples, accounting for 43% of cross-ethnic mar-
riages [22]. Due to the sparse coverage of Amerindians
and the large geographic distances between populations
compared to European ones, we expected a significant
decline in reAdmix performance, however, the decline
was less severe than expected (Tables 3, 4).

Testing the four-way admixtures
Finally, we compared reAdmix to mSpectrum [18], HAP-
MIX [13] and LAMP [8,14] programs. We used the
benchmark of Sohn et al. [18]. In this benchmark, four-
way admixtures were generated using Russian, Bantu
Kenya, Pima, and Yi populations in proportions h(1) =
(0.2, 0.8, 0, 0) and h(2) = (0.8, 0.15, 0.03, 0.02). This corre-
sponds to (19.8 : 80.2 : 0 : 0) and (83.3 : 13.1 : 1.5 : 2.1) in
the space of European, African, Native American and East
Asian ancestries. Tables 5 and 6 and Figure 1 show
comparative performance of the four methods using the
two- and four-way admixed individuals. Proportions deter-
mined by reAdmix (in unconditional mode) were the clo-
sest to the true mix of ancestries. In case of two-ways
admixed individuals reAdmix in unconditional mode was
able to determine not only the continent of origin, but the
precise population mix (Russian and Bantu Kenya) and
proportions and (0.8). In case of the four-ways admixed
individuals, there are 2317 different ethnic composition at
a country level with the same admixture composition in
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the space of European, African, Native American and East
Asian ancestries. Therefore, selection of the “best” ethnic
composition is intrinsically difficult or even impossible
when the number of components (K) is small and the mix-
ture is complex. In our web application we use larger
values of K.

Applicability to other species
reAdmix can be applied to analyze geographic origin of
other species, provided there is a sufficient collection of
ancestry-informative markers for the organism of inter-
est. Elhaik et al. [21] estimated that thinning of the
150,000 Geno2.0 set of markers to 40,000 randomly

Table 1. Accuracy of reAdmix ancestry predictions for different mixture scenarios from European populations

Scenario Prior Correct
position(%)

At least one correctly predicted
origin (%)

Correct
populations (%)

Average distance to correct
population, km

50 × 50 none 100 83 16 505

1 pop. 100 75 31 8

equal
weights

100 81 26 251

50 × 25 × 25 none 98 80 1 572

1 pop. 100 61 2 240

25 × 25 × 25
× 25

none 99 79 0 729

1 pop. 100 61 0 427

Percentage of mixed ancestral population is given in the “Scenario” column. “Correct position” is defined as a prediction within 320 km of reported location.
“Correct populations” is defined as a geographically correct prediction where the method correctly discriminated between neighboring populations.

Table 2. Accuracy of reAdmix ancestry predictions for different mixture scenarios from European populations with
error term, �, to simulate variability of admixture proportions within populations

Scenario Error,
�

Correct position
(%)

At least one correctly predicted
origin (%)

Correct populations
(%)

Average distance to correct
population, km

50 × 50 0.01 99 72 6 401

0.03 99 74 5 363

0.05 99 73 5 386

50 × 25 × 25 0.01 99 81 0 588

0.03 99 79 0 553

0.05 98 79 0 557

25 × 25 × 25 ×
25

0.01 99 81 0 600

0.03 98 78 0 618

0.05 98 80 0 623

Percentage of mixed ancestral population is given in the “Scenario” column. “Correct position” is defined as a prediction within 320 km of reported location.
“Correct populations” is defined as a geographically correct prediction where the method correctly discriminated between neighboring populations.

Table 3. Accuracy of reAdmix ancestry reconstruction for different mixture scenarios from European and Native
American populations

Scenario Condition Correct
position(%)

At least one correctly predicted
origin (%)

Correct
populations (%)

Average distance to correct
population, km

50 × 50 none 98 89 30 329

1 pop. 99 87 36 2

equal
weights

99 88 36 135

50 × 25 × 25 none 86 81 18 1390

1 pop. 94 72 4 362

25 × 25 × 25 ×
25

none 86 85 0 1484

1 pop. 90 71 0 759

Percentage of mixed ancestral population is given in the “Scenario” column. “Correct position” is defined as a prediction within 320 km of reported location.
“Correct populations” is defined as a geographically correct prediction where the method correctly discriminated between neighboring populations.
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selected SNPs resulted in 3% error in admixture coeffi-
cients. In order to justify usage of even smaller genotyp-
ing datasets, we calculated the expected bias from
supplementing the reference set with admixture compo-
nents of populations genotyped over fewer markers down
to randomly selected 500 markers. For that, we randomly
selected 500 markers for nine populations from 1000
genomes dataset, and generated admixture proportions
using ADMIXTURE program. The resulting proportions
were compared to those obtained using the complete
marker set. We found very small differences in the
admixture proportions that slowly increased for thinner
marker sets. Even with 500 markers, the largest observed
difference (6%) was within the within-variation of our
populations and did not affect the assignment accuracy.
These results confirm the robustness of admixture-based
approach and its usability for datasets as small as 500
ancestry informative markers (markers whose frequencies
are significantly different, between two or more popula-
tions). We are currently developing reAdmix portals for
Arabidopsis thaliana, Medicago truncatula, Oryza sativa,
Elaeis guineensis and Drosophila melanogaster. Earlier
[21], we demonstrated that sample sizes used to generate
database reference populations varied between N = 2 and
N = 15 and were not correlated with prediction accuracy

(r = 0.01). For well covered areas, the sizes can be as
small as N = 2. Note, that a fully sequenced genome is
not required for reAdmix method, only a collection of
SNPs. This extends the applicability of the reAdmix to
species with limited genomic information.

Conclusions
The ability to identify the geographic origin of an indivi-
dual using genomic data poses a formidable challenge due
to its complexity and potentially dangerous misinterpreta-
tions [23]. Knowledge of biogeography and recent ancestry
are essential for research in multiple fields such as biodi-
versity, genealogy, anthropology, sociology, and forensics,
as well as personalized medicine and epidemiology in
which ancestry is an important covariate. Development of
reAdmix is a response to the high demand for improved
and accurate ancestry identification methods, it can accu-
rately measure admixture and infer biogeography in com-
plete-genome data sets that are now practical to generate.
reAdmix is a computationally efficient and organism-inde-
pendent tool that can be easily applied to a variety of spe-
cies where sufficient collection of ancestry-informative
markers are available. We expect to improve performance
of reAdmix with inclusion of additional world-wide refer-
ence samples and further computational development.

Table 4. Accuracy of reAdmix ancestry predictions for different mixture scenarios from European and Native American
populations with error term, �, to simulate variability of admixture proportions within populations

Scenario Error,
�

Correct positions
(%)

At least one correctly predicted
origin (%)

Correct
populations(%)

Average distance to correct
population, km

50 × 50 0.01 97 83 12 354

0.03 97 83 9 391

0.05 98 84 7 357

50 × 25 × 25 0.01 88 80 2 1156

0.03 85 77 2 1254

0.05 88 81 1 1147

25 × 25 × 25 ×
25

0.01 85 82 0 1554

0.03 85 82 0 1526

0.05 87 82 0 1441

Percentage of mixed ancestral population is given in the “Scenario” column. “Correct position” is defined as a prediction within 320 km of reported location.
“Correct populations” is defined as a geographically correct prediction where the method correctly discriminated between neighboring populations.

Table 5. Performance of reAdmix, mSpectrum, HAPMIX
and LAMP using two-way admixed individuals

Ethnicity True ReAdmix mSpectrum HAPMIX LAMP

European 20 20 18.9 15.7 17.1

African 80 80 79.5 76.7 77.8

Nat. American 0 0 1.2 0.3 1.6

East Asian 0 0 0.4 1.3 3.5

Other 0 0 0 6 0

Estimation errors for the two-way admixture were 0.01, 1.70, 8.18, and 5.28,
respectively.

Table 6. Performance of reAdmix, mSpectrum, HAPMIX
and LAMP using four-way admixed individuals

Ethnicity True ReAdmix mSpectrum HAPMIX LAMP

European 79.3 79.2 83.5 68.1 63.2

African 15 15 13.5 13 13.5

Nat. American 3.5 3.5 2.6 2.6 8.9

East Asian 2.2 2.3 0.4 10.4 14.4

Other 0 0 0 5.9 0

Estimation errors for the four-way admixture were 0.10,4.89, 15.24, 20.96,
respectively.
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Methods
Reference database
150K dataset
To create a reference set we used 600 worldwide indivi-
duals collected as part of the Genographic Project and the
1000 Genomes Project and genotyped on the GenoChip
[24], containing 150K ancestry-informative markers, and
1043 Human Genome Diversity Project (HGDP) samples
genotyped on Illumina 650Y array, containing 661K mar-
kers. SNP marker set of the GenoChip array (Genographic
Project) was selected as a basic one, i.e. for each individual
only SNPs overlapping with this set were taken, as this
array is enriched for ancestry-informative non-selectable
markers [24,21]. We used the reference dataset from
Elhaik et al. [21] as a base and added additional entries
using supervised ADMIXTURE [25] analysis. Mean
admixture coefficients were computed for each population
in the database (see Elhaik et al. [21] for details). In the

Dodecad Ancestry Project synthetic “zombies” are gener-
ated from the ADMIXTURE components. The concept of
“reconstructed hypothetical ancient-like individuals” is
similar to ancestral population used in our analysis. Here
is the brief description of the approach:

1 Find allele frequencies of putative ancestral
populations:

• run ADMIXTURE [25] analysis in unsupervised
mode on the entire reference dataset (possibly
several times);
• use CLUMPP [26] software to align and find
consensus between. P matrices resulting from
different runs and create a single. P matrix (L ×
K, where L is the number of loci, K is the chosen
number of putative ancestral populations).

2 For each k = 1...K, create (m ≈ 15) individual geno-
types by sampling the genotype at each locus j = 1...L

Figure 1 Performance of reAdmix, mSpectrum, HAPMIX and LAMP using two-way (top) and four-way (bottom) admixed individuals.
Color coding: red - European, green - African, yellow - Native America, blue - East Asian, and white - unassigned.

Kozlov et al. BMC Genomics 2015, 16(Suppl 8):S9
http://www.biomedcentral.com/1471-2164/16/S8/S9

Page 6 of 11



independently from binomial distribution (n = 2, p = P
(j, k)). Genotype here is understood as number of
copies of specific allele (0,1, or 2). These are the “zom-
bie” genotypes, i.e. they represent a likely genotype of
an individual from an ancestral population.

Following prior work of Elhaik et al. [24,21], the
resulting admixture coefficients were obtained from
ADMIXTURE [25] analysis on an individual genome
relative to K = 9 putative ancestral populations repre-
senting the genetic diversity of different geographic
regions. This selection allows for direct comparison with
prior work. However, larger values of K are feasible to
consider. We will continue inclusion of additional
world-wide reference samples and experimenting with
the number of components to achieve optimal perfor-
mance of reAdmix.
33K dataset
An additional reference dataset was constructed from
microarray genotyping data on various worldwide popula-
tions. This dataset contains a smaller number of ancestry-
informative markers, but a larger number of reference
populations available in literature. This dataset is enriched
for Native American, Chukotko-Kamchatkan, Siberian
populations, as well as populations from South and North
Caucasus. GenoChip ancestry-informative markers were
selected in all datasets. Filtering of the resulting dataset
was performed using the PLINK software [27] with the
following criteria: maximum missing rate per SNP marker
was 5%; maximum missing rate per individual was 50 (it
was set so high to accommodate some important popula-
tions). The final dataset contained 1, 564 individuals from
86 populations and 33, 039 SNPs. We used unsupervised
ADMIXTURE [25] analysis for K ranging from 2 to 20.
For each value of K, 100 admixture analysis runs were
generated with different random seeds. The best run was
chosen according to the highest value of log likelihood.
We selected K = 14, since this number of components is
high enough to provide the desired resolution, but at the
same time is free of complicated ancestral populations
substructure, that appears at higher values of K. Ten-fold
cross-validation (CV) plots and admixture coefficients for
various values of K are shown in the Additional file 1.

reAdmix approach
Instead of attempting to solve an “exact admixture” pro-
blem, we aim to find the smallest subset of populations
whose combined admixture components are similar to
those of the individual within a small tolerance margin.
The reason for this is that the admixture proportions we
use cannot be considered exact neither for the reference
populations that consists of certain heterogeneity nor for
the test individual, because the observed admixture pro-
portions are merely maximum likelihood estimates,

which may fail to accurately represent the actual propor-
tions of ancestral genomes. Geometrically speaking, we
seek to find a small subset of population points, such that
their convex hull is adjacent to the test point in terms of
maximum distance, defined as the maximum difference
in the absolute values of two admixture coefficient vec-
tors. The reAdmix algorithm solves this problem in two
modes: conditional and unconditional. The conditional
mode starts the search from one or more populations a
priori provided by the user, whereas in the unconditional
mode, no information is available.
The reAdmix algorithm consists of three phases (see

Figure 2):
1. Iteratively build the first candidate solution,

increasing the size by one population at each iteration,
according to a criterion discussed below, until a maxi-
mum number of ancestral populations is found. The
maximum number of the ancestral populations is a
parameter which is defined using prior information
about the ancestry composition, and roughly corre-
sponds to the time-frame in question, represented by
the number of generation. For example, to find the ori-
gin of one’s grandparents the maximum number should
be set to four, however the results may be like those of
individual T that in the simplest scenario may indicate
common origins of two grandparents. Improve the can-
didate solution by exchanging populations in the solu-
tion for ones outside the solution space, if this
substitution reduces the error.
2. Generate the predefined number M of additional

candidate solutions randomly and apply the Differential
Evolution (DEEP) stochastic optimization technique to
the combined set of the first and additional candidate
solutions. The DEEP method is run for the Gmax prede-
fined number of iterations using the objective function
(3) described below that estimates the admixture propor-
tions. The resulting set of M + 1 solutions is subjected to
local optimization over all populations close to the
obtained set. This resolves the problem of misplacing
related populations such as Belorussian, Russian, and
Ukrainian.
3. The populations that have stable membership in the

solution across the set, that is, are part of solution in at
least 75% of cases, should be identified and reported,
with their averaged estimates of admixture proportion.

Notation
Let the reference dataset R = (rik) denote the matrix of
admixture proportions of populations with respect to
putative ancestral populations. We refer to the rows ri =
(ri,1, ..., ri,K) of matrix R as population vectors. Let the
admixture proportions of a test sample be denoted as
T = (t1,..., tK). Let S denote the solution vector, i.e. tuple
of indices of populations that are present in test
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sample’s admixture, and A = (a1, a2,..., ap) the corre-
sponding vector of mixture proportions to estimate. The
K-component vector P = a1rs(1) + a2rs(2) + ... + aprs(p) is
the approximation of T .

reAdmix algorithm description
Initialization. The set of populations present in indivi-
dual’s ancestry (S) is either empty (unconditional mode)
or contains modern-day populations (conditional mode),

Figure 2 Flowchart of reAdmix.
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provided by the user. Vector of proportions A is unde-
fined. Set T0 = T , copy of the original test vector, as T
will change throughout the algorithm.
Phase 1. Build and improve the initial solution set.

1. Repeat the following steps until desired size of the
solution set is reached:

- Find the population vector with the highest
affinity score (1) (see below) with respect to the
current value of the test vector T, j = arg max〈F
(rj, T)〉.
- Append this population to the solution set S =
S ∪ {j}.
- Calculate the weight of the population vector
to be proportional to the maximal possible
(account for possible error) wj = max[w : w · rj
<t + ε] × b, where the scaling factor b is empiri-
cally determined.
- Subtract from the test vector T the product of
the population vector and its weight: T = T - wj rj.

2. Improve the initial solution set by swapping popu-
lations with those outside of it. For all populations x
in the current solution and for all y outside the solu-
tion, replace x with y, if the change reduces the
error.

Phase 2. Optimize the solution by global stochastic
(1) and local search (2).

1. Stochastic step: The initial solution is combined
with M randomly generated vectors of populations’
indices of the same size. Differential Evolution
Entirely Parallel (DEEP) method is applied to this set
of putative solutions for Gmax number of iterations.
This makes it possible to identify the alternative
combinations of populations that provide the lesser
or the same error value as DEEP accepts only those
substitutions in the parameter vectors that reduce
the value of the objective function.
2. Local optimization: After obtaining the prelimin-
ary solution, a local optimization over all populations
close to the preliminary solution is carried to iden-
tify the best possible solution. This step selects
between related populations (e.g. Belorussian, Rus-
sian, and Ukrainian) that could have been misplaced
in previous steps.

Phase 3. Averaging. To make a reliable estimate, the
populations that have stable membership in the solutions
across the set, that is, are part of solution in at least 75%
of cases, should be identified and reported, with their
averaged estimates of admixture proportion. We recom-
mend to average across at least M = 10 solutions to

achieve stable results. The remaining populations should
be considered potential contributing populations that
may be grouped and reported as a regional population
(e.g., South Europeans).

Affinity score
Affinity score of a vector P to a test vector T

F(P,T) = argmin
α

L(d(α)) (1)

is the value of the weight a such that the difference
between prediction and true value of test vector d = T -
aP minimizes the loss function

L(d) =
K∑

i=1

d2i +
∑

i:di<−ε

(1 + 2|di|) (2)

The goal of the second term is to penalize for inclu-
sion of too many ancestral populations (i.e. when
aPi >Ti).

Objective function
Population weights are considered optimal if they mini-
mize the absolute error of the solution, i.e. the maxi-
mum absolute error between the approximation defined
by S, A, and T . The function finds proportions A =
(a1, a2,..., ap) corresponding to the elements of approxi-
mation defined by S = (s1, s2,..., sp) such that the abso-
lute solution error

f (S,T) = min
A=(a1,a2,...,ap)

max
k=1...K

|P − T|, (3)

where P = a1rs(1) + a2rs(2) + ... + aprs(p), is minimal.
The minimization of absolute error is an instance of
Chebyshev approximation linear programming problem.
To solve it we use lpSolve package [28].

Differential Evolution Entirely Parallel (DEEP) method
Recently, many promising optimization techniques have
been developed based on the Differential Evolution ori-
ginally proposed by Storn and Price in [29,30]. To solve
our optimization problem, we adopted the Differential
Evolution Entirely Parallel (DEEP) method [31] incor-
porating into the original algorithm such enhancements
found in the literature as the possibility to take into
account a value of the objective function for each para-
meter vector at the recombination step [32], and to con-
trol the diversity of the parameter vectors by the
adaptation of the internal parameters [33]. DEEP starts
from a set of the randomly generated parameter vectors
qi, i = 1, ..., NP. The size of the set NP is fixed. The first
trial vector is calculated by:

v = qr1 + S(qr2 − qr3 )

Kozlov et al. BMC Genomics 2015, 16(Suppl 8):S9
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where q• is the member of the current generation g, S
is a predefined scaling constant and r1, r2, r3 are differ-
ent random indices of the members of population. The
second trial vector is calculated using “trigonometric
mutation rule” [32].

z =
qr1 + qr2 + qr3

3
+ (ϕ2 − ϕ1)

(
qr1 − qr2

)

+ (ϕ3 − ϕ2)
(
qr2 − qr3

)
+ (ϕ1 − ϕ3)

(
qr3 − qr1

)

where ϕi = |F(qri)|/ϕ∗, i = 1, 2, 3,
ϕ∗ = |F(qri)| + |F(qr2 )| + |F(qr3 )|, and F(x) is the main
objective function to be minimized. The combined
trial vector in case of binomial recombination type is
defined as follows:

wj = vj ∗ (Uj(0, 1) < p) + zj ∗ (Uj(0, 1) < 1 − p)

where Uj(0, 1) is a random number uniformly distrib-
uted between 0 and 1 and p is the probability of cross-
over. In case of the exponential type of recombination
the first trial vector v is used continuously while random
number is less than p.
Several different objective functions can be used to

decide if the trial vector will replace the current one in
the set. The trial vector is accepted if the value of the
main objective function decreased. In the opposite case
the additional objective functions are considered if they
are defined. The trial vector replaces the current one if
the value of any other objective function is better, and a
randomly selected value is less than the predefined para-
meter for this function.
It is worth noting that the DEEP method was pre-

viously successfully applied to several systems biology
problems [34-36]. The distinctive features of the DEEP
method are the flexible selection rule for handling multi-
ple objective functions and substitution strategy that
takes into account the number of iterations between
updates of each parameter vector. Several oldest vectors
are substituted with the same number of the best ones
after predefined number of iterations. Different types of
experimental observations or a priori knowledge can be
included in one fitting procedure using the new selection
rule. We are currently developing a nonparametric
[37,38] version of the reAdmix approach.
The algorithm was implemented in C programming

language as the software package with interface that
allows a user to formulate the objective function using
different computer languages widely used in biomedical
applications, such as Octave, R, etc. The control para-
meters of the algorithm are defined in the data file that
uses the INI-format. The package provides the simple
command line user interface.
One of the parameters of the algorithm determines the

number of parallel threads used to calculate the objective

function. We utilized the Thread Pool API from GLIB
project https://developer.gnome.org/glib/ and constructed
the pool with the defined number of worker threads. The
calculation of objective function for each trial vector is
pushed to the asynchronous queue. The calculation starts
as soon as there is an available thread. The thread syn-
chronization condition is determined by the fact that
objective function is to be calculated once for each indivi-
dual in the population and on each iteration.

Additional material

Additional file 1: Supplementary materials. Selection of the optimal
number of components.
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