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Abstract

Background: While the analysis of unweighted biological webs as diverse as genetic, protein and
metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks
are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the
utilization of connections has a major impact on the organization of cellular activities as well.

Results: We consider a web of interactions between protein domains of the Protein Family
database (PFAM), which are weighted by a probability score. We apply metrics that combine the
static layout and the weights of the underlying interactions. We observe that unweighted measures
as well as their weighted counterparts largely share the same trends in the underlying domain
interaction network. However, we only find weak signals that weights and the static grid of
interactions are connected entities. Therefore assuming that a protein interaction is governed by
a single domain interaction, we observe strong and significant correlations of the highest scoring
domain interaction and the confidence of protein interactions in the underlying interactions of
yeast and fly.

Modeling an interaction between proteins if we find a high scoring protein domain interaction we
obtain |, 428 protein interactions among 36| proteins in the human malaria parasite Plasmodium
falciparum. Assessing their quality by a logistic regression method we observe that increasing
confidence of predicted interactions is accompanied by high scoring domain interactions and
elevated levels of functional similarity and evolutionary conservation.

Conclusion: Our results indicate that probability scores are randomly distributed, allowing to
treat static grid and weights of domain interactions as separate entities. In particular, these finding
confirms earlier observations that a protein interaction is a matter of a single interaction event on
domain level. As an immediate application, we show a simple way to predict potential protein
interactions by utilizing expectation scores of single domain interactions.

Background indicating that generic principles and mechanics give rise
The depiction of interactions between genes, proteins and  to their structure. Although such networks vary exten-
metabolites as networks has uncovered unexpected simi-  sively in their complexity, corroborative evidence points

larities in the organization of various biological networks,  to a series of simple organizing principles that character-
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ize all complex networks. The most dramatic is the scale-
free nature of these networks, a remarkable inhomogene-
ity that highlights a small number of highly connected
nodes which secure the networks integrity [1]. The special
role such proteins play for the stability of protein interac-
tion networks is further indicated by their significant pro-
pensity to be simultaneously essential as well as
evolutionary conserved [2]. Reflecting their inherent
cohesive nature, complex networks are characterized by
the accumulation of discernible modules. Such clusters of
densely interconnected nodes combine in an overlapping
manner, share well defined functions and hubs as the
modules connectors [1,3,4]. Similarly to hubs, cohesively
bound motifs of protein networks are frequently con-
served as a whole, suggesting their role as evolutionary rel-
evant units [5]. While these findings allowed spectacular
insights into the inner workings of a cell, biological net-
works are generally not only determined by their layout of
links. In fact, we expect that the heterogeneity in the utili-
zation of connections has a major impact on the organi-
zation of cellular activities as well. Recently, attention
turned to weighted scientific collaborations and airways
networks [6], allowing a first insight into the intricate
interplay between links and their weights. Concluding,
analysis of real world networks indicate that the static grid
of links and their weights can not be regarded as separate
entities. Here, we present a first statistical analysis of a
weighted biological network by considering a web of
PFAM domain interactions. Each link between domains is
weighted by an expectation score, reflecting the probabil-
ity that a particular domain interaction indeed gives rise to
observed protein interactions. Applying metrics that com-
bine the static layout of interactions and their weights, we
observe that the patterns of correlations are similar for
weighted and unweighted network parameters. In con-
trast to other real world networks, we find weak signals
that do not support an entanglement of static grid and
weights of domain interactions, allowing us to confirm
that a protein interactions are largely governed by single
domain interactions.

Assuming that pairs of interacting proteins in S. cerevisiae
and D. melanogaster are indeed dominated by the highest
scoring domain interaction their domain architectures
suggest, we find that the confidence score of a protein
interaction correlates well with its highest scoring domain
interaction. As an application, this observation indicates a
simple method to model interactions between proteins of
the human malaria parasite P. falciparum. Assuming an
interaction between proteins if we find at least one high
scoring domain interaction we predict 1, 428 novel pro-
tein interactions among 321 proteins. The quality of each
predicted interaction is assessed by a logistic regression
model, allowing us to uncover reliable interactions
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between proteins that share similar functions and are pref-
erably conserved in evolution.

Results

As a source of high quality interaction data of protein
domains we utilized the results of a recent study by Riley
et al. [7]. In this statistical approach, called domain pair
exclusion analysis (DPEA), a likelihood ratio test is
applied to assess the contribution of each potential PFAM-
A and PFAM-B domain [8] interaction to the likelihood of
a set of observed protein interactions as of DIP [9]. Apply-
ing a statistical framework which evaluates the confidence
that domains i and j indeed interact, the authors obtain a
network of 1, 566 domains that are embedded in a web of
2, 767 interactions. Weighting each interaction by its
probability score - the expectation value [7] - we are pri-
marily interested in the interplay between topology and
the reliability of the underlying interactions.

Allowing a first insight in the weights role, we observe a
heavy tail in the cumulative distribution of the expecta-
tion value of domain links E, which can be roughly
approximated by a power-law (P(E) ~ E-27) (Figure 1a). In
real world networks the correlation of the degree product
kik; and the weight w;; follows a power-law shaped curve,
potentially indicating an intricate relationship between
the static layout and weights of links. In our case, we
hardly find such a dependence (Figure 1a, inset). In fact,
the mean expectation value is almost constant for more
than two decades, indicating a general lack of correlation
between weights and the domains number of interaction
partners [6]

Investigating further if the topology of the underlying
domain interaction network and their weights are indeed
independent from each other, we combine both topology
and weights by a series of measures that enable a more sig-
nificant assessment of the impact of weights [6]. In an
unweighted domain interaction network, the domains
degree is defined as k; = 2a;; where a;; = 1 if there exists a
link between domains i and j. Extending this definition,
the strength of a domain i is defined as

si = D, aiiEjj, (1)
j

accounting for individual expectation values E; as weights
of interactions of domain i. Comparing the statistical
properties of a domains degree k& and its strength s we
observe that their frequency distributions follow a gener-
alized Zipf's law P(x) = & x (f + x)(Figure 1b) [10]. The
power-law tail of the degree distribution indicates the
presence of scale-free topology [11], suggesting that the
integrity of the underlying network basically depends on
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Statistics of the domain interaction network. (2). In the cumulative distribution of the expectation value of domain
interactions we observe a heavy tail. Focusing on lower ranges of the expectation value, we approximated a power-law (P(E) ~
E-27). The dependence of an interactions expectation value from the product of the domains degree kik;shows a weak correla-

tion (inset) (<ERangIebracket; ~ k; k;0'04, Pearson's r = 0.30, P < 10-3, Spearman's rank p = -0. 17, P < 105, inset). (b) For single

domain based measures such as the degree k and the strength s, we observe power-law tailed cumulative frequency distribu-
tions as well. Both distributions follow a generalized Zipf's law (P(k) = 8.7 x (2.1 + k)19, P(s) = 298.0 x (14.6 + 5)-29). (c) Indi-
cating a networks modularity, the dependence of the clustering coeffcient C decays as a power-law, C(k) ~ k-0-35. Basically, we
observe the same correlation for the weighted clustering coeffcient C¥(k) ~ k-047, indicating that the weighted generalization of
the clustering coeffcient does not change the initial correlations. (d) The unweighted average nearest neighbor degree slightly
decays with increasing degree. This albeit weak dependency is roughly approximated by a power-law (k,, ~ k%-'6). In principle,

we obtain the same result for the weighted representation as well (k;,, ~ k?!1). In (c) and (d), we logarithmically binned the

data points and calculated mean values and standard deviations in each bin.

a small subset of highly connected nodes. Analogously,
there exists a majority of nodes having low strength while
a minority of nodes reach high levels of strength. A list of
highest interacting domains shows prominent protago-
nists that are responsible for important cellular functions
such as signaling and cell-cell contacts (Table 1). In partic-
ular, we observe that highly connected domains such as
pkinase, rrm1 or Zinc finger C2H2 also pool a lot of
strength, indicating a proportionality between high level
of interactions and their strength.

Investigating the local cohesiveness of network areas, the
unweighted representation of the clustering coeffcient C;
measures the degree of cohesiveness around a particular
domain i [12]. The dependence of the average clustering
coeffcient C from the domains degree k recovers further
information about the structure of the underlying net-
work. In most real world networks C(k) exhibits a highly
nontrivial behavior as exemplified by a power-law decay
with increasing degree k. Averaging over the clustering
coeffcients of domains with a certain degree k, we find this
particular signature, indicating the presence of a nested
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Table I: Statistics of single domains. Domains in the underlying interaction network are characterized according to their degree k and
their strength s, defined as the sum of all weights the domain in question is involved in. Here, we show the 10 most connected and

strongest PFAM domains.

PFAM domain description degree k PFAM domain description strength s
PFO1423 LSM 72 PFO1423 LSM 777.7
PFO007 | ras 50 PFOOI 18 TCP-1/cpn60 294.5
PF00022 actin 50 PF00022 actin 291.5
PF00069 pkinase 49 PF00069 pkinase 289.0
PF00076 rrml| 45 PF0O0071 ras 263.5
PFOOI 18 TCP-1/cpn60 43 PF00076 rrml 2534
PF00096 zf-C2H2 39 PB075870 - 2488
PB075780 - 39 PF00227 proteasome 237.1
PF00036 efhand 36 PFO1008 IF-2B 226.5
PFO1008 IF-2B 35 PF0000I 7tm-1 226.0

hierarchy of modules [1] (Figure 1c). Accounting for
weights, Barrat et al. [6] extended the initial definition of
the clustering coeffcient to combine topological informa-
tion with weights of network links. Considering the expec-
tation value of each domain interactions E as the weight
of links, we define the weighted clustering coeffcient as

cw_ 1 Ejj + Eyp
[ k 2
si(ki =1) 2

jih

AjjAip A - (2)

Since the structure essentially follows the concept of the

original clustering coeffcient, we expect that C;" retains its
dependence from the degree k. Indeed, we find a power-
law dependence in both networks (Figure 1c). Consider-
ing the mean weighted clustering coeffcient of the whole
network as the arithmetic mean over all domains N,

()4
N
result to the value of the mean unweighted clustering coef-

fcient of 0.093, we find that (CvRanglebracket;/
(CRanglebracket; = 1.0. Since the weighted clustering coef-

N.C¥, we obtain 0.097. Comparing this

fcient reflects a domain's neighborhood to be connected
to domains of similar strength the latter result indicates
that local clustering predominately occurs on the level of
comparable strength.

Another measure that allows insights in the relationship
of network layout and weights are degree-degree correla-
tions. Similarly to Cv, we define the average weighted
nearest-neighbors degree as [6]

1
fom,i = ;zaijEijkj- (3)
b

In an unweighted network the definition of k,,, ; recovers

nn,i

the average nearest neighbor degree of a node, where

1 . .
i = k—izjaijkj . In the presence of correlations with

connectivity k, the behavior of the latter measure k,,, ;(k)
identifies two classes of networks. If k,,,(k) is an increasing
function with k, vertices with higher degree have an
increased probability to be connected with large-degree
vertices, a feature that is known as assortative mixing. If
k,.(k) decreases with k, the underlying network is disas-
sortative, indicating that high degree vertices predomi-
nantly are connected to sparsely linked ones. Similarly to
other biological networks [13], we find a weak albeit sig-
nificant trend toward disassortativity in both the
unweighted and weighted domain interaction networks
(Figure 1d). Considering the nearest neighbor degree of
the whole network as the arithmetic mean over all nodes

1
N, <k,”l”n > :Nzglkz]"/i , we obtain 12.81. Comparing

this result to the value of the mean unweighted nearest
neighbor degree of 12.84, we find that 10216; k;,, 10217;/

k_nn'w= 1.0, indeed confirming that in both the
weighted as well as unweighted representation the disas-
sortative behavior prevails.

The previously introduced topological measures of both
unweighted and weighted representations of the same
domain interaction network share the same qualitative
features, suggesting that weights and topology are entan-
gled entities. However, recalling the observation that the
degree product does not correlate with the links underly-
ing weights casts doubt on this assumption. Further
insights into a potential interplay of topology and utiliza-
tion of domain interactions arise from correlations
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between a domains degree and strength (Figure 2a).
Despite the existence of inevitable fluctuations, the
dependence of the strength from the degree of a domain
in the underlying domain interaction network shows a
clear and significant power-law s(k) ~ kf with A= 1.04,
allowing us to conclude that topology and utilization of
links in domain interaction networks are separate entities
since independent weights and connectivities would lead
to an exponent A= 1 [6]. We receive further support of this
hypothesis by the disparity value Y,, a measure that quan-
tifies biased distributions, defined as

Ej
ni=3Y = (4)

jer(i) Si

where I'(i) is the set of neighbors of domain i. In Figure 2b
we observe a clear power-law in the dependence of the
disparity value Y, from the degree k, Y, (k) ~ k0. Similarly
to the dependence of the strength from the degree (Figure
2a), an exponent close to 1 suggests that the expectation
values of domain interactions are distributed in an uncor-
related manner [6,14].

The absence of any correlations between the structure of
the web of domain interactions and their confidence sug-
gests that domain interactions hardly interfere with each
other. As a consequence, protein interactions are prima-
rily governed by a single domain interaction. Indeed, a
recent survey of protein interactions uncovered a rate of
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94% that protein interactions are determined by a single
pairwise domain interaction [15] while protein interac-
tions that involve interactions between two or more
domains are hardly found. A high E reflects the probabil-
ity that the domains in question indeed interact while a
low Ej; suggests that other potential domain interactions
are roughly as good at explaining the observed protein
interactions |7]. Therefore, we assume that a protein inter-
action is governed by the domain interaction with the
highest expectation value. In order to uncover a potential
correlation between the quality of a particular protein
interaction and the highest scoring domain interaction,
we utilize two well curated sets of protein interactions in
S. cerevisiae [16] and D. melanogaster [17] where each
interaction is evaluated by a confidence score. Utilizing
information about the domain composition of proteins as
of the Integr8 database, we screen each domain pair that
is suggested by the domain architectures of the underlying
proteins. Provided these pairs indeed map to high scoring
domain interactions, each protein interaction is assumed
to be governed by the domain interaction with highest
expectation score. Applied to the evaluated protein inter-
action sets of S. cerevisae and D. melanogaster, we observe
a strong and significant correlation between an interac-
tions confidence and the expectation value of the under-
lying highest scoring domain interaction (Figure 4a). In
turn, we can potentially use the previous conclusion that
the absence of correlations between interactions and their
probability indicates the dominance of single domain
interactions as a means to infer protein interactions. As an

(1]
10 - T — T T T — T
P b
L &~
L \.\.
\._\-
L 3
-E:‘ '\'\'
= lal
© o .
o 107 R
@2 | S e
T L \f\_
L \-.\
»
-2 | P
107 10 100
degree

Statistics of domain strength. (a). The strength of a domain is defined as the sum of all expectation values of interactions a
domain is involved in. The dependence of the strength from the domains degree shows a clear power-law s(k) ~ k'-04 (Pear-
son's r = 0.94, P < 10-3; Spearman's p = 0.93, P < 10-%), suggesting that connectivity and weights are widely independent. (b)
The disparity value offers further support for this conclusion, since we find that Y,(k) ~ k-0 (Pearson's r = 0.43, P < |10-5; Spear-

man's p = 0.88, P < 10-3).
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Schematic illustrations of prediction and evaluation procedures. (a). Each pair of proteins in P. falciparum that shares
at least on GO Slim term of the cellular component annotation set is screened for all possible domain pairs. Comparing all
interacting domain pairs according to their expectation value, we assume that the highest scoring domain interaction is govern-
ing the candidate interaction. (b) For each interaction candidate we calculate hypergeometric clustering coeffcients C,, and co-
expression correlation coeffcients rp. These parameters allow the domain independent assessment of a protein interaction by

utilizing a logistic regression model.

organism, we chose the human malaria parasite P. falci-
parum. Utilizing domain information from the Integr8
database we annotate Plasmodium proteins with their
corresponding PFAM domains. In order to avoid interac-
tions between proteins that appear in different compart-
ments we additionally assign each protein with its cellular
component terms as of the GO Slim database [18]. Con-
sidering all protein pairs of Plasmodium we select those
that share at least one GO Slim term. The domain archi-
tectures of candidate protein pairs are screened for
domain pairs that have at least one high scoring domain
interaction. In case we find more than one high scoring
domain interaction, we choose the highest scoring one,
according to the statistical argument that domain interac-
tions with higher expectation score have a better chance to
explain the underlying protein interaction. In Figure 3a,
we give a schematic survey of the procedure. Applying this
method to the proteome of P. falciparum we find 1, 428
interactions between 361 proteins [see Additional file 1].
In order to evaluate each of these potential protein inter-
actions, we characterize each link by measures that reflect

biological significance. In particular, we are interested in
parameters that are independent of the initial assumption
that the highest scoring domain interaction indeed can be
used to predict protein interactions. As such, we choose
co-expression correlation values of interacting proteins,
since similar expression profiles tend to indicate interact-
ing proteins. For P. falciparum, we utilized gene expression
data over 48 time points. Compiling gene expression data
derived from micro-array analysis [19-21], we determine
Pearson's correlation coeffcients r,, of each interaction (see
Materials and Methods). In addition, we calculated hyper-
geometric clustering coeffcients C,,, for each interaction, a
topological measure that reflects local cohesiveness
around a certain link and strongly correlates with the
quality of the underlying protein interaction [22] (see
Material and Methods). Combining these measures, we
utilized a logistic regression method (see Material and
Methods) trained by carefully selected sets of 213 true
positive and 173 negative interactions, allowing us to
assess the quality of each interaction by a confidence score
between 0 and 1 (Figure 3b). As a quality measure of the
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utilized training sets, we performed a leave-one-out strat-
egy, allowing us to obtain 95% accuracy.

Binning interactions according to their confidence value,
we observe that about half of the interactions have an ele-
vated degree of confidence (Figure 4b). In each bin, we
averaged the expectation score of the domain interactions
and observe that high quality of protein interactions - as
exemplified by high confidence - are strongly linked to
high expectation scores of the underlying domain interac-
tion (Figure 5a). Supported by significant correlation val-
ues, this observation is a confirmation of our original
assumption that protein interactions are dominated by
the highest scoring domain interactions, while high scor-
ing domain interactions indicate the presence of a poten-
tial protein interaction. As additional measures of quality,
we make use of the well known fact that protein interac-
tions occur between proteins of similar function [23]. As
a measure of functional homogeneity of interacting pro-
teins, we apply a hypergeometric test (see Materials and
Methods) of the distributions of the proteins GO terms
[18]. In particular, this statistical measure reflects the
probability that GO terms of interacting proteins have
been distributed randomly. Averaging over all interaction
specific values in each bin, we find a strong and significant
correlation, confirming that protein interactions of
increasing confidence tend to occur between functionally
related proteins (Figure 5b). As a final test, we wondered
if the predicted protein interactions in P. falciparum have
an evolutionary signature. In particular, we utilized three
protein interaction sets of the organisms S. cerevisiae [16],
D. melanogaster [17] and H. sapiens [23,24]. Utilizing
orthologous protein information from the InParanoid
database [25], we sampled all protein interactions in each
organisms that have a fully conserved counterpart - an
interolog [26] - in the predicted set of interactions of P.
falciparum. In Figure 5¢, we observe that especially predic-
tions with high confidence pool most of the found inter-
ologs in each organism, strongly indicating the reliability
of our predictions.

We compared the predicted sets of interactions to a
recently published set of experimentally determined pro-
tein interactions of P. falciparum [27]. Although many
interactions of this set have been assigned potential pro-
tein domain interactions, the utilized domain informa-
tion does not overlap strongly with PFAM, restricting the
overlap with our predicted set to only 2 interactions. In
particular, we find self interactions of the hypothetical
Plasmodium proteins PFL0275w and PF10_0232. In the
first case, a self interaction of the FHA domain gives rise to
the observed protein interaction, while a self interaction
of chromo domain determines the latter one. In both
cases, the interacting proteins are hypothetical, meaning
that their function is unclear. However, the fact that we

http://www.biomedcentral.com/1471-2164/7/122

found domain interactions suggests a role for these pro-
teins. In particular, the forkhead-associated FHA domain
is a phosphopeptide recognition domain found in many
regulatory proteins, while the chromo (CHRromatin
Organization MOdifier) domain is a conserved region of
around 60 amino acids involved in the alteration of the
structure of chromatin. Putatively, PFL0275w is involved
in regulatory activities while PF10_0232 might play a role
in chromatin remodeling. In general, our predictions
show a prevalence of functions revolving around the pro-
teasome, spliceosome and ribosome. In particular, Table
2 ranks the domain interactions that gave rise to the high-
est number of predictions in P. falciparum. In particular,
we observe that domain interactions between the RNA
recognition motif rrm1, proteasome and LSM domains
appear among the most prevalent domain interactions. As
the previous examples illustrates, many interactions are
related to self interactions of the underlying domains. As
such, we observe a total of 154 self interactions. Indeed, it
is well known that multi-protein complexes contain
homo-dimers including proteasome [28], ribosome [29]
and spliceosome [30]. In particular, rrm's are found in a
variety of RNA binding proteins, including various
hnRNP proteins, proteins implicated in regulation of
alternative splicing, and protein components of SnRNPs.
The LSM domain contains Sm proteins as well as other
related LSM (Like Sm) proteins. The U1, U2, U4/U6, and
U5 small nuclear ribonucleoprotein particles (snRNPs)
involved in pre-mRNA splicing contain seven Sm proteins
in common, which assemble around the Sm site present
in four of the major spliceosomal small nuclear RNAs. The
U6 snRNP binds to the LSM (Like Sm) proteins. The pro-
teasome is a multicatalytic proteinase complex that is
involved in an ATP/ubiquitin-dependent proteolytic
pathway. In eukaryotes, the proteasome is composed of
about 28 distinct subunits, which form a highly ordered
ring-shaped structure (20S ring). Concluding, in the pro-
teasome, ribosome and spliceosome proteins which carry
those domains tend to shape stable structures which are
mostly governed by self domain interactions, validating
the presence of self interactions in our predictions.

Discussion & conclusion

Assessing the statistical characteristics of a weighted
domain interaction network we show that the confidence
as exemplified by the expectation value of domain inter-
actions is far from being evenly distributed. Characteriz-
ing the wunderlying weighted domain interactions
network, we observe that weighted and unweighted meas-
ures of topology follow the same trends. Despite these
observations we do not find any significant proof that
topology and weights in the domain interaction network
are necessarily dependent from each other. In fact, corre-
lations between strength and connectivity as well as dis-
parity suggest that weights as exemplified by the
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Table 2: Domain interactions in predictions of protein interactions in Plasmodium. Predicting protein interactions by their highest
scoring domain interaction in P. falciparum we find the following 20 most frequent domain interactions. N refers to the domain
interactions occurrence in the predicted set, % depicts the percentage of self protein interactions, and E is the expectation value of

the underlying domain interaction.

domain description domain description N Yoq) E

PF00076 rrml PFO1423 LSM 137 - 14.5
PF00227 proteasome PF00227 proteasome 120 12.5 103.1
PFO1423 LSM PFO1423 LSM 120 12.5 387.1
PF00005 ABC transporter PFO0005 ABC transporter 83 16.5 4.9
PF00097 zf-C3HC4 PF00240 ubiquitin 74 - 5.7
PF00076 rrm| PF00076 rrm| 56 28.7 14.5
PF00022 actin PF00022 actin 55 18.1 8.5
PFO0125 histone PFO0125 histone 36 22.1 1.6
PFO1423 LSM PF06220 zf-Ul 30 - 20.3
PF02953 Tim|0/DDP zinc PFOO153 mitochondrial 30 - 6.6

finger carrier
PF00097 zf-C3HC4 PFO1283 Ribosomal protein 24 - 3.0
S

PF00097 zf-C3HC4 PFO1775 Ribosomal L|8ae 24 - 7.3

PF00097 zf-C3HC4 PF00833 Ribosomal S17 24 - 3.6
PF00097 zf-C3HC4 PF00827 Ribosomal LI5 24 - 32
PFOOI118 TCP-1/cpn60 PFOOI18 TCP-1/cpn60 23 348 17.9

chaperonin chaperonin
PF00928 Adaptor PFOI1217 Clathrin adaptor 20 - 21.7
complexes
PF00076 rrml PFO1974 tRNA intron 18 - 3.0
endonuclease
PF00076 rrml PF06220 zf-Ul 18 - 6.2
PFO1602 Adaptin N PFOI217 Clathrin adaptor 16 - 9.2
terminal region complex
PFO0125 histone PF00956 Nucleosome 16 - 14.5

assembly protein

expectation score of each domain interaction are ran-
domly distributed, allowing us to (i) treat the static layout
of links and their weights as separate entities and (ii) con-
clude that protein interactions are indeed governed by a
single protein domain interaction [15].

The presence of highly reliable domain interactions offers
potential new ways for the prediction and evaluation of
protein interactions. In particular, we observe a correla-
tion between an elevated confidence level of a protein
interaction in yeast and fly and an increase in the reliabil-
ity of the underlying domain interactions. As an applica-
tion, we propose a novel method for the inference of
potential protein interactions. While this method can be
applied to the prediction of protein interactions in any
organism for which PFAM annotation of the organisms
proteome is available, we chose the human malaria para-
site P. falciparum. Screening through all pairs of proteins
that provide at least one high scoring domain interaction,
we sample potential candidates. Here, we stress that the
determination of a high scoring domain interaction has
been used as a preselection step of potential protein inter-
action candidates. In order to evaluate each interaction we

resort to interaction specific parameters that are inde-
pendent from the underlying domain interactions. We
find interactions between proteins, that not only show an
elevated degree of functional similarity and evolutionary
conservation, but also validate our assumption that high
scoring domain interactions indeed give rise to reliable
interactions. Predominately, we find an enrichment of
protein interactions caused by domain interactions that
represent functions in the ribosome, proteasome and spli-
ceosome. As reported in protein complexes in other
eukaryotes, these functions emphasize a considerable
amount of self interactions, we also find in our predic-
tions.

Comparing with existing experimental data sets, we only
find a minimal overlap, caused by the fact that many pro-
teins of P. falciparum currently are not annotated with
PFAM domains. On the other hand, experimental deter-
mination of protein interactions in P. falciparum is in its
starting phase covering about a quarter of known pro-
teins. As such, our predictions can help focus experimen-
tal studies on specific interactions unique to this
pathogen.
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Expectation score vs. confidence in protein interactions of yeast and fly and statistics of training sets and pre-
dictions in Plasmodium. (a). Assigning each protein interaction the domain interaction with highest expectation value, we
observe that the confidence in the underlying protein interaction correlates with the expectation value of the highest scoring
interacting domain pair. In particular, the dependence of the mean domain expectation value E in each bin of confidence values
of yeast protein interactions follows a statistically significant exponential distribution (E ~ e(273 * @), Pearson's r = 0.28, P < 10-5,
Spearman's p = 0.31, P < 10-5). In principle, we obtain similar results for fly protein interactions (inset) (E ~ e(l75* ), r = 0.19,
P <103 p=10.16, P < 105), allowing us to conclude that modeling a protein interaction by the highest scoring domain interac-
tion is a suffcient approximation for the determination of the presence and quality of the underlying protein interaction. Error
bars correspond to standard deviations in each bin. (b) In order to evaluate predicted interactions in P. falciparum, we utilized
a logistic regression model that we trained by carefully selected sets of true positive and negative interactions. Binning confi-
dence values, we show the frequencies of the predicted protein interactions, the positive (good) and negative (bad) training

sets.

Methods

Domain-domain interactions

As a source of high quality interaction data of protein
domains we utilized the results of a recent study by Riley
et al. [7]. In this statistical approach called domain pair
exclusion analysis (DPEA), a likelihood ratio test is
applied to assess the contribution of each potential PFAM-
A and PFAM-B domain [8] interaction to the likelihood of
a set of observed protein interactions. DPEA consists of
three steps: (i) Utilizing protein interaction data from DIP
[9], the frequency S;; of an interaction between i and j in
relation to their abundance in the data is computed. (ii)
Using Sj; as an initial guess, an expectation maximization
algorithm is applied to obtain a maximum likelihood esti-
mate of ©; which stands for the probability of domain
interaction ij among all the possible domain interactions
which are suggested by the domain architectures of the
interacting protein pairs where domain i and j co-occur. In
a third step, all possible interactions of domains i and j are
excluded from the mixture of competing hypotheses for
the presence of corresponding protein interactions, EM is
rerun, and the change in likelihood is expressed as a log
odds score, E;, reflecting the confidence that domains i

and j indeed interact. As such, a high value of E;; indicates
that there is extensive evidence in protein 1nteract10n data
that domains i and j interact while a low E; suggests that
other potential domain interactions are roughly as good
at explaining the observed protein interactions [7]. As a
proof of concept, domain pairs inferred to interact with
high E are significantly enriched among domain pairs
known to interact in the Protein Data Bank (PDB). The
domain interaction network thus obtained comprises 1,
566 domains which are embedded in 2, 767 interactions
that score E;; > 3.

Protein interactions

We utilized a large scale compilation of yeast protein
interactions. In particular, this data set combines 47, 783
experimentally obtained protein interactions among 4,
175 proteins in S. cerevisiae [16] obtained from sources as
diverse as mRNA expression studies and yeast2hybrid
screens. Each interaction was characterized by a confi-
dence score obtained by the application of a logistic
regression model. Analogously, the quality of experimen-
tally protein interactions in D. melanogaster was assessed,
allowing for 6, 222 proteins and 16, 914 links [17]. As for
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Statistics of predicted interactions in Plasmodium
(). In each bin, we calculated the mean expectation value of
domain interactions that govern the underlying protein inter-
actions. In particular we obtain a significant correlation (r =
0.22, P < 103, p = 0.34, P < 105). Error bars correspond to
standard deviations in each bin. (b) In the same way, we cal-
culated the mean functional homogeneity, a measure that
reflects the probability that GO terms of interacting proteins
are similar. In particular, we find a statistically significant cor-
relation (r = 0.45, P < 105, p = 0.52, P < 10-%). (c) Determin-
ing the frequency of interactions which are fully conserved in
the organisms S. cerevisiae, D. melanogaster and H. sapiens we
find a strong tendency toward evolutionary conservation of
predicted interactions with elevated level of confidence.
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direct experimental observations of protein interactions
in P. falciparum, we utilized a set of 2, 475 interactions
among 1, 304 proteins that have been obtained by the
modification of a yeast2hybrid method [27]. Addition-
ally, we utilized a large-scale compilation of human inter-
actions totaling 89, 572 interactions among 9, 018
proteins [23,24].

Protein domain data

The advent of fully sequenced genomes of various organ-
isms has facilitated the investigation of proteomes. The
Integr8 database has been set up to provide comprehen-
sive statistical and comparative analyzes of complete pro-
teomes of fully sequenced organisms. The initial version
of the application contained data for genomes and pro-
teomes of 182 sequenced organisms (including 19 archae,
150 bacteria and 13 eukaryotes) and proteome analyzes
derived through the integration of UniProt [31], InterPro
[32], CluSTr [33], GO/GOA [34], EMSD, Genome
Reviews and IPI [35]. In particular, we utilized IPI (Inter-
national Protein Index) files to elucidate the domain
architecture of the corresponding proteins. For our analy-
sis, we focused on domain data retrieved from the PFAM
database, a reliable collection of multiple sequence align-
ments of protein families and profile hidden Markov
models [36].

Orthologous protein data

The InParanoid database [25] provides putative ortholo-
gous sequence information for the complete proteomes of
organism pairs S. cerevisiae, D. melanogaster, H. sapiens and
P. falciparum. The algorithm for detecting orthologous
relationships is based on pairwise similarity scores which
are by default calculated with the BLASTP program. InPar-
anoid detects mutual best hits between sequences from
two different species. These are two main orthologs that
form an orthologous group. Other sequences are added to
this group if they are closely related to one of the main
orthologs. These members of the orthologous group are
called in-paralogs. A confidence value provided by a
standard bootstrap procedure for each in-paralog shows
how closely related it is to the main ortholog. In our
study, we only selected the main sequence pairs of each
orthologous group allowing us to obtain 2, 319 yeast pro-
teins, 1, 351 in D. melanogaster and 1, 525 in H. sapiens
with putative orthologs in P. falciparum.

Co-expression data

Genes with similar expression profiles are likely encoding
interacting proteins. For P. falciparum, we utilized gene
expression data, compiling 5, 156 genes over 48 time
points as of Winzeler et al., [19,21] and of Bozdech et al.
collecting 4, 318 genes over 48 time points [37]. As a gene
similarity metric we calculated Pearson's correlation coef-
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fcient for every protein interaction over m time points
defined as

g =(a0)

GiGj

) (5)

where (xRanglebracket; and (yRanglebracket; are the sam-
ple means of expression values x; and x;, and o;and o; are
their standard deviations.

Logistic regression

In order to get an estimate of an interactions reliability, we
employed a logistic regression model. According to the
logistic regression, the probability of a true interaction T,,,,
given the two input variables, hypergeometric clustering
coeffcient x, = C,,, and co-expression correlation coeffcient
Xy =1p X = (¥, %)

exp(Bo + Bixi + Baxa) (6)
L+exp(Bo + Prxy + Baxy)

where [, are the parameters of the distribution. Given
training data we optimized the distribution parameters by
maximizing the likelihood of the data. Here, we applied
the corresponding routines as of the Biopython package
[38]. As a training set for true positives we choose 213
high scoring protein-interactions in yeast [16] that are
fully conserved in Plasmodium. In the same way, we
selected 173 low scoring interactions as true negative
training set. Applying a leave-one-out analysis to deter-
mine the prediction accuracy, our model is recalculated
from the training data after removing the interaction to be
predicted (leave-one-out), allowing us to obtain the cor-
rect result in 95% of cases.

Pr(Ty, | X) =

Hypergeometric clustering coeffcient

Recently, a network topology based approach uncovered
a remarkable correlation between enhanced quality of
protein interactions and the degree of clustering of their
immediate network neighborhood [22]. Considering a
network with N nodes, we define the hypergeometric clus-
tering coeffcient as

INW)| ) N=|N()|
min(lN(i)l,W(W)U i | N(w) | —i

[|N[(Vw)|]

where N(x) represents the neighborhood of a vertex x.
Given fixed neighborhood sizes N(v) and N(w) of nodes v
and w, the hypergeometric clustering coeffcient increases
with elevated overlap between the nodes neighborhoods.
Provided that the neighborhoods are independent, the
summation can be interpreted as a p value, reflecting the

C,y =—log

(7)

i=N(@)N(w)|

http://www.biomedcentral.com/1471-2164/7/122

probability of obtaining a number of mutual neighbors
between nodes v and w at or above the observed number
by chance.

GO annotation data and functional homogeneity
Similarly to the hypergeometric clustering coeffcient, we
define the functional homogeneity of a domain pair ij

|GO(v) | Y T-| GO(v) |
min(|GO()]|GO(w)]) i | GO(w) | —i

fh1j = —lOg

(8)
i=|GO(v)NGO(w)|

T
| GOQw)| ]

where GO(i) is the set of GO Terms of protein i, and T is
the total number of different GO terms [18]. In analogy,
the summation can be interpreted as a p value, reflecting
the probability that a protein pair shares a certain number
of GO terms at or above the observed number by chance.

Additional material

Additional File 1

Predicted protein interactions in P. falciparum. This file contains the
full set of predicted protein interactions in P. falciparum. Each column is
tab-delineated, presenting the interacting proteins (column 1&2), the
underlying domain interactions (columns 3 & 4), their expectation score
(column 5), the interactions confidence score (column 6) and the proteins
functional annotation (columns 7 & 8)

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-122-S1.TXT]
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