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Abstract
Background: Trisomy of human chromosome 21 (Chr21) results in Down's syndrome, a complex
developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however,
poses a particular challenge, because the aneuploid region of Chr21 contains many genes of
unknown function. Subcellular localization of human Chr21 proteins may contribute to further
understanding of the functions and regulatory mechanisms of the genes that code for these
proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and
cost-effective analysis of the intracellular distribution of Chr 21 proteins.

Results: We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11
(14.5 Mb) to MCM3AP (46.6 Mb), with part of them expressed aberrantly in the Down's syndrome
mouse model. Open reading frames of these genes were cloned into a mammalian expression
vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and
reverse transfected into HEK293T cells for protein expression. Co-localization detection using a
set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular
localization properties of 52 proteins. For 34 of these proteins, their localization is described for
the first time. Furthermore, the alteration in cell morphology and growth as a result of protein
over-expression for claudin-8 and claudin-14 genes has been characterized.

Conclusion: The cell array-based protein expression and detection approach is a cost-effective
platform for large-scale functional analyses, including protein subcellular localization and cell
phenotype screening. The results from this study reveal novel functional features of human Chr21
proteins, which should contribute to further understanding of the molecular pathology of Down's
syndrome.
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Background
Eukaryotic cells are characterized by a high degree of com-
partmentalization and most protein activities can be
assigned to particular cellular compartments. Moreover,
the accurate functions of protein interaction networks rely
greatly on the proper localization of each protein compo-
nent. In many cases, aberrant translocation of proteins
correlates highly with pathological changes in cell physi-
ology. Until recently, protein localization experiments
have been confined to only one or a few particular genes
of interest. The first large-scale localization study in mam-
malian cells was performed in microwell-plate format by
Simpson et al. and included 107 human genes [1].
Recently, an automated transfection and immunostaining
system for 96-well plates has been established [2]. A
microwell-plate-based approach, however, is associated
with a high consumption of reagents and a requirement
for extensive automation. A recently developed trans-
fected cell array (TCA) technique [3] represents a cost-
effective alternative for high-throughput approaches in
functional genomics. The principle of the TCA technique
is based on the transfection of DNA or RNA molecules,
immobilized on a solid surface, into mammalian cells.
Subsequently, detection of the physiological effects on
these cells caused by the introduction of foreign nucleic
acid is carried out [4]. We optimized this platform for
high-throughput protein co-localization studies and
applied it to the characterization of human chromosome
21 (Chr21) encoded proteins.

Functional analysis of Chr21 proteins is of great medical
relevance. This refers, in particular, to trisomy of human
Chr21, which results in Down's syndrome, a complex
developmental and neurodegenerative disease. The phe-
notype of Down's syndrome includes various organ mal-
formations, stereotypic craniofacial anomalies and brain
malformations [5]. Molecular analysis of this syndrome,
however, poses a particular challenge, because the aneu-
ploid region of Chr21 contains genes of unknown func-
tion. Genomic sequencing and gene expression analysis of
human Chr21 [6-10], as well as study of the transcriptome
of a Down's syndrome mouse models [11-15], provide a
comprehensive resource for the systematic functional
characterization of Chr21 genes. However, functional
characterization at the protein level has been performed
most often using protein prediction algorithms. There-
fore, determination of the subcellular protein distribution
would provide an important insight into the function of
human Chr21 genes. In the present study, 89 human
Chr21 genes were analyzed for subcellular localization of
protein using a TCA technique (Fig. 1). Furthermore,
changes in cellular phenotypes, such as cell morphology
and proliferation, could be identified as a consequence of
over-expression of some of these genes.

Results and discussion
Subcellular localization of Chr21 proteins
In order to ensure that the localization of the expressed
proteins has not been influenced by the cell array protocol
or His6 tagging, genes coding for proteins with well-
described localization to particular cellular compartments
were reverse transfected and over-expressed. The control
genes encoded for the CDH8, KDELR1, LMNA, Pex11a,
TGN38 and EGFP proteins [16-21]. All control proteins
have been detected in the locations as described [22].

The subcellular localization pattern for 52 out of 89
Chr21 proteins was determined using His6 epitope detec-
tion. The rest of the proteins could not be detected, as
their expression remains below the detection level of the
cell array. The subcellular distribution for mammalian
cells of 34 detected proteins is described here for the first
time. A summary of the localization data is presented in
Table 1 [see Additional file 1], together with the protein
and gene accession numbers, and information on gene
function and expression patterns. Localization images can
be visualized and downloaded from [22]. In order to
exclude the possibility that the fusion of the His6 tag at the
protein N terminus influenced its localization, the Chr21
open reading frames (ORFs) have been cloned with a Myc
epitope tag at the C terminus. The localization of the C ter-
minus-tagged proteins did not substantially differed from
the localization pattern of N terminus-tagged proteins
(data not shown).

A significant proportion of the proteins localized either in
the cytosol (31%) or in the nucleus (17%). In all, 23% of
proteins were found in both the cytoplasm and the
nucleus, or were found to translocate between these two
compartments. Localization of 29% of the proteins was
associated with components of the endoplasmic reticu-
lum (ER) secretory pathway, including the ER (10%), the
Golgi (5%) and endosome/lysosome compartment (4%);
10% of proteins were localized in the plasma membrane
(PM). Figure 2 shows localization examples of Chr21 pro-
teins in different cellular compartments. In what follows,
several features of protein distribution are discussed.

Cytosol
Two distinct localization features were observed for
cytosolic proteins. Proteins were either distributed evenly
throughout the cytoplasm or formed a punctate pattern of
distribution. For example, the HLCS gene codes for a
biotin-protein ligase and was found to localize through-
out the cytosol (Fig. 2). Another protein, myxovirus resist-
ance protein 1, which is encoded by the MxA gene,
revealed a punctate pattern in the cytosol, which does not
overlap with any organelle staining. The accumulated
localization pattern of MxA in our study supports previ-
ous suggestions that self-assembled MxA proteins wrap
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around or interact with the incoming viral nucleocapsids
and thereby prevent their replication [23]. Accola et al.
reported that the MxA protein localizes to the smooth ER
and might inhibit viral replication through alterations in
membrane organization [24]. We did not, however,
observe the co-localization of MxA with the ER marker,
protein disulphide isomerase (PDI) (Fig. 2).

Nucleus
The non-histone chromosomal protein HMG-14, which is
encoded by the HMGN1 gene, was found in the nucleus
but outside of the nucleolus (Fig. 2). This localization cor-
related with its suggested function as a modulator of the
interaction between DNA and the histone octamer
through the binding of HMG-14 to nucleosomal DNA. In

Schematic presentation of the cell array-based protein localization procedureFigure 1
Schematic presentation of the cell array-based protein localization procedure. (A) Open reading frames (ORFs) derived from 
human chromosome 21 were cloned into a mammalian expression vector containing an amino-terminal His6 tag, spotted in an 
array format and reverse transfected into an HEK293T cell line. (B) Proteins expressed on the cell arrays were detected using 
anti-His antibody and a set of organelle counterstaining was performed. (C) The efficiency of protein expression and labeling 
was monitored using a BioCCD laser scanning system. The green signal indicates the expression of enhanced green fluorescent 
protein (EGFP). The red signal indicates His6-tagged protein. (D) For single-cell analysis, fluorescent and confocal microscopy 
was used. The red signal in the 1000× magnification images represents expressed C21orf25 protein, whereas the green and 
blue signals represent labeled microtubule and nucleus, respectively.
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contrast, the novel nuclear protein 1 (NNP-1) localized
exclusively in the nucleolus, in accordance with its role in
the synthesis of 28 S rRNA (Fig. 2) [25].

Nucleus and cytoplasm
In all, 23% of Chr21 proteins were found to localize in
both the nucleus and the cytoplasm. The nucleus/cyto-
plasm distribution ratio for a particular protein, however,
varied from cell to cell. In some cells, the proteins with
dual localization could be found either only in the
nucleus or only in the cytoplasm, suggesting a continuous
translocation activity. For example, the variable distribu-
tion of the MCM3AP protein (minichromosome mainte-
nance protein 3-associated protein) in the nucleus and
cytoplasm (Fig. 3C) correlates with its role in the translo-
cation of MCM3 proteins from the cytosol into the
nucleus. The MCM3 protein is known to be an essential
factor that allows DNA to undergo a single round of rep-
lication per cell cycle [26,27]. The requirement for nuclear
import of MCM3 protein changes according to the phase
of the cell cycle, which is probably reflected by variable
distribution of MCM3AP between the nucleus and the
cytosol [26].

ER-associated secretory pathway
PM proteins, lysosome proteins and secretory proteins are
first targeted to ER and then to the Golgi apparatus for
modifications before being transported elsewhere. In con-
trast, proteins that are resident in the ER and the Golgi are
retrieved and retained in these two organelles. For exam-
ple, the TMPRSS3 protein (transmembrane protease ser-
ine 3), which mutation results in autosomal recessive
neurosensory deafness was found to localize exclusively
in the ER (Fig. 2), as described [28].

For some proteins, the entire protein-processing pathway
could be traced throughout different organelles. Good
examples are two integral PM proteins that are encoded by
the KCNE1 (Fig. 2) and KCNE2 genes, both of which
belong to the potassium channel, voltage-gated, ISK-
related subfamily. Figure 3A shows consecutive steps of
KCNE2 protein maturation, with its final destination
being the PM, where it acts as a K2+ channel. Here, we
report for the first time, that these proteins localize also to
the lysosomes. This co-localization of KCNE2 protein
with the lysosome marker LAMP2 (lysosomal-associated
membrane glycoprotein 2) (Fig. 3A) could reflect the abil-
ity of the PM proteins to shuttle between the PM and the
endosome/lysosome compartment. Alternatively, the lys-
osomal location of KCNE1 and KCNE2 proteins could
result from their direct transport from the Golgi to the lys-
osome. It is not clear which of the two mechanisms
accounts for this dual localization pattern. Interestingly,
the KCNJ6 potassium channel protein, which is a member
of subfamily J, never showed the lysosomal resident pat-

Localization categories for detected chromosome 21 (Chr21) proteinsFigure 2
Localization categories for detected chromosome 21 
(Chr21) proteins. The Chr21 proteins were localized in a 
variety of cellular compartments. The images in the left panel 
represent anti-His staining of Chr21 proteins, with the gene 
names indicated in the upper left corner of each image. The 
images in the middle panel show applied counterstaining, 
with organelles indicated in the upper left corner. The images 
in the right panel present a merged picture from detection of 
Ch21 proteins and counterstaining. The scale bar represents 
10 µm.
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Protein intracellular translocation observed on cell arraysFigure 3
Protein intracellular translocation observed on cell arrays. (A) Stages of post-translational trafficking of KCNE2, a plasma mem-
brane (PM) protein, including the early modification within the Golgi complex (a) and final localization at the PM (b) or in the 
lysosomes (c), without retention in the ER. (B) Translocation of BACH1 and CHAF1B proteins during cell interphase and mito-
sis. 1. BACH1 proteins distributed in the entire cytosol at interphase. In early mitosis, most proteins accumulated in the 
nucleus and wrapped around condensed chromosome. 2. During the interphase, CHAF1B protein localized in the nucleus, 
whereas after cell division it was found in the cytoplasm of two daughter cells. (C) Differential localization patterns of 
MCM3AP protein in the cytoplasm and nucleus. The scale bar represents 10 µm.
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tern and localized at the PM only in the same cell array
experiment (Fig. 2).

Cell cycle-dependent protein translocation
In the case of the BACH1 and CHAF1B proteins, we
observed a cell cycle-dependent localization pattern.
Regarding the BACH1 protein, we observed a complex cell
division-dependent localization pattern. At interphase,
BACH1 was distributed in the entire cytosol. During the
early phase of mitosis, however, the protein accumulated
in the vicinity of condensing chromatin (Fig. 3B). The
chromatin assembly factor I p60 subunit (CHAF1B) pro-
tein translocated from the nucleus into the cytoplasm dur-
ing cell division (Fig. 3B). As reported [29], we observed
most of the CHAF1B protein localizing in the nucleus at
interphase, where it is involved in chromatin assembly
and DNA replication. After cytokinesis had occurred, we
detected the presence of the CHAF1B protein in the cyto-
plasm of two daughter cells, probably in its inactive form
after dissociation from chromatin.

The effects of protein over-expression on cell morphology
Clusters of cells transfected with gene CLDN8 or CLDN14
were found to undergo morphological changes. Overex-
pression of fifty of the 52 proteins was not associated with
any abnormal cell morphology.

Claudins comprise one of the two major integral mem-
brane protein families that are found in the tight junctions
of epithelial cells and endothelial cell sheets. There are
more than 20 members of the human claudin gene fam-
ily, which are characterized by heterogeneous tissue local-
ization patterns [30,31]. Daugherty et al. found that
translocation of claudin-5 from the PM to an intracellular
compartment helps to regulate tight junction permeabil-
ity during the differentiation of human fetal lung alveolar
epithelial cells to a type II cell phenotype [32]. Loss of
human claudin-14 results in autosomal recessive deafness
[33]. Furthermore, loss of claudin-3 may initiate cilia
degeneration of the retinal pigment epithelium [34] and
correlates with experimental autoimmune encephalomy-
elitis [35]. Despite the clinical relevance of the claudin
proteins, their structure within tight junctions and the reg-
ulatory mechanisms of protein expression is not entirely
understood. Here, we report for the first time subcellular
localization data for claudin-17, which localizes predom-
inantly at the PM (Fig. 4). The localization of claudin-14
has been described recently [36]. We observed several
morphological changes of HEK293 cells as a result of
over-expression of these proteins. Expression of claudin-8
and claudin-14, but not claudin-17, resulted in loss of
cell-membrane protrusions and cell retraction. Moreover,
a distinct change in nuclear shape could be observed in
cells expressing claudin-8 (not shown) and claudin-14,
but not in those expressing claudin-17 (Fig. 4).

Subcellular localization of 34 Chr21 proteins is reported
here for the first time. Figure 5 shows the localization pat-
terns of four selected proteins that are encoded by the
C21orf4, DSCR3, PCP4 and SH3BGR genes [see Addi-
tional file 1]. The C21orf4 protein was predicted to be an
integral membrane protein. Indeed, we determined its
localization in the PM. The DSCR3 gene has significant
homology to the Hbeta58 mouse gene, which is active in
embryogenesis [37]. In our study, the DSCR3 protein was
found in the nucleus, suggesting that it functions in the
regulation of transcription or in the maintenance of
nuclear structure. The PCP4 gene encodes brain-specific
polypeptide PEP-19, which has a key role in brain devel-
opment [38]. A precise function of the PEP-19 in this
process has not, however, been determined. Here, we
report localization of the PEP-19 in the cytosol and in the
nucleus (Fig. 5).

In Chr21 trisomic cells, genes are usually over-expressed
by 1.5-fold in comparison to diploid cells. There are, how-
ever, some exceptions, as described recently [11]. The
SH3BGR and KCNE2 genes showed a 2.61-fold and 3.39-
fold increase of expression in the kidney and midbrain,
respectively, in the Down's syndrome mouse model. In
our study, the SH3BGR protein revealed a uniform locali-
zation pattern in the cytosol (Fig. 5). As described above,
the KCNE2 protein showed a variable distribution pat-
tern, probably due to the differential level of expression in
particular cells (Fig. 3A). The abundance of the KCNE2
protein in the PM was lower than that in the lysosome/
endosome (Fig. 3A). This abundance-dependent protein
localization pattern might be particularly relevant in the
case of Chr21 trisomic cells, which over-express the
KCNE2 gene. This hypothesis, however, needs further
functional evaluation.

Conclusion
This study provides comprehensive information on the
subcellular distribution of human Chr21 proteins and the
physiological effects following over-expression for some
of these genes. This cell phenotype-based information
should contribute to further understanding of the molec-
ular pathology of Down's syndrome. The study has not
been performed in human Chr21 trisomic cells due to dif-
ficulties in reverse transfection of primary cells or immor-
talized primary cells. Nevertheless, the data provided in
this report may serve as a reference for comparative stud-
ies concerning aberrations of protein localization as a
result of trisomy 21. Cellular localization of many Chr21
proteins is described here for the first time. Together with
gene expression profiling and in situ hybridization data,
knowledge about the protein compartmentalization pat-
tern should contribute to creation of an integrated picture
of Chr21 molecular biology. Furthermore, the large-scale
localization data obtained in this study support the con-
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cept of application of array-based gene expression systems
for the evaluation of protein functions on a single-cell
level. It shows a versatility of the cell array technology for
analysis of gene sets at various levels of genetic informa-
tion flow. For example, cell arrays allow for parallel gene
silencing [39] or cellular localization studies of large gene

sets, resulting in cost-effective characterization of protein
functions on a genomic scale.

The cell array technology applied in this study has some
limitations. Currently, only adhesive cells growing as a
monolayer can be used for reverse transfection. Moreover,
efficient transfection of primary cells such as fibroblasts or

Influence of Chr21 protein over-expression on cellular physiologyFigure 4
Influence of Chr21 protein over-expression on cellular physiology. Over-expressed claudin-14 was retained in the retracted 
endoplasmic reticulum (a), which resulted in loss of cell-membrane protrusions (b). Claudin-17 localized in the plasma mem-
brane and its expression did not influence cell morphology. A distinct change in nuclear shape (c) was observed in cells 
expressing claudin-14 but not in those expressing claudin-17. The scale bar represents 10 µm.
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macrophages remains a substantial obstacle. Recently
published lentivirus-based "reverse transduction" of the
cells could dramatically improve DNA delivery into those
difficult-to-transfect cells [40]. Taking advantage of wide
cellular tropism of the lentiviruses, a variety of cell types
could be reverse transfected using a single vector con-
struct.

Regarding therapeutic purposes, a cell array-based high-
throughput localization platform might facilitate the
functional screening of chemical compounds that inter-
fere with the expression and translocation of the proteins
involved in a particular disease. We believe that cell array-
based, high-throughput screening of large genes sets,
based on both gene over-expression and knockdown, will
accelerate functional analysis of the vast amount of
sequence information that has emerged as a result of
genome sequencing projects.

Methods
Construction of Chr21 ORF plasmid
ORF sequences were obtained from the Chr21 gene cata-
logue [41]. A total of 207 primer pairs were designed
using PRIDE software [42] and used to amplify each ORF
from cDNA (Human MTC Panels I+II and QUICK-Clone
cDNA; Clontech, Heidelberg, Germany) or from public
IMAGE or MGC cDNA clones (RZPD, Berlin, Germany).
The PCR products were cloned into the pEntry vector
pDONR201. We verified the correct identities of the
inserts by generation of 5' and 3' ORF sequence tags. In all,
89 cloned ORFs were selected for re-cloning into the Gate-
way™ mammalian expression vector pDEST26, which car-
ries an amino-terminal His6 fusion tag. For the expression
of C-terminal tagged proteins, the ORFs were cloned into
the Gateway pDEST-474 vector containing a Myc tag at the
C-terminus (kind gift from Dr. Esposito, NCI-Frederick
Vector Engineering Group). Such prepared clones were
sequenced to confirm the presence of the full length of the
insert. Organelle-specific control proteins (kdelr1,
pmp22, pmp26, lapC1, laminA and tgn38) were also
cloned in the pDEST26 vector.

Microarray preparation
Before spotting, all purified plasmids were diluted in
0.2% (w/v) gelatin solution to reach final concentrations
of 50–100 ng/µl of plasmid and 0.18% gelatin. Depend-
ing on the number of plasmid samples in each test, man-
ual spotting or robotic spotting (arrayer from Virtek,
Toronto, Canada) was applied to print the plasmid DNA
onto standard glass slides coated with poly-L-lysine
(Sigma, Munich, Germany). The spotting procedure was
carried out using split pins (type SMP4, TeleChem, Sunny-
vale, CA) in a hood set at 55% humidity. Each spot was
120 µm in diameter, with a distance of 400 µm between
adjacent spots. Each DNA sample was spotted in tripli-
cate.

Cell culture and reverse transfection
Human HEK293T/17 (ATCC, CRL-11268) cells were cul-
tured in DMEM medium (Invitrogen, Karlsruhe, Ger-
many) supplemented with 10% (v/v) fetal calf serum
(Biochrom, Berlin, Germany), L-glutamine (Sigma) and
gentamicin (Gibco Invitrogen, Karlsruhe, Germany) at
37°C in a humidified 5% CO2 incubator. One day before
transfection, 10 × 106 HEK293T cells per 10-cm dish in 10
ml of medium were seeded out. Prior to transfection, the
arrayed slides were covered with Hybriwell (Grace Bio-
Labs, Bend, OR) and 190 µl of Effectene transfection rea-
gent (Qiagen, Hilden, Germany) was added, as described
[3]. After incubation for 25 min, the Hybriwell and trans-
fection reagent were removed and the slides were placed
into a QuadriPerm chamber (Greiner, Frickenhausen,
Germany). Subsequently, 3.5 × 106 HEK293T cells were
added on top of each slide for reverse transfection. Fol-

Subcellular localization of proteins of possible relevance to Down's syndrome pathogenesisFigure 5
Subcellular localization of proteins of possible relevance to 
Down's syndrome pathogenesis. The localization pattern of 
21 Chr21 proteins related to Down's syndrome critical 
region was described in this study. The figure shows localiza-
tion pattern for four of these proteins. Gene names are 
shown in the left panel, together with an indication of the 
protein localization. The middle panel shows nucleus DAPI 
staining. The scale bar represents 10 µm.
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lowing transfection for a period of 48–72 hours, cells were
fixed and subjected to immunofluorescence staining.

Immunofluorescence
Recombinant Chr21 proteins were detected with
Penta•His Alexa488 or Alexa555 conjugated mouse anti-
body (Qiagen). For cellular compartment labeling, the
mouse antibody against LAMP2 (H4B4 from Develop-
mental Studies Hybridoma Bank, Iowa City, IA) for lyso-
somes, against PDI for ER (Stressgen, San Diego, CA),
against adaptin-γ for the Golgi complex (BD Biosciences,
Heidelberg, Germany), against α-tubulin for microtubule
(Sigma), against vimentin for intermediate filaments
(Affinity BioReagents, Golden, CO), rabbit antibodies
against prohibitin for mitochondria and against catalyse
for peroxisome (Abcam, Cambridge, UK) were used.
Rhodamine-labeled phalloidin (Molecular Probes Invit-
rogen, Karlsruhe, Germany) and 4',6-diamidino-2-phe-
nylindole (DAPI) (Sigma) were used to stain F-actin and
DNA. After fixation with 100% methanol or 3.7% (v/v)
paraformaldehyde, the cell array was permeabilized with
0.1% (v/v) Triton X-100 or 0.5% (w/v) saponin and sub-
sequently blocked for 1 hour at room temperature using
5% (w/v) bovine serum albumin or 5% (v/v) normal
serum from the host species of the fluophor-labeled anti-
bodies. Cell arrays were incubated with rhodamine-
labeled phalloidin or the rabbit primary antibodies
together with mouse anti-His antibody. Incubation with
secondary antibody was performed with Alexa488-conju-
gated donkey anti-rabbit IgG antibody (Molecular
Probes) or Cy3-conjugated mouse anti-rabbit IgG anti-
body (Jackson ImmunoResearch, Cambridge, UK). The
organelle-specific mouse antibodies were always used
before anti-His antibody staining. Secondary staining was
performed with Alexa488 or Alexa568 goat anti-mouse
IgG antibody (Molecular Probes). After washing with
phosphate-buffered saline, the slides were incubated with
20% (v/v) normal mouse serum for 1 hour at room tem-
perature. The fluophor-conjugated anti-His antibody was
then added to detect the fusion protein. Each cell array
slide was incubated with DAPI before the final washing
and mounting with Prolong Gold anti-fade reagent
(Molecular Probes).

Laser scanning and microscopy
To observe Chr21 proteins within each cell cluster, a
BioCCD scanning system (Applied Biosystems, Darm-
stadt, Germany) was used. For cell morphology analysis
and protein subcellular localization, ImagerZ1 micro-
scope (Zeiss, Jena, Germany) and LSM510 confocal sys-
tem (Zeiss) were used, together with Axiovision 4.0 and
LSM510 software (Zeiss).
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