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Abstract
Background: Multiplex PCR is a key technology for detecting infectious microorganisms, whole-
genome sequencing, forensic analysis, and for enabling flexible yet low-cost genotyping. However,
the design of a multiplex PCR assays requires the consideration of multiple competing objectives
and physical constraints, and extensive computational analysis must be performed in order to
identify the possible formation of primer-dimers that can negatively impact product yield.

Results: This paper examines the computational design limits of multiplex PCR in the context of
SNP genotyping and examines tradeoffs associated with several key design factors including
multiplexing level (the number of primer pairs per tube), coverage (the % of SNP whose associated
primers are actually assigned to one of several available tube), and tube-size uniformity. We also
examine how design performance depends on the total number of available SNPs from which to
choose, and primer stringency criterial. We show that finding high-multiplexing/high-coverage
designs is subject to a computational phase transition, becoming dramatically more difficult when
the probability of primer pair interaction exceeds a critical threshold. The precise location of this
critical transition point depends on the number of available SNPs and the level of multiplexing
required. We also demonstrate how coverage performance is impacted by the number of available
snps, primer selection criteria, and target multiplexing levels.

Conclusion: The presence of a phase transition suggests limits to scaling Multiplex PCR
performance for high-throughput genomics applications. Achieving broad SNP coverage rapidly
transitions from being very easy to very hard as the target multiplexing level (# of primer pairs per
tube) increases. The onset of a phase transition can be "delayed" by having a larger pool of SNPs,
or loosening primer selection constraints so as to increase the number of candidate primer pairs
per SNP, though the latter may produce other adverse effects. The resulting design performance
tradeoffs define a benchmark that can serve as the basis for comparing competing multiplex PCR
design optimization algorithms and can also provide general rules-of-thumb to experimentalists
seeking to understand the performance limits of standard multiplex PCR.
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Background
The PCR (Polymerase Chain Reaction) method of DNA
amplification has had a profound impact on biotechnol-
ogy and biological research. Multiplex PCR is an exten-
sion of the standard PCR protocol in which multiple loci
are amplified simultaneously in order to save time,
improve throughput, and reduce the total cost of reagents.
Applications for PCR and Multiplex PCR abound includ-
ing quantitative gene expression [1-4], haplotyping [5],
whole-genome closure [6,7], detection of genetically
modified organisms [8], forensic analysis, including
human identification and paternity testing [9,10] diagno-
sis of infectious diseases [11,12], and for anti-bioterror
applications aimed at detecting biological agents such as
Anthrax [13]

Multiplex PCR has recently emerged as a core enabling
technology for high-throughput SNP genotyping [14-16],
and variations on the standard protocol are being actively
explored and in some cases more widely commercialized.
It is in this context of genotyping that we focus our discus-
sion of multiplex PCR assay design. Thus we will typically
refer to multiplexing SNPs (rather than primers) but our
treatment is readily applicable to most other PCR applica-
tions. Genomic variations in the form of Single Nucle-
otide Polymorphisms (SNPs) and associated haplotypes
continue to garner tremendous interest particularly in the
context of pharmacogenomic initiatives aimed at under-
standing the connection between individual genetic traits,
drug response, and disease susceptibility [17-21]. Broad
adaptation of genotyping technologies in clinical settings
will depend on their cost and inherent clinical value and
may be significantly impacted by ethical and legal consid-
erations. Recent technological developments in PCR-
based genotyping based on primer extension with univer-
sal PCR primers [22] have demonstrated very high (~100-
plex) multiplexing levels, although the use of common
primers does introduce other issues including the greater
potential for cross-contamination.

Multiplex PCR assay design is a multi-objective optimiza-
tion problem involving intrinsic performance tradeoffs.
The key objectives we consider in this paper include the
number of SNPs per tube (multiplex level) and the per-
centage of SNPs assigned to full tubes (coverage). We fur-
ther require that all resulting tubes achieve uniform levels
of multiplexing with the idea that doing so facilitates
automation in a high-throughput environment. While
lower coverage may be acceptable in initial survey studies
involving many (104-106) SNPs, achieving high (>95%)
coverage becomes obviously more important when the
focus of investigation has been narrowed to a relatively
small (102-103) set of SNPs each of which is suspected of
having some biological or pharmacological impact.

The question we address in this paper is whether there are
fundamental limitations to our ability to design assays
that achieve multiplexing levels of arbitrary size using
standard multiplex PCR protocols. While multiplex PCR
is an established technique, its usefulness as the basis for
future high-throughput platforms depends critically on
scalability. We introduce a new framework of "multi-node
graphs" to model the multiplex PCR problem. We show
that the problem of finding high-multiplexing/high-cov-
erage designs is subject to a computational phase transi-
tion, becoming dramatically more difficult when the
probability that two primers are mutually compatible
drops below a critical threshold. This probability depends
on fundamental primer selection criteria typically selected
to avoid the formation of primer dimers. For standard cri-
teria, we can identify where such a transition occurs, and
show that it is consistent with typical multiplexing levels.
The precise location of this critical transition point will
also depend on N, the number of available SNPs. For a
given level of coverage, the level of achievable multiplex is
proportional to log(N). We further quantify design per-
formance tradeoffs using two best-fit tube assignment
algorithms on human SNP data.

Results
Phase transitions in multiplex PCR complexity
Our first main result reported in this section can be suc-
cinctly stated as follows: for an assay with N SNPs and
approximately S candidate primers for each SNP we devise
a relatively efficient algorithm that can achieve almost
perfect coverage with tubes of size approximately O(log
NS). Unfortunately the coverage drops dramatically if the
multiplex level is increased. (See [23] for a formal analy-
sis.) This result is similar in spirit (but not in detail) to
related observations made about other graph problems.

In recent years, it has been shown that for broad classes of
computationally intractable problems, there exist certain
phase-transition boundaries across which the nature of
the solutions and the computational effort needed to
identify a solution changes dramatically [24]. When
attempting to design multiplex PCR assays with high cov-
erage, we observe a similar computational behavior on
simulations using a novel graph formulation we call a
multi-node graph (see Methods section). This graph rep-
resentation consists of nodes representing SNPs and edges
connecting two multiplex-compatible SNPs. Two SNPs
are multiplex compatible if none of their associated prim-
ers interact. To model the fact that SNP compatibility
depends on the assigned primers, we allow for the pres-
ence of an edge matrix Euv. In a multi-node graph, Euv[i][j]
= 1 when node u with primer set i is compatible to node
v with primer set j. We induced a random multi-node
graph by setting Euv[i][j] = 1 with probability P for all
node pairs u and v, in states i and j respectively. Using a
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simple greedy algorithm (see Methods section) we find
that our ability to achieve high (>95%) coverage for ran-
domly generated multi-node graphs critically depends on
the compatibility probability, P, (or conversely the inter-
action probability (1-P)) as well as the target level of mul-
tiplexing. These results are presented in Figure 1. By
sampling from chromosome 21 of the human genome,
the actual probability that two SNPs are compatible is
approximately 0.299. Figure 1 would suggest, therefore,
that designing 10-plex assays from N = 1,200 SNPs is gen-
erally straightforward, but that increasing multiplex per-
formance to 15- to 20-plex or beyond becomes extremely

problematic. This appears to be consistent with current
design practice though we emphasize that the location of
the phase transition depends on both the total number of
SNPs and the number of candidate primer pairs per SNP.
We recognize, furthermore, that random multi-node
graphs only approximately model the multiplex assay
design problem because primer pair candidates derived
from real sequence data are not truly independent. For
example, primer pairs may share a forward or reverse
primer, or they may significantly overlap. In addition, in
the process of assay design optimization, primers within a
single tube may take on certain sequence characteristics

Phase transition in full-tube coverage as a function of SNP-SNP compatibility probabilityFigure 1
Phase transition in full-tube coverage as a function of SNP-SNP compatibility probability. These results are based 
on a simulations where the controlling parameter P denotes the probability that two SNPs are compatible. Two SNPs are com-
patible if their associated primers are all pair-wise compatible. This simulation is based on N = 1,200 SNPS and S = 500 primer 
pairs per SNP. In reality, this compatibility probability, P, depends on the stringency by which primer pairs are tested for cross-
interactions. As we increase the target multiplexing level, higher compatibility, beyond what are normally obtained using stand-
ard primer selection criteria is required, suggesting fundamental barriers to increasing target multiplexing levels.
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(e.g., high GT / GA / CT / CA content) that are intrinsically
less likely to interact, and thus make higher-than-expected
coverage possible for a given multiplexing target.

Multiplex PCR performance on human SNP data
Next we implemented two multiplex PCR assay design
algorithms and applied them to real SNP data obtained
from the dbSNP database. We prescreened the 84,393
chromosome 21 SNPs contained in build 116 of dbSNP
[25] for class 1 SNPs (strict single nucleotide polymor-
phisms) containing at least 200 bases of non-low-com-
plexity sequence both upstream and downstream from
the target SNP. This reduced our working set to 18,498
SNPs, 21.9% of the original total, from which 1,200 SNPs
were randomly selected for experimental purposes. The
GC content of the 401-base flanking sequence surround-
ing (including the SNPs themselves) was 41.9% +/- 11.0%
in line with a 41% GC content for chromosome 21 and
for the human genome as a whole [26].

Our two best-fit greedy algorithms are designed to simul-
taneously assign primer candidates to SNPs and to parti-
tion SNPs into individual tubes in an effort to maximize
both multiplexing level and coverage. See Methods for
complete details. While best fit algorithms are relatively
simple, one can actually show theoretically that these
results appear to be as good as expected (on average) in
graphs with this level of density. One version which we
call "Fixed-Assignment Best Fit" assigns SNPs in random
order to the fullest compatible tube, and as the name sug-
gests, once a SNP is assigned to a tube it is fixed. Neither
its assigned tube nor its associated primers are ever modi-
fied. If no compatible tube can be found, the SNP is left
unassigned, reducing total coverage. We considered a sec-
ond variation on the best-fit approach called "Flexible
Assignment Best Fit" in which SNPs already assigned to a
tube can be removed under special conditions in order to
accommodate a new SNP assignment. Special rules of the
algorithm guarantee that the algorithm will eventually ter-
minate with increasingly high probability. Figure 2 dem-
onstrates the precise nature of the tradeoff between
multiplexing and SNP coverage for a fixed number of
SNPs (N = 1,200) for both best fit methods.

Multiplex PCR coverage performance tradeoffs
Next we employed the fixed-assignment best-fit algorithm
to generate coverage curves for target multiplexing levels
M = 10, 20, 30 while varying numbers of SNPs. We con-
sidered SNP sets containing between 100 and 1200 SNPs.
Figure 3 presents our results. With 200 SNPs, 80% cover-
age could be achieved with 10-plex assays, but this drops
to 40% coverage using 20-plex assays. However, if we
increase the number of SNPs to 1200, then for 20-plex
assays, coverage increases from approximately 40% to
80%. This graph shows that regardless of the multiplexing

level desired, coverage increases with the number of SNPs
but with diminishing returns. More precisely, for fixed
multiplexing level M, coverage is roughly proportional to
log(N).

Discussion
There is extensive literature on the general principles of
PCR primer design [27-31]. This work has led to a number
of software applications, most notably Primer3 and vari-
ous extensions [32-34]. A fast dynamic programming for-
mulation for testing primers for pair-wise compatibility
has also been developed [35].

The application of Multiplex PCR has increased steadily
over the past decade, requiring more sophisticated primer
selection protocols. Different algorithms may favor partic-
ular objectives, or may be designed for particular technol-
ogy platforms. In general, the problem of identifying
primer pairs to maximize the multiplexing level of a single
assay has been shown to be NP-complete by Nicodeme
and Steyaert [36] who also present an approximation
algorithm that eliminates 3' base complementarity while
addressing product size constraints. They also consider
electrophoresis distance constraints that require two
amplicons to have some minimum length difference so
that they can be distinguished after being processed
through an electrophoresis gel. Additionally, SNP detec-
tion methods based on primer extension protocols in con-
junction with mass spectrometry must take into account
the resolution of the mass spectrometer as for example
with the matching algorithms presented by Aumann,
Manisterski, and Yakhini [37].

Whereas this paper focuses on the dual problem of assign-
ing primers and partitioning SNPs into multiplex-compat-
ible tubes, an entirely different multiplex PCR problem is
concerned with finding a minimal number of primers
necessary to amplify a maximum number of targets over a
single experiment [38] or over multiple experiments [39].

Our best fit approach is motivated by the theoretical anal-
ysis provided by Alon and Furedi [40] who show that a
greedy algorithm in standard graphs produces an inde-
pendent set of size log N, and moreover this approach can
be extended to produce a full cover of the graph. The
multi-node graph is, in practice, substantially more com-
plex to cover, however theoretical analysis suggests that
the behavior is similar to standard graphs. The sketch of
the proof is as follows. Formal details are provided else-
where [23].

1. For a multi-node graph with N nodes and S states per
node, we create a corresponding standard graph with NS
nodes. (Each state in the multi-node graph is a unique
node.)
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2. We add random edges with probability P getting O(N2

S2 P) edges. Then we remove all the edges between nodes
that are connecting representatives of the same node. The
total number of edges removed is N S2 P. This means
independently of the number S of representatives per
node we remove roughly 1/N of the total number of
edges.

3. If 1/N << P then this removal does not greatly effect the
resulting graph and the probability that their exists a
clique of size K on a graph of size NS applies to a multi-
node graph of size N with S representatives per node.

Conclusion
In this paper, we quantified some of the critical tradeoffs
involved in the multi-objective design of multiplex PCR
assays and demonstrated a phase transition suggesting

that achieving high-coverage designs becomes dramati-
cally more difficult when SNP compatibility probabilities
fall below a certain critical threshold. Explicit considera-
tion of tradeoffs in multiplex PCR design is useful in help-
ing researchers to design effective and reliable assays
within the computational limits of the problem. Further-
more, such tradeoffs provide a natural basis for compar-
ing and contrasting novel computational techniques
aimed at improving one or more objectives. Although we
have attempted to rely on standard design criteria, further
laboratory testing is required to validate the design criteria
used as the basis of this analysis. In the future we will seek
to further improve our current tradeoff benchmarks with
the development of novel algorithms and to apply our
techniques to the design of high-multiplexing assays that
achieve broad coverage of the complete human genome.
We have also developed a web-enabled Multiplex PCR

Coverage vs. target multiplex level using two different best-fit tube assignment strategiesFigure 2
Coverage vs. target multiplex level using two different best-fit tube assignment strategies. These results were all 

based on N = 1,200 for varying target multiplexing level M. In each trial, the number of allowed tubes is limited to . 
Full-tube coverage, the percentage of SNPs assigned to full tubes, of close to 80% is achieved at a multiplexing level of 20, 
though it drops rapidly for higher multiplexing levels. The graph shows a significant improvement in one algorithm over the 
other, demonstrating that such tradeoffs can be used to effectively compare and contrast competing optimization strategies.

N M/ 
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assay design system known as MuPlex [41] that also serves
as a testing ground for on-going algorithmic
development.

Methods
Multi-node graphs: a novel formulation for the multiplex 
PCR problem
Designing one or more multiplex assays for SNPs with
preselected primers is equivalent to finding a clique in a
graph G where nodes are SNPS and edges connect pair-
wise multiplex compatible SNPs, i.e., two SNPs whose
primers can be pooled with a single tube without forming
primer dimers. Equivalently, we can model the problem

using the inverse graph  whose edges denote non-com-
patible or interacting SNPs (i.e., SNPs whose associated
primers incur at least one interaction) in which case the
objective is to identify an independent set rather than a

clique. Theoretical bounds for covering a graph with dis-
joint cliques can be found in [42].

The multiplex PCR problem is more general in that we
impact the graph topology by choice of primers. We use
the term "multi-node graph" to denote a graph whose
nodes have multiple states. In a multi-node graph, an
edge matrix Euv is attached to each pair of nodes, (u, v). If
node u (in state i) is multiplex compatible with node v (in
state j) then Euv[i][j]= 1. Otherwise, Euv[i][j] = 0. As illus-
trated in Figure 4, nodes W, X, and Y are pair-wise compat-
ible when in certain states and incompatible in other
states. The nodes W, X, Y form a 3-clique (3-plex) when in
states 7, 2, and 4 respectively. The multiplex PCR design
problem is equivalent to choosing a state assignment to
each node in a graph to achieve maximal covering
(including as many nodes as possible) with disjoint
cliques of size M in a multi-node graph.

Multiplex PCR performance tradeoffsFigure 3
Multiplex PCR performance tradeoffs. A closer examination of the Fixed Assignment Best-Fit algorithm reveals tradeoffs 
between the available number of SNPs, N, the target multiplexing level, M, and full-tube coverage. The dip at N = 1000, M = 30 

is an artifact of the algorithm which strictly limits the number of tubes to  = 34 tubes. Since M does not divide N 
evenly, the algorithm ends up partially filling the excess tube rather than working harder to fill the remaining 33 tubes to full 
30-plex capacity.

N M/ 

G
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In the context of multiplex PCR, our goal is to identify a
set of uniformly sized disjoint cliques in a multi-node
graph. This involves the dual problem of selecting node
states (primer pair selections for each SNP) and identifica-
tion of the cliques themselves corresponding to multi-
plex-compatible SNP sets.

Selecting candidate primers
We generated candidate forward and reverse primer pair
candidates for each of the 1,200 SNPs according to the
selection criteria listed in Table 1. In addition, if more
than one valid primer shared a given 3' position, all but
the shortest was automatically discarded as redundant.
We employed two separate tests for primer-primer interac-
tion, one based on a standard local alignment to detect
stretches of complementary sequence, the other based on
the worst-case ∆G of the 3'-tail of one primer interacting
somewhere along the strand of another primer. These
interaction criteria were used for screening individual
primers as well as forward-reverse primer pairs, and for

determining compatibility of two SNPs within a single
multiplex PCR assay. Primer selection stringency is obvi-
ously a critical factor impacting the performance of any
multiplex PCR design process. Fewer primers more care-
fully chosen may be more likely to produce a working
assay but could undermine one's ability to identify high-
multiplex designs. We have attempted to select primers
based on a number of commonly employed selection cri-
teria, recognizing that our overall performance would be
directly impacted by any particular selection criteria.

Using the above primer selection criteria, we generated an
average of 1555.8 +/- 1249.4 primer pair candidates per
SNP. Twenty-two of our 1,200 SNPs (1.8%) produced no
valid primer candidates. For each SNP we randomly
selected a primer pair and constructed the corresponding
compatibility graph, where edges connect two compatible
SNPs. The graph density was 0.299 +/- 0.005 over 10 ran-
dom trials. As noted earlier, a random graph model is an
imprecise representation for the multiplex PCR primer

Multi-node graphsFigure 4
Multi-node graphs. A multi-node graph is a convenient way of formalizing the multiplex PCR problem. In multi-node graphs, 
individual nodes can take on one or more states. In this figure, an edge between two nodes, X and Y, is determined by the 
state of the two nodes, or more specifically, an edge matrix EXY connecting nodes X and Y. There is no restriction on the 
number of states per node, and each node may contain a different number of states.

Table 1: Primer design selection criteria. These criteria are used, where applicable, for determining the compatibility of forward and 
reverse primers within a given locus and for pair-wise compatibility between primers for different loci.

Parameter Allowed Range

Length 17 – 24 bases
% GC 35 – 65%
Tm (nearest neighbor) 57.0 – 70.0 C
Tm Difference 3.0 C (for both candidate primer pairs and for all primers within a particular multiplex tube)
Base repeats ≤ 3 bases maximum
Product Size 60 – 200 bases
Distance to SNP 177 bases (5' end) 5 bases (3' end)
Self complementarity local alignment score ≤  8.0 (match = 1.0, mismatch = 1.0, gap = -2.0)
3'-Tail alignment ∆G ≥ -4.5 kCal/mol
Page 7 of 11
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design problem because primer pair candidates are not
independent, and because the primers for SNPs within a
tube tend to become dominated by one of four non-inter-
acting base pair combinations (G-T, G-A, C-T, or C-A.)

To further understand how SNP-pair compatibility prob-
abilities depend on primer selection criteria, we rand-
omized these criteria and evaluated the resulting graph
density for 50 SNPs randomly chosen from human chro-
mosome 21. While certain oligo-specific parameters were
kept fixed, pair-wise compatibility criteria were chosen at
random within certain specified ranges. The specific com-
patibility criteria we considered were:

• Complementary Sequence Local Alignment Score: Allowed
to vary between +4 and +10 (assuming base match = +1,
mismatch = -1, gap = -2). Typically, a threshold of +8.0 is
used. A smaller scoring threshold is more stringent as we
are disallowing primer pairs with less complementary
sequence.

• 3' Tail ∆G Alignment Score: This score measures the
worst-case alignment of the 3' tail of one primer along any
other part of another sequence. Current practice suggests
that it is the 3' tail that is most critical to ensuring proper
primer ligation. We allowed this threshold to range from
0.0 to -9.0 kCal/mol. (-4.0 to -6.0 kCal / mol is probably
reasonable, although this scoring method is not widely
used.) A higher (less negative) cutoff is more stringent as
we are disallowing less-energetically favorable
interactions.

• Melting Temperature (Tm) Range: The allowed melting
temperature between any two primer pairs. A Tm differ-
ence of 3.0 degrees K is fairly standard. Here we allow the
Tm difference to vary between 0.5 and 7.5 degrees K. (A
smaller Tm difference is more stringent.)

The random selection of thresholds and the resulting gen-
eration of valid primers constituted a single trial. Within
each trial, we randomly selected one primer pair for each
locus and computed the resulting density of a graph where
nodes represent particular SNPs having an assigned
primer pair, and edges connect two multiplex-compatible
SNPs. For two SNPs to be mutually compatible, all four
primers must be pair-wise compatible using the selected
thresholds. These thresholds are thus used to screen both
intra- and inter-SNP primer pairs. The graph density was
computed as the average of 10 densities each resulting
from 10 random primer selection rounds. Figure 5 shows
the relationship between graph density and the 3' tail
interaction threshold.

Each point in the graph represents a particular trial. Red
points have a high Tm difference threshold while blue

points have a low Tm difference threshold. As expected,
the resulting compatibility graph density increases as we
loosen the constraint on the interaction ∆G. For a given
∆G cutoff, tighter constraints on the Tm difference will
naturally tend to reduced SNP pair compatibility. The
multiple performance tiers (clearly seen as multiple red
bands across the chart) reflect different cutoffs for the
standard complementary sequence local alignment score,
the lowest being for Score = 4, while at the top, scores of
6–10 blend together in this figure. At ∆G = -4.5 kCal/mol,
we expect graph densities no greater than about 30%. In
other words, the probability that two SNPs, each assigned
random primer pairs, are multiplex compatible is only
about 30%.

Algorithms
The fixed-assignment best-fit algorithm
We define a benchmark best-fit strategy for designing uni-
form M-plexes as follows:

Let GN be a multi-node graph with N nodes (SNPs).

Let M be the desired clique size (multiplexing level).

Let T= [T1, T2, ..., TN/M] cliques (tubes), initially empty.

Let CANTASSIGN be a set of unassignable nodes, initially
empty.

1. Choose a node, u�N and u∉CANTASSIGN at random.

2. Assign a random state (primer pair) to the node

3. Find all cliques in T that are compatible with u. (A
clique is compatible if the size of the clique is less than M,
and every node in the clique has an edge connected to u
according to the appropriate edge matrices. Thus, if u is
added to the clique, then it is still a clique. If there are one
or more compatible cliques, we assign u to the largest
clique, otherwise, we leave u unassigned.

4. For all unassigned nodes, choose a different state,
ensuring that no state is chosen more than once. If a par-
ticular unassigned node u has no such state, then we add
u to CANTASSIGN.

5. Repeat steps 1–4 until there are no more nodes to
choose from. The resulting set of cliques, T, define our
final solution. We measure coverage as a percentage of the
nodes assigned to full tubes.

For N nodes (SNPs) and S states (primer pair candidates)
per node, pre-computing and storing all possible primer-
pair interactions in a multi-node graph would require
O(N2S2) time and space. Therefore, when applying the
Page 8 of 11
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above algorithm to real-world SNPs with potentially
hundreds of candidate primer pairs (states) per SNP
(node), we determine primer interactions (edge interac-
tions) as needed in order to test a particular SNP for tube
compatibility.

Step 3 provides our definition of "best-fit." The best tube
is defined as the largest compatible tube. The rational for
this strategy is that while each tube assignment reduces
our probability of finding another assignment to the same
tube, the reduction in probability is minimized when we
make an assignment to the tube that is currently the larg-

est. It should be noted, however, that in practice very little
change in the performance of the algorithm is observed if
we assign nodes to a random compatible tube, to the
smallest compatible tube, or even to the first compatible
tube. This is due to the fact that the probability of assign-
ing a particular SNP to a particular tube decreases expo-
nentially as the size of the tube (clique) grows larger. For
sufficiently large cliques, it is unlikely that a SNP with a
particular assigned primer set will be compatible with any
tube. Most often, when a compatible tube is found, it is

the only compatible tube among the  available

Primer-primer compatibility probability and primer selection stringencyFigure 5
Primer-primer compatibility probability and primer selection stringency. This figure shows how a number of 
primer selection criteria impact the overall probability that two primers will be mutually compatible. If compatible primers are 
connected by edges in a graph, the resulting probability is equivalent to the graph density. This figure plots graph density as a 
function of 3' ∆G interaction. Each point represents a single trial where additional primer compatibility thresholds were ran-
domly chosen within specified ranges. Considered were the 3' tail ∆G interaction, complementary sequence local alignment 
score, and melting temperature (Tm) difference. Points that are more red allow for high Tm differences while points that are 
more blue require smaller Tm differences. The impact of local alignment score thresholds, while not shown explicitly, is indi-
rectly revealed by the multiple tiers (bands) across the graph, the lowest corresponding to score = +4 and the highest to score 
= +6 to +10.

N M/ 
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choices, and thus there is little or no resulting difference
in how we actually choose our tube.

Flexible-assignment best-fit
As noted above, we expect the probability of finding a
compatible tube for a particular SNP in a particular state
to decrease exponentially as the tube size increases. Sup-
pose in attempting to assign a SNP to a particular tube, we
find that it is incompatible with one other SNP which was
originally assigned when the tube was small. It is relatively
easy to find a compatible tube when they contain few
SNPs because there are fewer interactions to consider. By
contrast, if we find a nearly-compatible SNP when the
tube is large, we should attempt to accommodate the SNP
with the idea that low-probability SNP/Tube assignments
are relatively rare and should thus be maintained when-
ever possible.

In general, suppose we have a tube containing k SNPs (a
clique with k nodes). We test a SNP for compatibility with
the tube and find that d ≤ k SNPs are incompatible with
the SNP. Suppose furthermore that these d SNPs were
assigned to the tube when the tube was of size k1, k2, ... kd.
We claim that it is valuable to substitute our test SNP for
the d incompatible SNPs whenever the total probability of
assigning the d incompatible SNPs is greater than the
probability of assigning the test SNP to a tube that
excludes these d SNPs. That is:

If there are multiple tubes satisfying the above condition,

we assign the SNP to the tube where  is

maximized. In assessing these assignment probabilities,
additional consideration could be given to the number of
candidate primer pairs maintained by each SNP, as it is
less likely that we will identify a compatible tube for SNPs
with relatively few candidates with the idea that we
should be more reluctant to remove such SNPs once a
compatible assignment is determined. In this version,
however, we considered only the tube sizes at the time
each SNP is assigned. In the Fixed-Assignment Best-Fit
algorithm, the size of each tube is monotonically increas-
ing. Thus, if a SNP with a given primer candidate is not
compatible with any tube, the primer pair candidate can
be removed from further consideration and furthermore,
if no primer candidate is compatible for any tube, then the
SNP can be discarded from further consider. By contrast,
the Flexible-Assignment Best-Fit algorithm requires that
we reconsider the compatibility of SNPs and their associ-
ated primers within any modified tube. We thus specifi-
cally track which candidates have been tested on which

tubes, and we update this status each time a particular
tube is modified.

It is clear that the Flexible Assignment Best-Fit algorithm
will eventually terminate with increasingly high probabil-
ity because every SNP substitution we perform within a
particular tube is assessed as having strictly lower proba-
bility than previous assignments.
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