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Abstract
Background: The Engrailed Homology 1 (EH1) motif is a small region, believed to have evolved
convergently in homeobox and forkhead containing proteins, that interacts with the Drosophila
protein groucho (C. elegans unc-37, Human Transducin-like Enhancers of Split). The small size of
the motif makes its reliable identification by computational means difficult. I have systematically
searched the predicted proteomes of Drosophila, C. elegans and human for further instances of the
motif.

Results: Using motif identification methods and database searching techniques, I delimit which
homeobox and forkhead domain containing proteins also have likely EH1 motifs. I show that
despite low database search scores, there is a significant association of the motif with transcription
factor function. I further show that likely EH1 motifs are found in combination with T-Box, Zinc
Finger and Doublesex domains as well as discussing other plausible candidate associations. I identify
strong candidate EH1 motifs in basal metazoan phyla.

Conclusion: Candidate EH1 motifs exist in combination with a variety of transcription factor
domains, suggesting that these proteins have repressor functions. The distribution of the EH1 motif
is suggestive of convergent evolution, although in many cases, the motif has been conserved
throughout bilaterian orthologs. Groucho mediated repression was established prior to the
evolution of bilateria.

Background
The Engrailed Homology 1 (EH1) motif is a short (<10
amino acids) region, initially found in engrailed (en) and
other homeobox containing proteins, that mediates tran-
scriptional repression via interaction with the WD40
repeat containing groucho (Gro) [1,2]. Shimeld [3] pro-
posed that the EH1 motif of Smith and Jaynes was shared
with various forkhead (FH/HNF-3) containing transcrip-
tion factors. The short size of the motif, however, suggests
that it may occur by chance in many different protein fam-
ilies. Shimeld did not demonstrate statistically significant
sequence similarity between the motifs from the home-

obox- and forkhead-containing families. However, the
human orthologs of groucho (the transducin-like
enhancer of split proteins) have been shown to interact
with FOXA2 via a region of sequence containing an EH1
motif, clearly demonstrating the biological relevance of
the sequence similarity [4].

In this article I search systematically for instances of the
EH1 motif in homeobox and forkhead containing genes
and go on to demonstrate that the EH1 motif is also found
in proteins containing T-box, Doublesex Motif (DM) and
Zn finger domains. I show that within metazoan
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Alignments of putative EH1 motifs in a) Homeobox and b) Paired box domain containing proteins, subdivided by domain part-ners and orientation, with representative non-bilaterian sequences includedFigure 1
Alignments of putative EH1 motifs in a) Homeobox and b) Paired box domain containing proteins, subdivided by domain part-
ners and orientation, with representative non-bilaterian sequences included. Alignments were derived from meme searches, as 
described in text. Conserved aromatic residues (FHYW) are coloured white on a red background ('a' in the consensus). Con-
served aliphatic residues (ILV), black on a yellow background. ('I' in the consensus) Conserved big residues (EFHIKLMQRWY) 
blue on a light yellow background ('b' in the consensus). Conservation is calculated over the full alignment of sequences in fig-
ures 1 and 2. The figure was produced using the Chroma program [41]. Gene names are standard HUGO Gene Nommencla-
ture Committee, flybase or wormbase symbols where available, otherwise accessions for their respective databases. When 
available Uniprot protein accessions are also given [42], along with the starting residue of the motif.

a) Homeobox

N-terminal:

Q9VDA2/53 Dm|lbl KSFSIADILGR

P52952/10 Hs|NKX2-5 TPFSVKDILNL

Q8TAU0/10 Hs|NKX2-3 TPFSVKDILNL

Q9UBX0/19 Hs|HESX1 CSFSIERILGL

Q7KS77/132 Dm|lbe KSFSIADILGH

Q03014/30 Hs|HHEX TPFYIEDILGR

Hs|ENSG00000180053 TPFSVKDILRL

P22809/22 Dm|bap TPFSINDILTR

P05527/277 Dm|inv LKFSIDNILKA

P22711/36 Dm|tin TPFSVKDILNM

Q68DJ5/29 Hs|ENSG00000175329 LSFSIEAILKR

Q19937/6 Ce|tab-1 SSFSIDDLLRG

O95096/8 Hs|NKX2-2 TGFSVKDILDL

P78367/10 Hs|BAPX1 TSFSIQAILNK

P09082/150 Dm|gsb TSHSIDGILGG

Q9V943/45 Dm|CG13424 HSFSIEQILAK

P54366/108 Dm|Gsc SLFTIDSILGS

Q5VZV8/9 Hs|NKX2-4 TPFSVSDILSP

Q7KZF6/39 Hs|TITF1 TPFSVSDILSP

Q9VEA3/169 Dm|CG18599 KSFTIAAILGL

Q09546/153 Ce|pax-3 LSYSIDSILGI

Q9NY43/140 Hs|BARHL2 SSFLIKDILGD

O15499/18 Hs|GSCL CPFSIEHILSS

Q4ZG44/103 Hs|EN1 TNFFIDNILRP

P19622/67 Hs|EN2 TNFFIDNILRP

Hs|ENSG00000188909 TSFFIEDILLH

P02836/173 Dm|en LAFSISNILSD

Q04787/40 Dm|bsh TPFSIEHILFQ

P31314/17 Hs|TLX1 ISFGIDQILNS

O43711/16 Hs|TLX3 ISFGIDQILNS

Q9VFK4/191 Dm|NK7.1 TPHSIADILGM

P56915/4 Hs|GSC SMFSIDNILAA

Hs|HMX2 SSFTIQSILGG

Hs|ENSG00000188620 SPFSIKNLLNG

O43763/17 Hs|TLX2 ISFGIDQILSG

Q9VDH9/2 Dm|CG15696 SDFSIEYILNR

Q9N4L2/35 Ce|ZK993.1 TSFSIDTLLSN

Q5JSF3/56 Hs|NKX6-2 TPHGISDILGR

Q5BIB4/24 Dm|ems IGFSIESIVGN

Q9W4B2/8 Dm|CG4136 TPFAIQEILGL

P10035/72 Dm|H2.0 LSFSVDRLLGS

P58304/30 Hs|CHX10 TGFGIQEILGL

P34326/3 Ce|ceh-16 LKFGIERILSS

Q96QS3/25 Hs|ARX SSYCIDSILGR

Q7KS72/74 Dm|C15 LPFSISRLLSK

P78426/94* Hs|NKX6-1 TPHGINDILSR

Q6NT51/23 Hs|BARX2 KTFMIDEILSK

Q9VSC2/219 Dm|exex KSFCIDALLAK

P22807/445 Dm|slou LAFSVENILDP

Q24255/75 Dm|B-H1 SRFMINDILAG

Q9NLC2/44 Ce|ceh-24 SKFSVNSILSP

Q9VFQ3/50 Dm|E5 LAFSIDSIVGE

P56407/27 Ce|ceh-9 TSHLIKDILDL

P23759/184 Hs|PAX7 AKHSIDGILGD

P22808/198 Dm|vnd SGFHISDILNL

Hs|ENSG00000185610 KSFLIENLLRV

P52951/20 Hs|GBX2 TAFSIDSLIGS

Q9BZE3/5 Hs|BARHL1 NGFGIDSILSH

Q9W2Q1/114 Dm|Rx PRHTIDAILGL

Q22909/102 Ce|ceh-30 SSFRISDILEQ

Q9V552/29 Dm|unpg KPFSIESLIAN

Q24256/57 Dm|B-H2 SRFMITDILAG

Q9NP08/17 Hs|HMX1 SSFLIENLLAA

P54821/32 Hs|PRRX1 KNFSVSHLLDL

Q99811/36 Hs|PRRX2 KNFSVSHLLDL

P23760/184 Hs|PAX3 AKHSIDGILSE

Q23175/365 Ce|ceh-32 SKLSIDEILNI

P09083/152 Dm|gsb-n KDYTINGILGG

P50219/5 Hs|HLXB9 KNFRIDALLAV

Hs|ENSG00000109851 LKFGVNAILSS

P26797/1 Ce|ceh-19 MAFNIESLLEK

P41935/24 Ce|ceh-10 MSFAIHEILGI

Q9NZR4/29 Hs|VSX1 RGFAITDLLGL

Q18533/49 Ce|mls-2 IKFNISELLED

Q9Y2V3/31 Hs|RAX RLHSIEAILGF

Q9NZ75/42 Hs|HLX1 PSFCIADILHA

Q8T0H1/132 Dm|Dr SNFSVASLLAD

Q9W1U7/58 Dm|CG9876 HRFSVDNIMEM

Q9W2P8/35 Dm|hbn AVYSIDQILGN

Q04741/8 Hs|EMX1 RGFTIESLVAK

Q8IUT7/7 Hs|NKX2-8 LSFTVRSLLDL

P35548/45 Hs|MSX2 LPFSVEALMSD

O01962/3 Ce|ceh-2 LKFSVERLVDS

Q04743/8 Hs|EMX2 RCFTIESLVAK

P20265/193 Hs|POU3F2 PSFTVNGMLGA

Q09604/12 Ce|vab-15 GLFSVESLLET

Q6NT76/20 Hs|NP 078843 PRFTIEQIDLL

O17978/26 Ce|cog-1 STYSISNLLLE

P49335/137 Hs|POU3F4 PGFTVSGMLEH

P20264/226 Hs|POU3F3 GGFTVNGMLSA

P28360/110 Hs|MSX1 GHFSVGGLLKL

P17487/2 Ce|ceh-12 MFSSIDSLLKI

Q9UIW0/175 Hs|VAX2 EAFATSNILRL

P53547/116 Ce|ceh-1 TLFNLNQILMP

P20009/102 Dm|Dll DDFSISDKCED

Q17788/45 Ce|C07E3.5 EIFSIGESLSV

C-terminal:

Q69YW8/184 Ce|R03E1.4 IPFTIDNILS-

Q9VX20/372 Dm|OdsH SPFSIESLLGS

P29506/172 Ce|unc-4 FPFSIDSILAV

O77215/416 Dm|unc-4 NPFSIESLLFN

Non-bilaterian:

Q6VT85/49 Sponge-hox CSFSIASILGD

Q7YZD2/11 Cnidarian-hox TPFSITDILSR

Q70HR3/7 Ctenophore-hox LSFSIDQILGL

b) PAX (no homeobox)

P23757/306 Dm|Poxm SSHSVSDILAH

Q02548/177 Hs|PAX5 SSYSISGILGI

O16117/401 Dm|sv TGYSINGILGI

P55771/194 Hs|PAX9 SSHSVTDILGI

P15863/194 Hs|PAX1 SAHSVSNILGI

Q02962/183 Hs|PAX2 GSYSINGILGI

P23758/358 Dm|Poxn NPYSIEELLKK

Q21263/289 Ce|pax-2 TTHSINGLLGT

Q17627/227 Ce|egl-38 TAYSINGLLGT

Q06710/178 Hs|PAX8 STYSINGLLGI

Non-bilaterian:

67527267/158 Trichoplax-pax CHYRINDLLGI
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genomes, the observed association of the motif with tran-
scription factor function is statistically significant. The
location of the motif in members of the same transcrip-
tion factor family is often non-homologous, occurring
both N- and C-terminal to the DNA binding domain, sug-
gesting that the presence of the motif is, in part, due to
convergent evolution, as proposed by Shimeld; the con-
servation within orthologs points to many of these con-
vergences predating the last common ancestor of the
bilateria.

Results and Discussion
Significant association of EH1 motif with transcription 
factor function
I searched for sequence motifs in homeobox containing
transcription factors taken from the proteins of human,
Drosophila melanogaster and Caenorhabditis elegans, by first
masking known Pfam domains [5], and then using the
expectation maximization algorithm implemented in the
meme program [6]. The first non-subfamily specific motif
identified corresponded to previously known examples
and new instances of, the EH1 motif (see Figure 1a), in
100 sites, with an E-value of < 10-126. I then applied the
same approach to Forkhead containing transcription fac-
tors, identifying 25 sites with a combined E-value of < 10-

31 (Figure 2a). These motifs also appeared to conform to
the consensus of the EH1 motif, as previously reported by
Shimeld [3].

To further investigate the significance of this similarity, I
constructed hidden Markov models (HMM) of the motif
(EH1hox & EH1fh) which I then searched against the com-
plete set of predicted proteins from human, D. mela-
nogaster &C. elegans. The highest scoring non homeobox
containing domain match of EH1hox was a Forkhead pro-
tein (human FOXL1), and the second highest scoring
non-Forkhead containing match of EH1fh was to a home-
obox containing protein (D. melanogaster inv). In both
cases, nearly all the high scoring hits were to proteins con-
taining domains with transcription factor function (see
Figure 3). Among the best scoring matches of the EH1hox

searches were several T-box (TBOX), Doublesex Motif
(DM), Zinc finger (ZnF_C2H2) and ETS containing pro-
teins (domain names as per SMART, Figure 2b–e) [7,8].
Excluding hits to homeobox containing proteins, but oth-
erwise including all scores, the overall significance of the
association of transcription factor function with higher
scores to the EH1hox HMM is P < 10-47, using a logistic
regression model which tests association between score
and transcription factor annotation (see methods and
supplementary file 1 for raw data). The association
remains significant when scores derived from Forkhead
and PAX domain containing proteins are also excluded (P
< 10-34). This indicates that, although the scores associ-
ated with any individual EH1-like motif may not be statis-

tically significant, overall, we would not see so many EH1-
like sequences co-occurring with DNA binding domains if
their co-occurrence were governed simply by chance –
there is, therefore, likely to be a functional reason for
these partnerships. In the following sections, I review the
higher scoring associations detected here in the light of
known gene functions.

EH1 motifs in homeobox and forkhead containing proteins
The presence of EH1 motifs within various homeobox,
and to a lesser extent, forkhead containing proteins has
been widely reported, although not systematically studied
[3]. I found EH1-like motifs co-occurring with 3 major
groupings of homeobox sub-types: the extended-hox
class, typified by Drosophila engrailed (en); the paired
class, including Drosophila goosecoid (gsc), and the NK
class, including Drosophila tinman (tin) [1,9,10] (see [11]
for a description of these broad classes). Related to the
paired class homeobox domains, a number of genes con-
taining PAIRED domains only (i.e. the PAX domain of
SMART [7]) were also found to contain EH1-like motifs
(see Figure 1b). With only a few exceptions, outlined
below, the EH1-like motif occurs N-terminal to the home-
obox domain and C-terminal to the PAIRED domain
when present. A number of these proteins have been
shown to interact with groucho or its orthologs e.g. C. ele-
gans cog-1 [12], vertebrate Nkx proteins [13], Drosophila
engrailed (en) and goosecoid (gsc) [2,14], and in high
throughput assays Drosophila invected (inv) and and lady-
bird late (Ibl) [15].

A handful of EH1-like motifs are found C-terminal to
homeobox domains. Of these, the best characterized is C.
elegans unc-4, which has been shown to interact with the
groucho ortholog unc-37 [16]; the Drosophila ortholog
unc-4 also interacts with groucho in high throughput
experiments [15]. The C-terminal EH1-like motif is con-
served in the closely related Drosophila paralog OdsH. The
gene prediction for the human ortholog of unc-4
(ensembl gene identifier ENSG00000164853) appears to
be artefactually truncated, but the mouse ortholog
(Uncx4.1 ENSMUSG00000029546) and corrected
human gene models, contain EH1-like motifs both N & C-
terminal to the homeobox domain. Taken together with
the fact that in the majority of related homeobox contain-
ing proteins the EH1-like motifs are N-terminal, this sug-
gests that the N-terminal motif has been lost in Drosophila
and C. elegans unc-4 orthologs.

EH1-like motifs also occur N- and C-terminal to Forkhead
domains. The N-terminal class consists of the sloppy-
paired genes (slp1 and slp2) of Drosophila and ortholo-
gous or closely related sequences: human FOXG1, and
Drosophila CG9571; the C. elegans ortholog fkh-2 contains
an EH1-like motif although a cysteine residue causes a low
Page 3 of 8
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Alignments of putative EH1 motifs in a) Forkhead b) T-box c) ETS d) Doublesex and e) Zinc finger containing proteinsFigure 2
Alignments of putative EH1 motifs in a) Forkhead b) T-box c) ETS d) Doublesex and e) Zinc finger containing proteins. Align-
ment 'a' was derived from a meme search, as described in text. Sub-alignments b-e were derived from HMMER searches with 
the EH1hox HMM. Other details as for Figure 1.

a) FH

N-teriminal:

Q961V5/10 Dm|slp1 SNFSIDAILAK

Q8SZ95/60 Dm|slp2 SSFSINSILPE

Q86XT7/16 Hs|FOXG1A SSFSINSLVPE

Q9W5X5/9 Dm|CG9571 SSFSIRSLLSV

Q22510/2 Ce|fkh-2 ARFSILDLCPD

Q18694/1 Ce|unc-130 MLFSMESILSS

C-terminal:

Q9UJU5/376 Hs|FOXD3 PSFSIENIIGG

P34683/227 Ce|lin-31 SSFSIESILSS

Q9NU39/322 Hs|FOXD4L1 ISFSIESIMQG

Q12952/259 Hs|FOXL1 KSFSIDSILAG

P55318/302 Hs|FOXA3 HPFSINNLMSE

P55317/399 Hs|FOXA1 HPFSINNLMSS

Q9Y261/374 Hs|FOXA2 HPFSINNLMSS

Q02360/354 Dm|fd64A TLFTIDNIIGK

Q12948/306 Hs|FOXC1 QGFSVDNIMTS

Q99958/268 Hs|FOXC2 PGFSVENIMTL

Q5SVZ3/410 Hs|FOXD2 PSFSIDHIMGH

P32029/186 Dm|fd96Cb RAFTIESLMAP

P32028/220 Dm|fd96Ca RSFTIESLITP

Q99853/167 Hs|FOXB1 HPFAIENIIAR

Q5VV73/269 Hs|FOXQ1 SSFAIDSILRK

O75593/165 Hs|FOXH1 EGFSIKSLLGG

O17593/219 Ce|fkh-10 KSFTIEAILEH

P32027/258 Dm|croc PGFTVDSLMNV

P14734/450 Dm|fkh HPFSINRLLPT

Q13461/215 Hs|FOXE3 RLFSVDSLVNL

Non-bilaterian:

Q8ITI5/10 Ctenophore-FH HPFSIENILKS

Q86FK9/241 Cnidarian-FH HPFAIKNIIAP

Q6EWN0/432 Sponge-FH HNFMISNLLKS

b) T-box

N-terminal:

O17212/3 Ce|mls-1 RNFSIDAILAR

P90971/20 Ce|mab-9 PRFSIANILDE

Dm|CG6634 TDFSIAAIMAR

Q9VMR3/79 Dm|H15 TDFSIAAIMAR

Q24432/38 Dm|bi TDFSVSSLLTA

Q9Y458/8 Hs|TBX22 RAFSVEALVGR

O95935/18 Hs|TBX18 HAFSVEALIGA

Hs|TBX20 NAFSIAALMSS

O15119/26 Hs|TBX3 PDFAMSAVLGH

Q96SF7/16 Hs|TBX15 HAFSVEALIGS

Q13207/12 Hs|TBX2 ADFPMSAFLAA

C-terminal:

Q9VST0/410 Dm|Doc3 SSFSISDILGT

Q9VST2/457 Dm|Doc2 KGFSISAILGG

Q9U8L5/381 Dm|Doc1 NSFSISAILAY

Non-bilaterian:

Q7YTV8/10 Trichoplax-T-box SSFSVTNLLSA

Q70HR5/21 Ctenophore-T-box ASFSVNSLLAS

Q86RA8/7 Cnidarian-T-box KPFTVNDILQA

c) ETS

P20105/103 Dm|Eip74EF SNFEIESLLSD

O01519/212 Ce|F19F10.5 PLFSIENLLAS

O44138/168 Ce|C50A2.4 LTHSISAILGQ

Q965J5/26 Ce|lin-1 PKHTIEGILDI

d) Doublesex

Q5VXF7/541 Hs|DMRT2 LSFSVESILKR

Q9VYE0/365 Dm|dmrt11E LSFSIESIMGI

Q18248/216 Ce|C27C12.6 QSFLIDSLLEQ

e) Zinc Finger

N-terminal:

Q93721/73 Ce|ces-1 SVFSIDNILNS

Q9BZ91/28 Hs|ZNF312 LAFSIERIMAK

Hs|ENSG00000128610 LAFSIERIMAR

Q9VQ56/56 Dm|CG31670 LKFSIAKIMEP

C-terminal:

Q9VQU9/734 Dm|bowl TGFSIEDIMRR

P23803/382 Dm|odd LGFTIDEIMSR

Consensus/90% ..a.lp.lb..
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score. The C-terminal class consists of an apparent clade
including the human FOXA, FOXB, FOXC and FOXD
genes (Figure 2a), although if the EH1 motif was present
in the common ancestor of this clade, multiple losses
must have later occurred (see [17] for a Forkhead domain
phylogeny). The situation is complicated somewhat by an
EH1-like motif at the N-terminus of C. elegans unc-130 i.e.
in the FOXD like family. The EH1 motif in slp1 has been
shown to interact with groucho [18], and FOXA type
genes have been shown to interact with human groucho
orthologs [4].

EH1 motifs in novel domain contexts
Assuming a conservative per-domain cutoff score of 10.0
bits for true matches to the EH1hox model (see Figure 3),
yields hits to proteins containing T-box domains (highest
score 13.1 bits); Doublesex (DM) domains (highest score
11.6 bits) and C2H2 Zinc fingers (highest score 11.2 bits).
Also of note was a further match at 9.4 bits, to an ETS
domain containing protein. Prompted by these similari-
ties I further investigated the presence of EH1-like motifs
in these families, looking for high scoring matches to the
EH1hox HMM that were conserved in closely related genes.

T-box containing proteins
I identified likely EH1 motifs co-occurring with T-Box
domains in two distinct contexts (Figure 2b). The motif
occurs C-terminal to the T-box in the Drosophila dorso-
cross proteins Doc1, Doc2 and Doc3. It is found N-termi-
nal to the T-box in 11 proteins including mls-1 and mab-
9 from C. elegans; H15, mid/nmr2 and bi/omd from Dro-
sophila; in humans there are strong matches to TBX18,
TBX20 and TBX22 and more marginal matches to TBX3
and TBX2. Although, to the best of my knowledge, none
of these proteins has been shown to interact with groucho
or its orthologs, several are known to act as transcriptional
repressors: for instance, in murine heart development,
Tbx20 represses Tbx2 which in turn represses Nmyc
[19,20]; the Dorsocross genes from Drosophila repress
wingless and ladybird [21], and Doc itself is repressed by
mid/nmr2 [22]. The human proteins TBX1 and TBX10,
and Drosophila org-1 which are closely related to those
above, do not appear to contain EH1 motifs. The human
T (brachyury) protein contains a motif broadly similar to
the EH1 consensus: LQYRVDHLLSA in a comparable N-
terminal location to those found in other T-box contain-
ing proteins. Although this motif scores poorly against
EH1hox (-0.1 bits), the homologous regions from other T
orthologs (for instance, the non-bilaterian sequences dis-
cussed below) provide a more persuasive case for the pres-
ence of a functioning EH1 motif in these proteins.

Zinc finger containing proteins
The highest scoring match of EH1hox to a C2H2 zinc finger
containing protein, was ces-1 from C. elegans (bit score

11.2); this protein interacts with the groucho ortholog
unc-37 [[23], #54] and can act as a repressor [24]. The
putative EH1 motif is at the N-terminal end of ces-1. In
contrast, the Drosophila proteins bowl and odd have EH1-
like motifs at their C-terminal ends (with bit scores of
10.9 & 8.4 respectively). In neither case is there direct evi-
dence from high throughput studies of an interaction with
groucho, but both can function as repressors [25]. The
human protein ZNF312 (bit score 8.6) is the ortholog of
zebrafish Fezl, which contains an EH1 motif essential for
repressor activity [26] – this motif is conserved in the
human paralog ENSG00000128610 and likely Drosophila
ortholog CG31670 (bit scores of 8.4 & 5.1) (Figure 2e).

Doublesex motif containing proteins
The Doublesex Motif (DM) was first found in proteins
controlling sexual differentiation in Drosophila. Two DM
containing proteins were confidently predicted to contain
EH1-like motifs – human DMRT2 (bit score 11.6), and
Drosophila dmrt11e (bit score 11.2) – these are likely
orthologs; a C. elegans protein, C27C12.6 contained a
weaker match (bit score 6.6) (Figure 2d). The molecular
function of these proteins is unknown.

Other potential associations with transcription factor domains
Although scoring less highly than some non-transcription
factor hits, another intriguing association is with the ETS
domain. The three uncharatcerized C. elegans paralogs
F19F10.5, F19F10.1 & C50A2.4 contain C-terminal
matches to the EH1 motifs (bit scores 9.4, 2.3 & 7.4), and
two other ETS proteins, C. elegans lin-1, and Drosophila
Eip74EF, both have relatively high scoring matches (bit
scores 6.5 & 6.6) (Figure 2c). A high scoring protein that
is not annotated as a transcription factor (as it contains no
interpro domains) is Drosophila Hairless (H) with a score
of 8.3 bits. Experimental work has previously confirmed
the presence of an EH1-like motif (SSYSIHSLLGG) within
H that is responsible for its interaction with groucho [27].
The Drosophila protein Dorsal has been reported to inter-
act with groucho via an EH1-like motif [28] – this region
(NGPTLSNLLSF) is markedly different to those reported
here, having a low score against EH1hox (-10.7 bits) and so
may better be regarded as a, so far, unique type of groucho
interaction motif.

Evolutionary considerations
Convergent evolution
The EH1 motif is found N- and C-terminal to homeobox,
forkhead, T-box and Zn finger protein domains. Clearly,
as the locations of the EH1 motif are non-homologous,
the N- and C-terminal associations must have occurred
independently. The short size of the motif makes it tempt-
ing to speculate that the motif itself may have arisen inde-
pendently (i.e. in repeated cases it may have evolved
within sequence that was already part of the gene, rather
Page 5 of 8
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than via a recombination event). The strongest evidence
for this is that, in general, the majority of domain combi-
nations occur in a fixed N to C orientation, suggesting that

recombination events combining domains are relatively
rare [29,30]. The fact that we would here have many such
events suggests that the alternative hypothesis of inde-
pendent invention is more appropriate.

Pre-bilaterian origins of association with different transcription 
factors
Groucho is orthologous to the C. elegans unc-37 gene, and
the four human paralogs TLE1-4 (Transducin Like
Enhancer of split). An ortholog is also found in the cni-
darian Hydra mangipapillata (e.g. the EST with gi
47137860, data not shown), and certain cnidarian home-
obox containing genes also contain an EH1-like motif,
suggesting groucho/EH1 mediated repression pre-dates
the split between diplobasts and triplobasts; indeed, a
sponge Bar/Bsh like homeobox containing protein (i.e.
protein gi: 33641772) [31] also contains an EH1-like
motif, as does paxb from the non-bilaterian placozoan
Trichoplax adhaerens [32] and a Tlx-like protein from a
ctenophore (gi: 38602653), suggesting the repression sys-
tem was in place in the earliest animals (see [33] for a dis-
cussion of early metazoan evolution). I find high scoring
EH1-like motifs in Forkhead domain containing proteins
from sponges, cnidarians and ctenophores, in both the C-
terminal (FOXA-D clade) (region II in [34]) and N-termi-
nal (FOXG, sloppy paired clade) varieties (reported as
'HPFSI' in [35]). The presumed ortholog of 'T' from the
Trichoplax adhaerens [36] contains an EH1-like motif (8.6
bits). These results suggest that groucho mediated repres-
sion using a variety of transcription factors was wide-
spread in the last common ancestor of the metazoa.

Conclusion
Candidate EH1 motifs exist in combination with a variety
of transcription factor domains, suggesting that these pro-
teins have roles as repressors of transcriptional activity.
The distribution of the EH1 motif is suggestive of a
number of instances of convergent evolution, although in
many cases the motif has been conserved throughout bila-
terian orthologs. Together with the existence of a cnidar-
ian Groucho ortholog, this leads to the conclusion that
EH1/Groucho mediated repression was established prior
to the evolution of bilateria.

Methods
Proteomes were derived from ensembl 32 (human NCBI
35, C. elegans wormbase 140, Drosophila BDGP 4) [37]. In
cases of multiple splice variants, the one with the most
exons was included (or the longest in the case of ties).
Transcription factor activity was taken as the presence of
the gene ontology accession GO:0003700 associated with
an interpro domain predicted for the protein [38]. These
data were also taken from ensembl. Although C2H2 sub-
type Zn fingers are not annotated by Interpro as transcrip-
tion factors they are DNA binding and frequently have

a) Distribution of HMMER bit scores for the database search of EH1hox HMM against the combined proteomes of human, D. melanogaster and C. elegansFigure 3
a) Distribution of HMMER bit scores for the database search 
of EH1hox HMM against the combined proteomes of human, 
D. melanogaster and C. elegans. Counts from scores from 
transcription factors (see methods) have been coloured red 
– i.e. the proportion of a bar coloured red is equal to the 
proportion of transcription factors. Scores from proteins 
containing a homeobox domain (interpro accession 
IPR001356), from which the EH1hox HMM was derived, have 
been excluded, b) as for 'a', but rescaled to show region of 
biological relevance. High scoring hits are greatly enriched in 
specific transcription factor families. For scores ≥ 5.0 bits, 
there are 68 transcription factors and 142 non-transcription 
factors; for scores <5.0 bits, 3075 transcription factors and 
51513 non-transcription factors giving a chi-square test p-
value statistic of P < 0.0001 – the statistical significance is dis-
cussed more fully in the text.
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this role, so have been included in the transcription factor
set. Bit scores reported in the text are for comparisons of
the EH1hox HMM against the target sequence using the
HMMER software package [39].

The association of transcription factor function (coded as
a dichotomous variable, t, taking the values 1 [transcrip-
tion factor] or 0 [non-transcription factor]) with the bit
score, x, of the EH1hox HMM, was tested using a logistic
regression model implemented in the glm() function of
the R package [40]). I fitted the model

Prob(t = 1) = exp(a + bx)/(1 + exp(a + bx))

The coefficients a, b were estimated from the data by max-
imum-likelihood. The hypothesis of no association is
equivalent to testing if b = 0.

Where inferences of orthology are made, they are based
on clear-cut separation of BLAST scores or alignment-
based phylogenies.
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