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Abstract

Background: In order to facilitate the identification of genes involved in the metastatic phenotype
we have previously developed a pair of cell lines from the human breast carcinoma cell line MDA-
MB-435, which have diametrically opposite metastatic potential in athymic mice. Differential display
analysis of this model previously identified a novel gene, DRIM (down regulated in metastasis), the
decreased expression of which correlated with metastatic capability. DRIM encodes a protein
comprising 2785 amino acids with significant homology to a protein in yeast and C. elegans, but
little else is currently known about its function or pattern of expression. In a detailed analysis of
the DRIM gene locus we quantitatively evaluated gene dosage and the expression of DRIM
transcripts in a panel of breast cell lines of known metastatic phenotype.

Results: Fluorescent in situ hybridization (FISH) analyses mapped a single DRIM gene locus to
human chromosome 12q23~24, a region of conserved synteny to mouse chromosome 10. We
confirmed higher expression of DRIM mRNA in the non-metastatic MDA-MB-435 clone NM2C5,
relative to its metastatic counterpart M4A4, but this appeared to be due to the presence of an extra
copy of the DRIM gene in the cell line's genome. The other non-metastatic cell lines in the series
(T47D MCF-7, SK-BR-3 and ZR-75-1) contained either 3 or 4 chromosomal copies of DRIM gene.
However, the expression level of DRIM mRNA in M4A4 was found to be 2—4 fold higher than in
unrelated breast cells of non-metastatic phenotype.

Conclusions: Whilst DRIM expression is decreased in metastatic M4A4 cells relative to its non-
metastatic isogenic counterpart, neither DRIM gene dosage nor DRIM mRNA levels correlated
with metastatic propensity in a series of human breast tumor cell lines examined. Collectively, these
findings indicate that the expression pattern of the DRIM gene in relation to the pathogenesis of
breast tumor metastasis is more complex than previously recognized.

Background patients will succumb to advanced disease as the primary
Breast cancer is a major cause of mortality among women  tumor metastasizes to secondary organs. Significant
worldwide [1]. While curative measures are possible if the ~ progress continues to be made in detecting and treating
cancer is detected early and remains localized, many  breast primary cancer but the ability to predict the
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metastatic behavior of a patient's tumor and to eradicate
or control recurrent disseminated malignancy remain
major clinical challenges in oncology. Knowledge of the
molecular mechanisms involved in metastatic spread is
needed to facilitate clinical advances and thus, a greater
understanding of genes and gene products involved in
breast cancer metastasis is an important research goal.

In order to facilitate the identification of genes involved in
the metastatic phenotype we have previously developed a
well-defined experimental system, in which the role of
candidate genes can be screened and tested. Through in
vivo selection of monoclonal cultures of the MDA-MB-435
breast tumor cell line we were able to identify and charac-
terize a pair of subclones (M4A4 and NM2C5) which dif-
fer in their ability to complete the metastatic process [2].
When orthotopically inoculated into athymic mice, both
cell lines form primary tumors, but only M4A4 is capable
of metastasis to the lungs and lymph nodes [2,3]. These
cell lines constitute a stable and accessible model for the
identification of genes involved in the process of tumor
metastasis.

The model has been subjected to multiple molecular pro-
filing and gene expression analyses. The application of a
differential display technique identified a novel transcript
as being relatively over-expressed in the non-metastatic
NM2C5 cell line. The candidate gene was cloned and
sequenced, and the gene was subsequently named DRIM
(down regulated in metastasis) [4]. The DRIM gene
encodes a protein comprising 2785 amino acids with sig-
nificant homology to a protein in S. cerevisiae and C. ele-
gans. The protein contains a conserved positively charged
tail and several hydrophobic regions explained by the
presence of HEAT repeats, 40 aa polypeptide stretches
which form helix-loop-helix structures [5]. The expression
of DRIM has been investigated in several normal tissues
and tumor cell lines [4], but little is known about the
structure or function of the gene, or its relation to breast
cancer progression.

The aim of this work was to define the chromosomal loca-
tion of the DRIM gene and to investigate the interrelation-
ship between DRIM expression, and the cytogenetic and
metastatic phenotype of a panel of human breast tumor
cell lines. Cytogenetic analyses located the DRIM gene as
a single copy on human chromosome 12q23~24. Fluores-
cent in situ hybridization (FISH) revealed that the higher
expression of DRIM observed in the non-metastatic
NM2CS5 breast cell line, relative to its metastatic counter-
part M4Ad4, is due to the presence of 3 and 2 copies of the
DRIM gene in the genome of these cell lines respectively.
However, when the relationship between DRIM gene dos-
age and mRNA levels was extended to the evaluation of a
series of breast tumor cell lines, the expression pattern of
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the DRIM gene in relation to the pathogenesis of breast
tumor metastasis appeared to be more complex than pre-
viously reported.

Results

Mapping of the human DRIM gene to chromosome 12
The chromosomal localization of the human DRIM locus
was clarified and refined by FISH using metaphase
spreads obtained from normal human peripheral blood
leukocytes, and a combination probe composed of two
human DRIM genomic clones. Signals were considered
specific only if they were detected on both chromatids of
a single chromosome. Applying this criteria, specific
DRIM signals were detected in 18 of 20 metaphases exam-
ined (90%), and in each case, the hybridization signals
were located on the long arm of chromosome 12 (Figure
1). A combination of DAPI and R-banding of chromo-
somes enabled the assignment of the DRIM locus to
12q23~24. The localization of DRIM on chromosome 12
was further confirmed by two-color FISH using both the
DRIM probe and a chromosome 12-specific paint (data
not shown). No DRIM signals were detected on any other
chromosome. This chromosomal location is consistent
with information available from the NCBI Map View data-
base http://www.ncbi.nlm.nih.gov/mapview
map_search.cgr which places DRIM at 12q23 between
markers D12S346-D12S78. The location is also consistent
with the localization of the 156 bp STS G3 1980 (Sanger
Center's GB4 radiation hybrid RH65919) which shows
100% homology to DRIM and has been placed 689.3 cR
from the top of chromosome 12 (Figure 2).

Cytogenetic analyses of MDA-MB-435 clones M4A4 and
NM2C5

The DRIM gene was discovered through differential dis-
play analysis of the MDA-MB-435 subclones M4A4 and
NM2C5 [4]. In order to investigate whether gene copy
number was a factor in this differential expression, the
karyotypes of these two cell lines were compared using G-
banding in combination with Spectral karyotyping (SKY)
analyses. In particular, the complement and the integrity
of chromosome 12 material was evaluated. Spectral kary-
otyping [6] is a multi-color FISH procedure capable of
classifying all chromosomes in a single hybridization
experiment. Using this technique it was revealed that both
the metastatic M4A4, and the non-metastatic NM2C5 cell
lines are hyperdiploid (modal number of 56-57) and
contain multiple chromosomal aberrations (Figure 3). A
number of signature markers were common to both lines
(Figure 3) and were present in all metaphase spreads ana-
lyzed for each cell line. Detailed comparisons of multiple
images allowed clarification of almost all marker chromo-
somes in these two cell lines. Both cell lines contained 2
copies of apparently normal chromosome 12. However,
one specific chromosomal rearrangement, found only in
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Figure |

(A) genomic chromosomal localization of the human DRIM by fluorescence in situ hybridization. Metaphase spread counter-
stained with DAPI and hybridized with a DRIM genomic DNA probe (red) demonstrating DRIM-specific signals on the long arm
of chromosome 2. (B) additional images of chromosome |2 showing DRIM localization at 12q23~24. (a) counterstained with
DAPI (DRIM-specific signal in red)., (b) an image of reverse-DAPI banding., and (c) an R-banded chromosome (DRIM-specific
signal in yellow).

the non-metastatic cell line NM2CS5, consisted of a non-  rial (Figure 2). This (12;15) translocation occurred in
reciprocal translocation involving chromosome 12 mate-  100% of NM2C5 cells examined, but was never present in
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Map view of DRIM chromosomal location to 12q23~24. Human DRIM maps to Stanford STS marker stSG31980 (underlined) at

12923 http://www.ncbi.nlm.nih.gov/mapview/map_search.cgr

M4A4. Confirmatory FISH and G-banding evaluations
identified this translocation as t(12;15)(q22;q26.1). No
other chromosomal rearrangements were found to be spe-
cific to the NM2C5 cell line. FISH analysis revealed that
the extra chromosome 12 material present in NM2C5

cells was composed of 12q sequences including a third
copy of the DRIM locus (Figure 3). Further analysis
revealed that in 40% of M4A4 cells there was a deletion in
the p-arm of one chromosome 12. However, this would
not affect the DRIM gene located on the g-arm, which
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Figure 3

Spectral karyotyping (SKY) classification of representative metaphases of MDA-MB-435 subclones M4A4 (upper panel) and
NM2C5 (lower panel). Chromosome material involved in translocations are indicated on the figure in some cases. Each cell
line has 2 normal chromosome 12's. NM2C5 cells contain a marker chromosome consisting of material from chromosomes 12

and |5 (see chromosome |5 box, lower panel).

appeared normal in all cases. DRIM-specific FISH analyses
confirmed that M4A4 cells contain only 2 DRIM loci
located on 2 normal chromosomes 12 (Figure 4).

DRIM gene copy number in a panel of breast tumor cell
lines

The copy number of DRIM loci and the integrity of chro-
mosome 12 material was evaluated in a panel of 6 human
breast tumor cell lines commonly used in research, and
whose metastatic propensity in athymic mice is docu-
mented. The 3 MDA breast cell lines, MDA-MB-231,
MDA-MB-468 and MDA-MB-435 (the parental line of
NM2C5 and M4A4) have all been described as metastatic
to varying degrees [7,8]. Orthotopic inoculation of these

cell lines results in dissemination and secondary growth
primarily in the lungs and lymph nodes [2,8]. MDA-MB-
231 and MDA-MB-435 have also been shown to be capa-
ble of metastasis to the lungs if injected into the left side
of the heart [9,10]. Conversely, the breast cell lines SK-BR-
3, ZR-75-1, TA7D and MCF7 are reportedly non-meta-
static in athymic mice [11-14]. DRIM-specific FISH anal-
ysis revealed that cell lines SK-BR-3, T47-D and MCF-7
contained an average of four copies of the DRIM gene. In
each case there were two normal chromosome 12's in
each cell, as well as one or two unidentified markers that
contained DRIM-inclusive 12q material. Occasional cells
of SK-BR-3 and MCF-7 contained a deletion in the chro-
mosome 12 g-arm telomeric of the DRIM locus. MDA-
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Figure 4

Localization of DRIM in the genome of MDA-MB-435 breast tumor cell line clones. Partial metaphase spreads hybridized with
the DRIM probe (pink) and counterstained with DAPI (blue). The non-metastatic NM2C5 clone carries 3 copies of the DRIM

gene; the metastatic M4A4 clone contains only 2 copies.

Table I: Comparison of DRIM gene expression and the genetic and phenotypic characteristics of a panel of human breast tumor cell

lines
Breast tumor cell Metastatic Ref. Estrogen receptor Karyotype Genomic copiesof ~ Relative DRIM mRNA
line phenotype status the DRIM gene expression (QPCR)

NM2C5 non-metastatic [2,3] ) 2N+ 3 100%
M4A4 metastatic [2,25] -) 2N+ 2 56%
T47-D non-metastatic [19,20] (+) 3N- 4 25%
SK-BR-3 non-metastatic [17] +) 4N+ 4 23%
MCEF-7 non-metastatic [20] (+) 4N+ 4 23%
MDA-MB-231 metastatic [14,15] (-) 3N+ 3 16%
ZR75-1 non-metastatic [18] +) 3N+ 3 13%
MDA-MB-468 metastatic [13] -) 3N- 2 8%

MB-231 cell populations appeared to contain at least
three sublines with regard to DRIM gene copy number.
Relatively equal subsets contained 2, 3 or 5 copies of the
DRIM gene (average 3.3 copies) located on 2 normal
chromosome 12's and on 1-3 unidentified marker chro-
mosomes. MDA-MB-468 cells contained two copies of
DRIM residing on normal chromosome 12s. Triploid
ZR75-1 cells contained three copies of DRIM on 3 normal
chromosome 12's.

Quantitative expression of DRIM mRNA in human breast
tumor cells

DRIM mRNA levels were quantitated in NM2C5 and
M4A4 cells using real time, RT-PCR analyses. Optimized
RT-PCR amplification produced specific single bands for
both DRIM and GAPDH. The relative level of mRNA
expression in breast cancer cell lines was calculated on the
basis of differences in normalized Ct values between sam-
ples. RNA transcripts encoding DRIM were most highly
expressed, at a level equivalent to 2.9% to that of GAPDH
transcript abundance, in the non-metastatic NM2C5 cell
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line. Relative to non-metastatic NM2C5 cells, DRIM
expression was ~2-fold lower (56% of NM2C5) in meta-
static M4A4 cells (Table 1). This finding confirms the
reported differential DRIM expression between these two
cell lines, a finding which led to the naming of this gene
[4]. To further evaluate the level of DRIM expression with
regard to metastatic phenotype, real-time RT-PCR was
used to quantify DRIM mRNA expression in cDNA prepa-
rations obtained from the panel of 6 human breast tumor
cell lines described above. The expression of DRIM mRNA
was detected in all breast tumor cell lines tested. Table 1
shows cell line DRIM mRNA determinations as a percent-
age of levels of the high expressor NM2C5 cell line.
Regardless of known metastatic propensity, relatively low
levels (ranging from 8% to 25% of NM2C5 cells) were
detected in each of the remaining breast tumor cell lines.

Discussion

Our study refined the localization of the DRIM gene locus
to chromosome 12q23~24 by genomic clone hybridiza-
tion, and used this information and reagents to evaluate
the relationship between DRIM gene copy number, DRIM
gene expression levels, and the metastatic phenotype of a
panel of human breast tumor cell lines. The mouse
homolog of DRIM has recently been reported as being
located at mouse chromosome 10 C1 (Reference
sequence NM175158) within a region of conserved
synteny. The DRIM gene was also one of a panel of specific
human genome loci used to evaluate synteny between
human chromosome 12 and pig chromosome 5 [15].
There have been many attempts to identify specific chro-
mosome abnormalities associated with breast cancer.
Kytola et al used a combination of SKY and CGH to ana-
lyze several breast cell lines and reported that chromo-
somes 1, 8, 16, 17 and 20 were most frequently involved
in unbalanced translocation events [16]. Morris et al also
used multifluor hybridization to karyotype 3 breast cell
lines and reported common gains of 8q and 12p as the
most common features [17].

Loss or gain of chromosome 12 material in cancer is rela-
tively rare according to accumulated comparative
genomic hybridization (CGH) data. Gains of 12q have
been reported in lung, bladder, colorectal, nasopharyn-
geal and adrenocortical carcinomas [18] and there is some
evidence from CGH studies of 12q involvement in breast
cancer. Loss of 12q material was evident in 3 metastases
[19], several invasive ductal carcinomas [20] and in
BRCA1 mutation carriers [21]. However, overall more
gains of 12q have been reported in cases of invasive ductal
carcinomas [19,22-24]. Thus, whether loss or gain of 12q
material is involved in breast tumor progression requires
further studies on increased numbers of human cases. To
date, the only reported specific involvement of chromo-
some 12 in clinical cancer progression is that of trisomy
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12 being characteristic of subtypes of ductal breast carci-
noma and possibly related with an advanced stage of dis-
ease [25].

A search of the Online Mendelian Inheritance in Man
Database  http://www3.ncbi.nlm.nih.gov/Omim/ did
reveal the presence of two non-cancerous human disease
loci in the vicinity of the DRIM gene. High-grade myopia
(MYP3; 12q21-q23) and nonsyndromic sensorineural
deafness 25 (DFNA25; 12q21-q24) have been mapped to
human chromosome 12. Whether DRIM plays any role in
the aforementioned diseases is currently unclear. To inves-
tigate possible associations of DRIM with known mouse
mutants, the Mouse Genome Database http://www.infor
matics.jax.org was searched for aberrant mouse pheno-
types that are located in close proximity of the DRIM
locus. No phenotypic associations were found to be asso-
ciated with the vicinity of the mouse DRIM locus.

Previous evaluation of DRIM expression was able to detect
its presence in a number of tissue types and in cell lines of
varied origin using Northern blot techniques. The rela-
tively large size of the processed DRIM transcript (10 kb)
and its low to medium abundance make Northern blot-
ting analyses difficult and no attempt was made to quan-
titate the expression levels relative to an internal control
in the earlier study [4]. Here, it was important to obtain
accurate expression data in order to correlate transcript
levels with gene copy number. Using real time,
quantitative PCR we have demonstrated that a wide sam-
pling of human breast tumor cells of epithelial origin syn-
thesize appreciable levels of DRIM transcripts. However,
whilst the increased expression of DRIM transcripts in
NM2C5 cells relative to M4A4 may be due to DRIM gene
copy number, no correlation was found between the
detected number of DRIM gene loci in a cell population
and DRIM mRNA expression across all cell lines exam-
ined. Cell lines with 4 copies of the DRIM gene (SK-BR-3,
MCF7, T47D) had only ~25% of NM2C5 DRIM transcript
levels and half of that expressed by M4A4 cells, even
though these cell lines had double the copies of DRIM
within their genome. Most importantly, there appeared to
be no correlation between DRIM expression levels and
metastatic phenotype. The levels of DRIM mRNA were sig-
nificantly lower than those found in M4A4 in all of the
non-metastatic cell lines. Furthermore, the most weakly
metastatic of the cell lines capable of spontaneous metas-
tasis (MDA-MB-468) had the lowest DRIM expression lev-
els. In this context, we also compared DRIM expression in
another metastatic clone, in this case derived from the
M4AA4 cell line. By serial passage through mice i.e. recov-
ery and reculturing of a M4A4 lung metastasis, we have
previously selected a subclone which is more aggressively
metastatic than its parental M4A4 cell line. Whereas
M4A4 is metastatic to the lungs of ~75% of inoculated
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animals [2], The Lung Metastasis Clone 3 (LM3) cell line
is metastatic in 100% of inoculated athymic mice and the
metastatic load (metastases per lung) is also increased. We
had hypothesized that analysis of this cell line may reveal
a dose-effect of DRIM expression. A more aggressively
metastatic cell line would be expected to have a further
reduced DRIM expression index. However, cytogenetic
analysis of the LM3 cell line revealed that it has an identi-
cal chromosome complement to M4A4, and DRIM tran-
script levels were found to be at a similar level to those
detected in M4A4 cells at 63% of non-metastatic NM2C5
cell levels. The absence of estrogen receptors (ER) in breast
tumor cells is indicative of a more dedifferentiated, more
invasive and advanced tumor state [26]. In line with this,
the non-metastatic cell lines in the test panel (SK-BR-3,
MCF7, and ZR-75-1) are all ER-positive. Conversely, those
that are known to be capable of metastasis (MDA-MB-
435, 231 and 468) are ER-negative. The non-metastatic
NM2C5 subclone appears to be an exception to this rule.
There was no correlation of DRIM expression with estro-
gen receptor status in the breast cancer cell line panel.

There has been some recent discussion regarding the ori-
gin of MDA-MB-435 cells. A study, which used microar-
rays to profile and cluster NCI-repository cell lines of
various origins, found that breast tumor cell lines did not
align well with each other [27]. Breast tumor cell lines
clustered with cell lines of unrelated tissue origin e.g.
MDA-MB-435 aligned most closely to a cluster of
melanoma cell lines. A subsequent article evaluated the
presence of a few supposed breast and melanoma-specific
genes in a panel of tumor cell lines [28] and also found
that there is considerable overlap regarding expression of
'tissue-specific' genes in cultured cell lines. Whilst we are
currently investigating this issue through multiple
evaluations, we thought it pertinent here to evaluate
DRIM expression in some melanoma cell line series of
known metastatic phenotype. A375P, A375M and
A3758M cells are human melanoma cell lines of increas-
ingly aggressive metastatic phenotype [29]. Analysis
revealed no change in DRIM expression across these cells
of differing metastatic potential. Human C8161
melanoma cells are of proven metastatic phenotype [30]
but had higher DRIM transcript expression levels than
many of the non-metastatic breast cell lines used in this
study. The data accumulated thus far suggests that the loss
of DRIM expression is a cell line-specific phenomenon
rather than being cancer-specific.

Although widespread in tissue distribution [4], little is
currently known about the function of the DRIM protein.
The absence of a signal sequence suggests an intracellular
localization, and an indication of function comes from
the presence of multiple HEAT repeats. These are tan-
demly repeated peptide motifs of 40-50 residues which
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form alpha-helical structures and which can in turn pack
together to make superhelices [31]. The HEAT repeat is
evolutionarily related to the armadillo (ARM) peptide
motif, but was named after the proteins in which these
tandem arrays were first identified; huntingtin, EF3, PP2A
and TOR [5]. A function common to many of the ARM
and HEAT-repeat proteins is that of mediating important
protein-protein interactions. Members of the HEAT-repeat
proteins include beta-catenin and the importins: beta-cat-
enin binds to the conserved cytoplasmic domain of cad-
herins [32], and importins recognize cytosolic proteins
bearing a basic nuclear localization signal (NLS), and
facilitate nuclear import [33]. A search of genome data-
bases using the DRIM nucleotide sequence reveals closest
homology to the yeast protein YBA4 (SwissProt P35194),
which also contains 4 HEAT repeats. Recent evidence sup-
ports the idea that DRIM and its yeast homolog protein
have a function in protein-protein interactions and
nuclear import. Firstly, DRIM was one of many proteins
identified by mass spectrometry as part of a functional
proteomic analysis of the human nucleolus [34]. Sec-
ondly, the Biomolecular Interaction Network Database
(BIND) [35] describes multiple YBA4 protein binding
partners, the majority of which are known to be localized
to the nucleolus and which are part of nucleolar, ribos-
omal RNA processome complexes.

Conclusions

Information is accumulating with regard to the cellular
and tissue distribution of DRIM, and to the putative func-
tion of this gene. Using a combination of cytogenetic and
molecular assays we have clarified and refined the chro-
mosomal location of the human DRIM gene and investi-
gated the spectrum of DRIM gene expression across a
panel of cell lines derived from human breast carcinomas.
We evaluated the interrelationship between DRIM gene
copy number, DRIM transcript expression, and metastatic
phenotype. The number of DRIM gene loci present in the
genome does not necessarily correlate with DRIM mRNA
levels in breast tumor cell lines. Furthermore, DRIM
mRNA levels do not correlate with the ability of breast
tumor cell lines to metastasize, at least in athymic mice,
and so whether DRIM plays any role in metastatic pheno-
type remains unclear. Based on this information the
DRIM gene and its products are not promising markers for
the evaluation of primary tumors for metastatic propen-
sity. Although the DRIM gene has been further character-
ized in this study, continued investigation into the
function of this interesting gene is required to determine
what, if any, role DRIM plays in breast tumorigenesis and
proliferation.

Page 8 of 11

(page number not for citation purposes)



BMC Genomics 2003, 4

Methods

Tissue culture

Human mammary tumor cell lines MCF-7, T47D, SK-BR-
3, and ZR-75-1 were obtained from the American Type
Culture Collection (ATCC, Manassas, VA). MDA-MB-435,
MDA-MB-468 and MDA-MB-231 were kindly provided by
Dr Janet Price of the Department of Cancer Biology, M.D.
Anderson Cancer Center, University of Texas. MDA-MB-
435 subclones M4A4 and NM2C5 have been described
previously [2]. Cell lines were maintained as subconfluent
monolayer cultures in RPMI 1640 or DMEM medium
(Gibco-BRL, New York, NY) supplemented with 10% fetal
calf serum at 37°C under 5% CO, /95% air. The medium
was exchanged every third day, and passaging was rou-
tinely performed as cultures reached ~75% confluency.

Human DRIM genomic clones

Human DRIM genomic clones for use in fluorescence in
situ hybridization experiments (FISH) were obtained by
screening a human PAC library, RPCI1, 3-5 (Resource
Center of the German Human Genome Project, Max-
Planck Institute for molecular genetics; https://
www.rzpd.de, with DRIM c¢DNA fragments. PCR analysis
of sixteen hybridization-positive clones identified several
distinct genomic clones as containing DRIM gene
sequences. Clones were tested for sequence representation
from different ends of the reported 10 kb DRIM mRNA
(RefSeq: NM_014503). PCR products were subcloned
into the vector pBS (KS+) (Stratagene) for sequence verifi-
cation. Clone DRA1 (RZPD# RPCIP704N10142Q25) and
clone DRA4 (RZPD# RCIP704009523Q2) were con-
firmed to contain DRIM-specific sequences identical to
those present between cDNA nucleotides 2492 to 2664,
and 7821 to 7971 respectively. DRIM PCR primers:

DRIMF2492, 5'-CCGTTGGAGATGAAAGTTGGG;
DRIMR2664, 5'-CCTGGACCGTGGCTCACTC;
DRIMF7821, 5'-CGCAGCCAAAGTCITGTATTITACTGG;

DRIMR7971, 5'-CACCTCITCCTITCTCTTCTCCGTCAG

Fluorescence in situ hybridization

Chromosome preparations were obtained from phytohe-
magglutinin (PHA)-stimulated human peripheral blood
lymphocytes cultured at 37°C for 72 h. To induce R-band-
ing some cultures were incubated with 5-Bromodeoxyuri-
dine (60 pg/ml of culture medium) for the final 7 h of
culture. Metaphase spreads were obtained from tumor cell
lines treated with colcemid (0.3 pg/ml final concentra-
tion) for 2-5 hours prior to harvest. Cytogenetic harvests
and slide preparations were performed using standard
protocols. Slides were aged overnight at RT and stored at -
80°C until use. The DRIM PAC library genomic clones
(equimolar pooled combination of DRA1 and DRA4)
were nick translated using Biotin-14 dATP and Biotin-14
dCTP (Gibco BRL) and hybridized to metaphase spreads
as described previously [36,37]. Briefly, the prepared

http://www.biomedcentral.com/1471-2164/4/39

probes (200 ng) were dissolved in hybridization buffer
with 10 pg of COT-1 DNA, applied to the slide under a
coverslip, and strand separation achieved on a slide
warmer at 75°C for 5 min. Hybridization was performed
overnight at 37°C, and slides were washed once in 50%
formamide/2X SSC at 37°C for 15 min, followed by a sec-
ond wash of 2X SSC at 37°C, for 8 min. Biotin-labeled
probe detection was accomplished by incubation with a
FITC-avidin conjugate (Vector Laboratories). Chromo-
somes were counterstained with propidium iodide or
DAPI diluted in Prolong anti-fade solution (Molecular
Probes, Eugene, OR). The slides were observed with a
100X objective on a Zeiss Axiophot microscope equipped
with a xenon vapor lamp and a triple-band-pass filter
(Chroma, Battleboro, VT). All cytogenetic analyses
include data from at least 20 fully analyzed metaphase
cells.

G-banding

Metaphase cells were prepared by standard cytogenetic
methods. Glass slides were baked at 65°C for 48 h prior
to incubation in trypsin for approximately 45 sec and rins-
ing in 70% and 95% ethanol. Slides were then placed in
Gurr's buffer (BioWhittaker, Walkersville, MD) for 1 min
before treatment with Wright's stain. Slides were mounted
with Prolong Antifade solution (Molecular Probes,
Eugene, OR) and analyzed on a Zeiss Axiophot micro-
scope with a 63X objective. Monochrome photographs
were analyzed using standard nomenclature as designated
by the ISCN.

Spectral karyotyping

Metaphase chromosome preparations were made from
exponentially growing cultures using standard proce-
dures. SkyPaint probe hybridization and image capture/
analysis [38,39] were performed according to manufactur-
ers instructions (Applied Spectral Imaging, Carlsbad, CA).
Probes are created using purified, single chromosome
templates and PCR amplified using degenerate oligo-
primers and incorporating 3 fluorochromes and 2 hap-
tens. The specific combination of these 5 labels results in
a unique spectral signature for each chromosome. Indirect
detection of haptens was performed using Cy5 conjugated
avidin and Cy5.5 conjugated anti-mouse IgG (Rockland,
Gilbertsville, PA). Slides were counterstained with DAPI
and mounted with Prolong anti-fade solution (Molecular
probes, Eugene, OR). Spectral imaging was achieved using
a SpectraCube system (Applied Spectral Imaging)
mounted on a Zeiss Axiophot microscope, viewed
through a 63x oil-immersion plan apo objective illumi-
nated by a xenon lamp (Opti Quip, Highland Mills, NY).
Chromosome classification was performed with SkyView
software (Applied Spectral Imaging). DAPI banding was
captured separately and inverted for alignment with spec-
tral representations using SkyView software.
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Quantitative PCR analysis

Total RNA was extracted from exponentially growing cell
line cultures using the RNeasy kit (Qiagen, Valencia, CA),
treated with DNase I, and reverse transcribed using MMLV
reverse transcriptase with a combination of oligo (dT) and
random primers (Ambion, Austin, TX). The resulting
cDNA was used as a template for quantitative PCR using
gene specific primers. Real time, quantitative PCR was
performed on an Applied Biosystem PRISM 7700
Sequence Detection System using SYBR Green® I chemis-
try (PE Applied Biosystems (PE-ABI), Foster City, CA) as
described previously [40]. Briefly, PCR was performed
using the SYBR Green PCR Master Mix kit containing
SYBR green I dye, AmpliTag Gold DNA Polymerase,
dNTPs with dUTP, passive reference and optimized buffer
components (PE Applied Biosystems). PCR primers were
designed to amplify the DRIM gene using Primer Express
Version 1.5 software (PE Applied Biosystems) or MacVec-
tor software (Oxford Molecular, Beaverton, OR). Fifty ng
of cDNA template was added to a reaction volume of 25
pl and all primers were used at a final concentration of
100 nM. No-template controls were included for each tar-
get. Thermocycling was initiated with a 10 min, 95°C
enzyme activation step followed by 40 cycles of 95°C for
15 seconds, 60°C for 1 min. and 72°C for 1 min. All reac-
tions were done in triplicate, and each reaction was gel-
verified to contain a single product of the correct size.
Data analysis was performed using the relative standard
curve method as outlined by the manufacturer (PE
Applied Biosystems) and as described previously [41]. The
mean GAPDH concentration (primer set supplied by PE
Applied Biosystems) was determined for each cDNA sam-
ple and used to normalize expression of other genes tested
in the same sample. The relative difference in expression
was recorded as the ratio of normalized target concentra-
tions for the same c¢DNA dilution. DRIM primer
sequences: forward primer, 5'-CCTGGCATAGCAGAAA-
CATCG; reverse primer, 5'-CTGGAAAGTCT-
CAAAGCGAACG.

Abbreviations

FISH, fluorescence in situ hybridization; SKY, Spectral
Karyotyping; ATCC, American Type Culture Collection.
PCR, polymerase chain reaction; RT, reverse transcriptase;
STS, sequence tagged site
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