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Abstract
Background: Ralstonia solanacearum is an important plant pathogen. The genome of R.
solananearum GMI1000 is organised into two replicons (a 3.7-Mb chromosome and a 2.1-Mb
megaplasmid) and this bipartite genome structure is characteristic for most R. solanacearum strains.
To determine whether the megaplasmid was acquired via recent horizontal gene transfer or is part
of an ancestral single chromosome, we compared the abundance, distribution and compositon of
simple sequence repeats (SSRs) between both replicons and also compared the respective
compositional biases.

Results: Our data show that both replicons are very similar in respect to distribution and
composition of SSRs and presence of compositional biases. Minor variations in SSR and
compositional biases observed may be attributable to minor differences in gene expression and
regulation of gene expression or can be attributed to the small sample numbers observed.

Conclusions: The observed similarities indicate that both replicons have shared a similar
evolutionary history and thus suggest that the megaplasmid was not recently acquired from other
organisms by lateral gene transfer but is a part of an ancestral R. solanacearum chromosome.

Background
The paradigm that bacterial genomes consist of a single
circular chromosome is no longer valid. Linear chromo-
somes have been identified in Borrellia burgdorferi [1], var-
ious Streptomyces species [2,3], Agrobacterium tumefaciens
[4] and various other species. In addition, it is now appre-
ciated that genomes of several bacterial taxa consist of
multiple replicons. Most organisms with a multi- or bipar-
tite genome structure belong to the α-Proteobacteria (in-
cluding Rhodobacter sphaeroides [5,6] and various
Rhizobium [7,8], Agrobacterium [4,8], Brucella [9,10] and
Azospirillum [11] species) or the β-Proteobacteria. Most iso-
lates from species belonging to the β-proteobacterial gen-
era Burkholderia and Ralstonia harbour multiple replicons,
including members of the Burkholderia cepacia complex

[12–16], Burkholderia gladioli [15], Burkholderia pseudoma-
llei [17], Burkholderia glumae [13], Burkholderia glathei
[13], Burkholderia sp. LB400 [18], Ralstonia pickettii [13],
Ralstonia eutropha [13] and Ralstonia metallidurans [18].
Multiple replicons may have arisen from the need to
achieve higher overall replication rates [19]. The origin of
these multiple replicons is at present unclear but it has
been suggested that they could have their origin in gene
duplication followed by divergence; in this case intrachro-
mosomal recombinational events within a duplicated re-
gion could give rise to the formation of two stable
replicons [8]. In the genus Brucella these rearrangements
have occurred in the region containing the ribosomal
RNA genes [10] but in theory the rearrangements can oc-
cur at any repeated sequence [20]. An additional
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explanation is that the presence of multiple replicons
within an organism involved horizontal DNA transfer
[19,21,22]. This hypothesis was used to explain the pres-
ence of two chromosomes in Vibrio cholerae: the small
chromosome was suggested to be derived from a mega-
plasmid captured by an ancestral Vibrio [23,24]. This meg-
aplasmid probably acquired genes from diverse bacterial
species before its capture by the ancestral Vibrio; subse-
quent relocation of essential genes from the chromosome
to the megaplasmid completed its stable structure.

Ralstonia solanacearum is a soil-borne phytopathogen with
an unusually broad host-range, causing bacterial wilt on a
wide range of crops, including economically important
crops like potato, tomato, ginger and banana [25]. Recent-
ly the genome sequence of R. solanacearum strain
GMI1000 was determined [26]. It was shown that the 5.8-
Mb genome is organised into two replicons, a 3.7-Mb
chromosome and a 2.1-Mb megaplasmid. This bipartite
genome structure is characteristic for most R. solanacearum
strains [27] and derivatives of strain GMI1000 without the
megaplasmid have not been obtained [26]. The larger rep-
licon contains all the basic genes required for survival of
the bacterium; the smaller replicon carries several metab-
ollically essential genes also present on the chromosome
(including a rDNA locus, a gene coding for the α-subunit
of DNA polymerase III and the gene for protein elonga-
tion factor G) but also contains several genes coding for
enzymes involved in primary metabolism (including ami-
no acid and cofactor biosynthesis) not present on the
chromosome. The smaller replicon also contains all the
hrp genes (required to cause disease in plants) and it has
been suggested that it has a significant function in overall
fitness and adaptation of the organism to various environ-
mental conditions [26]. The origin of the bipartite ge-
nome structure of R. solanacearum is not clear. To
determine whether the megaplasmid was formed through
intrachromosomal recombinational events within a du-
plicated region or was recently acquired from other organ-
isms we compared the abundance, distribution and
composition of simple sequence repeats between the
chromosome and the megaplasmid of R. solanacearum
GMI1000. We also compared the compositional bias of
di- and tetranucleotides between both replicons.

Repeated DNA consists of homopolymeric tracts of a sin-
gle nucleotide or of small or large numbers of multimeric
classes of repeats. These multimeric repeats can be ho-
mogenous (i.e. built from identical units), heterogeneous
(i.e. built from mixed units) or are built from degenerate
repeat sequence motifs [28]. A special category of repeats
are tandem repeats which are made up of periodically re-
peated monomeric sequences of varying length, arranged
in a 'head-to-tail' configuration [29]. Several mechanisms
have been proposed for the creation of tandem repeats, in-

cluding 'slipped strand mispairing' in which illegitimate
base-pairing during replication gives rise to addition of re-
peat units [30,31]. There is growing evidence that small
tandem repeats (also called simple sequence repeats or
SSRs) affect gene expression. A first effect of SSRs is the
mediation of phase variation through the loss or gain of
one or more repeats [29]. Phase variation is the process by
which many bacterial species undergo reversible pheno-
typic changes resulting from genetic alterations in certain
loci [32,33]. SSRs can also be involved in gene regulation
by affecting spacing between flanking regions [34] or
spacing between the -35 and -10 promotor regions [35].
Variation in abundance, distribution and composition of
SSRs has been described [28] and it has been proposed
that variation in SSR results in variation in gene expres-
sion and key phenotypes and hence provides an impor-
tant target for natural selection and evolution [28,36].

The comparison of genome-wide compositional biases as
a tool to study bacterial evolution has been introduced by
Karlin and co-workers [37–39]. It is thought that dinucle-
otide relative abundance values are constant within a ge-
nome because the factors that work on them are constant
throughout the genome; and it has been postulated that
the set of dinucleotide relative abundance values consti-
tute a genomic signature that reflects the pressures of these
factors [38]. Differences in genome signature between dif-
ferent organisms can be attributed to differences in con-
text-dependent mutation rates generated by the
replication-repair system and differences in efficiency of
the replication machinery on different sequences. In addi-
tion, many DNA structural properties (including curva-
ture, flexibility and helix stability), which may play an
important role in biological processes like replication, are
determined by dinucleotide arrangements [38,40]. Tetra-
nucleotide relative abundances are also characteristic for a
given genome [39]. It has been postulated that frequent
tetranucleotides may include parts of repetitive structural,
regulatory and transposable elements, while low values
for some palindromic tetranucleotides have been attribut-
ed to restriction avoidance [39].

Results
Distribution and composition of SSRs in the R. 
solanacearum genome
A total of 221729 SSRs with a motif length between 1 and
10 bp and minimum three repeats were found in the en-
tire R. solanacearum genome. Of those, 139993 (63.14%)
were located on the chromosome (Table 1) and 81736
(36.86%) were located on the megaplasmid (Table 2).
This corresponds wel with the size distribution between
both replicons (63.96% of all bases are in the chromo-
some, 36.04% are in the megaplasmid). The SSRs were
evenly distributed both over the chromosome as over the
megaplasmid (Fig. 1). The total number of repeats is
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lower than expected by chance; especially the number of
mononucleotide repeats is significantly lower than ex-
pected (Tables 1 and 2). Trinucleotide repeats occur more
than expected by chance alone, both in the chromosome
and the megaplasmid (Tables 1 and 2). Mononucleotide
repeats of length = 3 bp and dinucleotide repeats are dis-

tributed over coding and non-coding regions as expected,
both in the chromosome and the megaplasmid. As mono-
nucleotide repeats become larger, there is more and more
deviation from the expected distribution; these larger
mononucleotide repeats are almost exclusively located in
non-coding regions. Our data also show that trinucle-

Figure 1
Distribution of simple sequence repeats in the R. solanacearum chromosome (panel A) and megaplasmid (panel B).

150

200

250

300

350

400

450

500

550

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

Position in the genome (x 10 kb)

N
o

.o
f

S
S

R
s

(p
er

10
kb

)

200

250

300

350

400

450

500

550

600

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

Position in the genome (x 10 kb)

N
o

.o
f

S
S

R
s

(p
er

10
kb

)

A.

B.
Page 3 of 9
(page number not for citation purposes)



BMC Genomics 2003, 4 http://www.biomedcentral.com/1471-2164/4/10
otides are overrepresented in protein-coding regions of
both replicons (Table 3). The nucleotide composition of
the SSR tracts in the R. solanacearum chromosome and
megaplasmid are shown in Tables 4 and 5, respectively.
Our data show that (i) the G+C composition of mononu-
cleotide repeats in both replicons is significantly lower
than the overall composition, but this difference can ex-
clusively be attributed to non-coding regions; (ii) G and C
mononucleotide repeats are underrepresented in coding
and non-coding regions of both replicons and (iii) CG
and GC dinucleotide repeats are vastly overrepresented
both in coding and non-coding regions of both replicons,
while other dinucleotide repeats are underrepresented.

Compositional biases in the R. solanacearum genome
Dinucleotide relative abundances are shown in Table 6.
The dinucleotides TA and AT are strongly underrepresent-
ed in both replicons while GC is moderately overrepre-
sented in both replicons. CC and GG are moderately
underrepresented in the chromosome. The average abso-
lute dinucleotide relative abundance difference (δ*) be-
tween both replicons is 9.78. To assess the variability of
dinucleotide relative abundances within a replicon, both
replicons were divided into 12 and 7 (for the chromo-
some and the megaplasmid, respectively) equally-sized,
nonoverlapping fragments and ρ*XY values were
calculated for each fragment. δ*(f,g) values within repli-

Table 1: Number of simple sequence repeats of given structure in the chromosome of R. solanacearum GMI1000

Motif length

No. of 
repeats

1 2 3 4 5 6 7 8 9 10 Total

3 98068- 12307+ 3712+ 90 21 11 1 - 3 1 114214-

4 17943- 2122+ 213+ - - - - - - - 20278-

5 4053- 277 17 - - - - - 2 - 4349-

6 859- 18 - - 1 - - 1 1 - 880-

7 199- 3 - - 1 1 - - 1 - 205-

8 45- - - - - - - - - - 45-

9 14- - - - - - - - - - 14-

10 2 - - - - - - - - - 2
11 4 - - - - - - - - - 4
12 - - - - - - - - - - -
13 2 - - - - - - - - - 2
Total 121189- 14727+ 3942+ 90 23 12 1 1 7 1 139993+

+ significantly overrepresented compared to mean frequencies in computer-generated randomised genomes (P < 0.001) - significantly underrepre-
sented compared to mean frequencies in computer-generated randomised genomes (P < 0.001)

Table 2: Number of simple sequence repeats of given structure in the megaplasmid of R. solanacearum GMI1000

Motif length

No. of 
repeats

1 2 3 4 5 6 7 8 9 10 Total

3 57345- 6440 1986+ 49 10 8 - 3 - - 65841-

4 11216- 1096 108+ 2 1 4 2 2 2 - 12433-

5 2560- 146 10 - - 2 - 3 - - 2721-

6 529- 9 1 - - 2 - 1 - - 542-

7 141- 1 - - - - - 1 - - 143
8 41- 1 - - - - - - - - 42-

9 11 - - - - - - - - - 11
10 2 - - - - - - - - - 2
11 1 - - - - - - - - - 1
Total 71846- 7693 2105+ 51 11 16 2 4 8 0 81736

+ significantly overrepresented compared to mean frequencies in computer-generated randomised genomes (P < 0.001) - significantly underrepre-
sented compared to mean frequencies in computer-generated randomised genomes (P < 0.001)
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cons ranged from 6.63 to 31.77 (mean ± standard
deviation: 14.49 ± 5.35) (for the chromosome) and from
4.83 to 20.63 (13.11 ± 4.55) (for the megaplasmid).
These differences are not significantly smaller than the be-
tween-replicon differences (data not shown). Significantly
over- or underrepresented tetranucleotides are shown in
Table 7. CTAG, AATT, CATG, GATA and TATA are under-
represented in both replicons. GTAG and TTAA are over-
represented in both replicons.

Discussion
To study the origin of the bipartite genome structure of R.
solanacearum GMI1000 we compared the abundance, dis-
tribution and composition of simple sequence repeats
and differences in compositional biases between the
chromosome and the megaplasmid of R. solanacearum
GMI1000.

Occurrence of simple sequence repeats
Our data clearly show that the R. solanacearum genome
contains numerous SSRs with a motif length between 1

Table 3: Distribution of simple sequence repeats among protein coding and non-coding regions of the R. solanacearum genome

Chromosome Megaplasmid
Total no. Coding regions Non-coding regions Total no. Coding regions Non-coding regions

No. % No. % No. % No. %

Mononucleotides
3 bp 98068 81805 83.4 16263 16.6 57345 47087 82.1 10258 17.9
4 bp 17943 13192 73.5 4751 26.5 11216 8509 75.9 2707 24.1
5 bp 4053 2555 63.0 1498 37.0 2560 1752 68.4 808 31.6
6 bp 859 373 43.4 486 56.6 529 282 53.3 247 46.7
7 bp 199 62 31.2 137 68.8 141 49 34.8 92 65.2
8 bp 45 7 15.6 38 84.4 41 16 39.0 25 61.0
9 bp 14 1 7.1 13 92.9 11 3 27.3 8 72.7
10 bp 2 1 50.0 1 50.0 2 0 0 2 100
11 bp 4 - 0 4 100 1 0 0 2 1001
13 bp 2 - 0 4 100 - - - - -

Dinucleotides ≥ 6 bp 14727 13090 88.9 1637 11.1 7693 6699 87.1 994 12.9
Trinucleotides ≥ 9 bp 3942 3672 93.2 270 6.8 2105 1933 91.8 172 8.2
Tetranucleotides 90 77 85.6 13 14.4 51 37 72.5 14 27.5
Genome partition 87.8 12.2 86.5 13.5

Table 4: Nucleotide composition of simple sequence repeats in the R. solanacearum chromosome

Total Coding Non-coding

No. % No. % No. %

Genome composition
A 608615 16.37 543922 16.62 64693 14.53
C 1238438 33.32 1112352 34.00 126086 28.31
G 1252933 33.71 1099390 33.60 153543 34.47
T 616427 16.58 515362 15.75 101065 22.70

Mononucleotide SSRs ≥ 6 bp
Total 1125 444 681
A 299 26.58 109 24.55 190 27.90
C 220 19.56 106 23.87 114 16.74
G 261 23.20 153 34.46 108 15.86
T 345 30.67 76 17.12 269 39.50
G+C 481 42.76 259 58.33 222 32.60
A+T 644 57.24 185 41.67 459 67.40

Dinucleotide SSRs ≥ 6 bp
Total 14764 13121 1643
AC/CA 278 1.88 205 0.15 73 4.44
AG/GA 205 1.39 80 0.61 125 7.61
AT/TA 47 0.32 11 0.08 36 2.19
CG/GC 13710 92.86 12521 95.43 1189 72.37
CT/TC 210 1.42 130 0.99 80 4.87
GT/TG 323 2.19 174 1.33 149 9.07
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and 10 bp, although not as many as expected by chance
alone. Mutations in SSRs are thought to be the result of
slipped strand mispairing during DNA replication;
slipped strand mispairing can occur because the tertiary
structure of SSRs allows mismatching and repeats can be
inserted or excised during DNA duplication [41–43]. The
observation of upper limits for SSR length in Escherichia
coli suggested that the tendency for repeat length to arise
via mutation is counteracted by selection [36]. We ob-
served similar upper limits: the upper limit for total length
of mononucleotide SSRs is 13 bp and 11 bp for the chro-
mosome and megaplasmid, respectively and, in addition,
very few other SSRs with a total length >15 bp (for the
chromosome) or >18 bp (for the megaplasmid) are ob-
served. Both strand separation and slippage are more like-
ly for mononculeotide SSRs, explaining why
mononucleotide SSRs are more likely to undergo slipped
strand mispairing; longer SSRs with a lower repeat
number have less opportunity to undergo slipped strand
mispairing and there will be less mutability in their repeat
number [36]. This may explain why larger mononucle-
otide SSRs are overrepresented in non-coding regions of
the R. solanacearum genome as selection has ample op-
portunity to operate against these larger repeats that cause
frameshift and nonsense mutations in coding regions.
This hypothesis is supported by the fact that poly(A) and
poly(T) SSRs are overrepresented, especially in the non-
coding regions, in both replicons (Tables 4 and 5): strand
separation for these poly(A) and poly(T) tracts is consid-
erably easier than for poly(G) or poly(C) tracts, increasing
the possibility of slipped strand mispairing.

Compositional biases
The dinucleotide TA is underrepresented in both repli-
cons. TA is underrepresented in almost all prokaryotic ge-
nomes; this could be due to the fact that (i) TA forms the
thermodynamically least stable DNA (allowing unwind-
ing of the helix), (ii) RNases preferentially degrade UA di-
nucleotides in mRNA, and/or (iii) TA is part of many
regulatory sequences [38]. AT is significantly underrepre-
sented in the R. solanacearum genome but is overrepresent-
ed in the genome of most α-Proteobacteria and in the
genomes of the β-proteobacterial species R. eutropha and
Bordetella pertussis [39]. CC and GG are slightly underrep-
resented in the chromosome but not in the megaplasmid,
although the differences in relative abundances are small
(Table 6). The dincucleotide GC is overrepresented in
both replicons; this is also the case in most other β-Proteo-
bacteria and γ-Proteobacteria [39]. In general, within spe-
cies δ*(f,g)-differences among nonoverlapping 50 kb
contigs of bacteria are in the range 18–43 [39] and ge-
nome signatures of chromosomes and plasmids from the
same host are at least weakly similar to each other [δ*(f,g)
< 115] [44,45]. δ*(f,g) values reported for the multiple
chromosomes of A. tumefaciens, Deinococcus radiodurans,

V. cholerae and B. melitensis were between 27.0 and 30.8
[45]. A comparison of both R. solanacearum replicons
based on dinucleotide relative abundances indicates that
they are very similar with δ*(f,g) = 9.78. A comparison of
δ*(f,g) values within and between replicons revealed that
the variability in δ*(f,g) within a replicon is not signifi-
cantly smaller than the difference in δ*(f,g) between both
replicons. CTAG is significantly underrepresented in the
R. solanacearum genome as it is in most proteobacterial or-
ganisms. Possible reasons for the underrepresentation of
this tetranucleotide include structural defects or special
functional roles associated with CTAG [38]. AATT, CATG,
GATA and TATA are underrepresented in both replicons
while GTAG and TTAA are overrepresented. ATTG, CATC
and TTGG occur slightly less than expected in the mega-
plasmid but their relative abundance in the chromosome
is in the normal range. The general mechanisms underly-
ing tetranucleotide extremes are unclear but besides the
above-mentioned structural defects or functional roles as-
sociated with specific tetranucleotides, it has been suggest-
ed that restriction avoidance may play an important role
in the maintenance of tetranucleotide extremes [39]).

Conclusions
It can be concluded that both replicons that constitute the
R. solanacearum genome are very similar in respect to dis-
tribution and composition of SSRs and presence of com-
positional biases, although minor differences between
both replicons are present. The megaplasmid carries the
hrp genes required to cause disease in plants, genes coding
for constituents of the flagellum and genes involved in ex-
opolysaccharide production; it also contains 315 genes of
unknown function [26]. The minor variations in SSR and
compositional biases observed between both replicons
may therefore be attributable to minor differences in gene
expression and regulation of gene expression between
both replicons. Alternatively, it is not unlikely that some
of the observed differences are the result of the small sam-
ple numbers observed (for example the minor differences
in tetranucleotide SSR distribution over coding and non-
coding regions in both replicons [Table 3]). At present no
completely sequenced and fully annotated genomes of
other β-Proteobacteria with multiple replicons are available
for comparison and therefore it is difficult to place the ob-
served differences in a broader perspective. Nevertheless,
the observed similarities in SSRs and compositional bias-
es indicate that both replicons have shared a similar evo-
lutionary history and suggest that the megaplasmid was
not recently acquired from other organisms by lateral
gene transfer but is a part of an ancestral R. solanacearum
chromosome. Alernatively, the hypothesis of an ancient
acquisition by lateral gene transfer followed by a long co-
evolution with the chromosome cannot be completely
ruled out.
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Methods
DNA sequences
The sequences of the chromosome (AL646052) and the
megaplasmid (AL646053) of R. solanacearum strain
GMI1000 were downloaded from the GenBank database.

Analysis of SSRs
We used the software developed by Gur-Arie et al. [36] to
screen the entire genome of R. solanacearum for SSRs withg
a motif length between 1 and 10 bp and a minimal
number of three repeats. This software can be download-
ed from ftp://ftp.technion.ac.il/supported/biotech/ssr.exe
and reports motif, motif length, repeat number and ge-
nomic location of all SSRs. To determine whether the ob-

Table 5: Nucleotide composition of simple sequence repeats in the R. solanacearum megaplasmid

Total Coding Non-coding

No. % No. % No. %

Genome composition
A 347472 16.58 301622 16.62 45850 16.34
C 699983 33.41 613428 33.81 86555 30.83
G 700536 33.44 610348 33.64 90188 32.13
T 346518 16.54 288441 15.90 58077 20.69

Mononucleotide SSRs ≥ 6 bp
Total 722 350 372
A 172 23.82 83 23.71 89 23.93
C 169 23.41 94 26.86 75 20.16
G 197 27.29 130 37.14 67 18.01
T 184 25.49 43 12.29 141 37.90
G+C 366 50.69 224 64.00 142 38.17
A+T 356 49.31 126 36.00 230 61.83

Dinucleotide SSRs ≥ 6 bp
Total 7708 6727 981
AC/CA 190 2.47 143 2.13 47 4.79
AG/GA 135 1.75 71 1.06 64 6.52
AT/TA 38 0.49 15 0.22 23 2.35
CG/GC 7127 92.46 6297 93.61 830 84.61
CT/TC 129 1.67 82 1.22 47 4.79
GT/TG 166 2.15 119 1.77 47 4.79

Table 6: Dinucleotide relative abundances in the R. solanacearum genome

Chromosome Megaplasmid
XY ρ*XY Over/under 

represented?
ρ*XY Over/under 

represented?

AA 1.0713 1.0738
AC 0.9014 0.8928
AG 0.8775 0.8722
AT 0.6787 -- 0.6957 --
CA 1.1702 1.1778
CC 0.7750 - 0.7879
CG 1.2029 1.1880
CT 0.8775 0.8722
GA 1.0601 1.0446
GC 1.2454 + 1.2440 +
GG 0.7750 - 0.7879
GT 0.9014 0.8928
TA 0.4624 --- 0.4808 ---
TC 1.0601 1.0446
TG 1.1702 1.1778
TT 1.0713 1.0738
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served SSR frequencies of a given motif length and repeat
number occurred as expected by chance, they were com-
pared with the mean frequencies observed in three ran-
domly shuffled genomes. Randomised sequences were
generated with shuffleseq (part of the EMBOSS package, ht-
tp://www.hgmp.mrc.ac.uk/software/EMBOSS). Statistical
significance was tested with two-tailed t-tests using SPSS
11.0.1 (SPSS). To determine the distribution of SSRs be-
tween coding and non-coding regions of the genome, all
coding regions were extracted from the sequence using Ar-
temis 4.0 [46] and parsed into a new sequence file using
seqret (EMBOSS).

Analysis of compositional bias
We determined the compositional bias in di- and tetra-
nucleotides in the chromosome and megaplasmid of R.
solanacearum GMI1000. Both sequences were concatenat-
ed with their inverted complementary sequence using
revseq, yank and union (EMBOSS). Mononucleotide fre-
quencies were calculated using Artemis 4.0 [46], di-, tri-
and tetra-nucleotide frequencies were calculated using
compseq (EMBOSS). Dinucleotide relative abundances
ρ*XY were calculated using the equation ρ*XY = fXY/fXfY-
where fXY denotes the frequency of dinucleotide XY and fX
and fY denote the frequencies of X and Y, respectively [38].
Similarly, the corresponding fourth-order oligonucleotide
measures (which factor out all lower-order biases) is given
by τ*XYZW = (f* XYZWf* XYf* XNZf* XN1N2Wf* YZf* YNWf*

ZW)/(f* XYZf* XYNWf* YZWf* Xf* Yf* Zf* W) were N is any
nucleotide and X, Y, Z and W are each one of A, C, G and
T [38]. Statistical theory and data from previous studies
[38,39] indicate that the normal range of ρ*XY, is between
0.78 and 1.23. In this study we used the refined criteria of
discrimination proposed by Karlin et al. [38]. Overrepre-
sentation is indicated by + (1.23 = ρ* < 1.30), ++ (1.30 =
ρ*< 1.50) and +++ (ρ* ≥ 1.50), while underrepresentation
is indicated by - (0.70 < ρ* = 0.78), -- (0.50 < ρ* = 0.70)

and --- (ρ* = 0.50). The dissimilarities in relative abun-
dance of dinucleotides between both sequences were cal-
culated using the equation described by Karlin et al. [38]:
δ*(f,g) = 1/16Σ |ρ*XY(f)-ρ*XY(g)| (multiplied by 1000 for
convenience), were the sum extends over all dinucle-
otides. To assess the variability of dinucleotide relative
abundances within a replicon, both replicons were divid-
ed into 12 and 7 (for the chromosome and the megaplas-
mid, respectively) non-overlapping fragments and ρ*XY
values were calculated for each fragment. The average
δ*(f,g) within each replicon was also calculated.
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