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Abstract

Background: NCI60 cell lines are derived from cancers of 9 tissue origins and have been
invaluable in vitro models for cancer research and anti-cancer drug screen. Although extensive
studies have been carried out to assess the molecular features of NCI60 cell lines related to cancer
and their sensitivities to more than 100,000 chemical compounds, it remains unclear if and how
well these cell lines represent or model their tumor tissues of origin. ldentification and
confirmation of correct origins of NCI60 cell lines are critical to their usage as model systems and
to translate in vitro studies into clinical potentials. Here we report a direct comparison between
NCI60 cell lines and primary tumors by analyzing global gene expression profiles.

Results: Comparative analysis suggested that 5| of 59 cell lines we analyzed represent their
presumed tumors of origin. Taking advantage of available clinical information of primary tumor
samples used to generate gene expression profiling data, we further classified those cell lines with
the correct origins into different subtypes of cancer or different stages in cancer development. For
example, 6 of 7 non-small cell lung cancer cell lines were classified as lung adenocarcinomas and all
of them were classified into late stages in tumor progression.

Conclusion: Taken together, we developed and applied a novel approach for systematic
comparative analysis and integrative classification of NCI60 cell lines and primary tumors. Our
results could provide guidance to the selection of appropriate cell lines for cancer research and
pharmaceutical compound screenings. Moreover, this gene expression profile based approach can
be generally applied to evaluate experimental model systems such as cell lines and animal models
for human diseases.

Background ogy at the molecular level. Ever since the development of
Cell lines derived from primary tumor tissues have pro-  Hela, the first human cancer continuous cell line by
vided a valuable tool for the understanding of cancer biol- ~ George Gey, Margaret Gey and Mary Kubicek more than
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50 years ago, cancer cell lines have been instrumental as in
vitro model systems in cancer research [1]. Much of the
knowledge that we have today on fundamental processes
in cancer cells has largely depended on the use of cell
lines. In addition, since cancer cell lines provide an unlim-
ited source of malignant cells, they are widely used in
screening for anti-cancer drugs. However, because cells
cultured in vitro lack the overall tissue architecture includ-
ing tumor microenvironment, the value of cancer cell
lines depends on if and to what extent cancer cell lines
represent primary tumors that they are derived from.
Some cancer cell lines undergo phenotypic and genotypic
changes due to genomic instability. Many factors such as
cross-contamination can cause cell line misclassification
[2]. A recent study of 500 leukemia cell lines determined
that 15% of these cell lines had been misclassified [3].

Several approaches have been utilized to authenticate can-
cer cell lines. The ability to form tumors when cell lines
were transplanted subcutaneously into nude mice allows
a direct comparison of histopathology between tumors
formed in nude mice and the human tumors of origin [4].
Efforts have been made to delineate morphological fea-
tures of cell lines in comparison with archival tumor tis-
sues that the cell lines are derived from [5,6]. At molecular
levels, expression of key proteins such as HER2/neu and
p53 in breast and non-small cell lung cancer cell lines and
their corresponding tumors have been assessed using
immunohistochemistry [5,6]. Widely used in forensic
analysis, DNA finger printing has been a valuable tech-
nique in analyzing loss-of-heterozygosity and microsatel-
lite alterations [7]. Through current finger printing
technology, one can not only confirm the identity of
established cell lines and identify new cell lines, but also
evaluate the purity of a cell culture [3].

The advent of high-throughput technologies, together
with the completion of human genome sequencing
project has created a new paradigm of understanding biol-
ogy by simultaneous measurement of tens of thousands
of genes in each biological sample. Numerous studies
have employed microarray technology for classification
and characterization of cancers. Comparisons between
breast [8] or lung tumors [9] and tumor tissue derived cell
lines have been attempted by gene expression profiling.
However, a two-way hierarchical clustering generated
dendrograms with cell lines and primary tumors falling
into two isolated groups [8]. Recently, a tissue similarity
index was developed to compare cell line and primary
tumor gene expression profiling data using expression of
tissue specific genes [10]. However, this approach that
depends solely on tissue specific gene expression is prob-
lematic since genes not selected in the analysis may repre-
sent key pathways in cancer development.
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NCI60 represents the most commonly used cancer cell
lines in cancer research and drug screening. NCI60 cell
lines have been extensively characterized by karyotyping
[11], gene expression profiling [12,13] and protein arrays
[14]. Their sensitivities to more than 100,000 compounds
have been measured by the National Cancer Institute's
Developmental Therapeutics Program (DTP) [15]. Here
we report a direct comparison between NCI60 cell lines
and 9 primary tumor types using publicly available gene
expression profiling data generated from more than 500
primary tumor samples. We used Pearson's correlation
coefficients to assess the similarities between cell lines and
primary tumors. Correlation coefficients between a cell
line and its presumed tumor of origin were tested against
those between the cell line and other tumors to examine
if the overall genome expression profiles derived from the
cell line most closely resemble those derived from its pre-
sumed tumor origin. Furthermore, supervised learning
methods were applied to classify cell lines into subtypes of
cancer or into different tumor developmental stages for
lung, CNS cancers and acute leukemia where clinical data
of primary tumor samples were available. Our results sug-
gest that the majority of the NCI60 cell lines are represent-
ative of their corresponding tumor types and thus provide
suitable model systems for the study of cancer malignan-
cies.

Results

To obviate fundamental difference inherent in different
array platforms, we focused our analysis on gene expres-
sion data from NCI60 cell lines and primary tumors
(Table 1) based on Affymetrix U95Av2 oligonucleotide
array platform. All the datasets represent the largest study
of each cancer type to ensure statistical significance in our
testing.

Confirmation of tumor origins for NCI60 cell lines

We used Pearson's correlation coefficients of global gene
expression profiles between cell lines and primary tumor
samples to measure their similarities. We defined that a
cell line is representative of its tumor origin if there is no
other tumor type that has a gene expression profile with a
significantly higher correlation to the cell line than the
presumed tumor origin (p value < 0.05). Based on these
criteria, the results of our analysis suggest that 51 of 59
NCI60 cell lines are representative of their corresponding
tumors of origin (Table 2). All of colorectal cancer, leuke-
mia, melanoma and ovarian cancer and most of breast
cancer (6/7), renal carcinoma (7/8) and non-small cell
lung cancer (7/9) cell lines have gene expression profiles
most similar to the corresponding primary tumors. How-
ever, none of the 2 prostate cancer cell lines appears to
represent their tumor origin based on our analysis. As
illustrated in Figure 1, the mean of the correlation coeffi-
cients of gene expression between a melanoma cell line
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Table I: Gene expression profiling datasets on NCI160 cell lines and primary tumors analyzed in this study.

Reference Cancer Type Sample Size

Data Format URL for Data Downloading

[13] NCI60 cell lines
[1é]

[33]

Lung 186

Prostate 52

Leukemia 72

[19]
[18]

[35]

CNS 21

Melanoma 29

[36] Breast 26

[36] Colon 23

[36] Kidney

[36] Ovary 27

MASS http://dtp.nci.nih.gov/
mtargets/madownload.html
http://www.broad.mit.edu/
cgi-bin/cancer/datasets.cgi
http://www.broad.mit.edu/
cgi-bin/cancer/datasets.cgi
http://www.broad.mit.edu/
cgi-bin/cancer/datasets.cgi
http://www.broad.mit.edu/
cgi-bin/cancer/datasets.cgi
http://www.mskcc.org/
genomic/ccsmsp/
http://www.gnf.org/cancer/
epican/
http://www.gnf.org/cancer/
epican/
http://www.gnf.org/cancer/
epican/
http://www.gnf.org/cancer/
epican/

MASS

MAS5

MAS5

MAS5

MASS

MAS4

MAS4

MAS4

MAS4

M14 and melanoma primary tumor samples is signifi-
cantly higher than those between M14 and other tumor
types. In contrast, the mean of the correlations between a
prostate cell line PC-3 and prostate tumors is significantly
smaller than that between PC-3 and melanomas or lung

cancers (Figure 2), indicating that the overall gene expres-
sion profile of PC-3 is more similar to melanomas or lung
cancers than to prostate cancers. Since there are outliers in
the datasets as indicated in the box plots in Figure 1 and
2, we performed two non-parametric tests, the Wilcoxon
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Figure |

Melanoma cell line M14 represents its corresponding tumor type, as suggested by correlations of gene expression profiles
between the cell line and primary tumors. The y-axis represents Pearson's correlation coefficients of gene expression profiles
between the cell line and primary tumors. Labeled on x-axis are tumor types. Presumed tumor origin for the cell line is red-
colored. The p-values of ANOVA tests for mean correlation coefficients are indicated in the table.
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Prostate Cell Line PC-3
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Figure 2

Prostate cell line PC-3 does not represent its corresponding tumor type, as suggested by correlations of gene expression pro-
files between the cell line and primary tumors. The y-axis represents Pearson's correlation coefficients of gene expression pro-
files between the cell line and primary tumors. Labeled on x-axis are tumor types. Presumed tumor origin for the cell line is

red-colored. The p-values of ANOVA tests for mean correlation coefficients are indicated in the table.

test and the test for median difference, and obtained sim-
ilar results (data not shown).

Subclassification of lung cancer cell lines

Lung cancers are generally classified into two major types,
non-small cell lung carcinoma (NSCLC) and small cell
lung carcinoma (SCLC). Pulmonary carcinoid tumors are
grouped with SCLCs because of their neuroendocrine fea-
tures. NSCLC is further categorized into adenocarcinoma,
squamous cell carcinoma and large cell carcinoma. The
majority of lung carcinomas are heterogeneous and con-
tain a mixture of different cell types. However, they are
only classified as mixed carcinomas when the minority
cell types exceed a threshold. Cell lines established from
primary tumor biopsies may be misclassified because of
heterogeneity in lung cancers. To investigate what sub-
types that the lung cell lines most likely represent, we used
supervised learning approaches (Figure 3) to predict the
subtypes of the 7 non-small cell lung cancer cell lines that
we had identified to be representative of primary lung
tumors (Table 2).

We first selected gene features that best define the 4 indi-
vidual groups of primary lung tumors: adenocarcinoma,
squamous cell carcinoma, pulmonary carcinoid, and
small cell carcinoma. Analysis of variance was carried out
to identify genes differentially expressed between any two
of the 4 subtypes. Six such pair-wise comparisons resulted
in 359 probe sets that exhibited differential expression in
5 of 6 comparisons (p < 0.005). Data reduction using
principle component analysis (PCA) and subsequent
building of classification models were carried out as
described in Material & Methods. The training dataset for
supervised learning contains gene expression data from
186 primary lung cancer samples [16] that include 139
adenocarcinomas, 21 squamous cell lung carcinomas, 20
pulmonary carcinoids and 6 small cell lung cancers. Mul-
tiple models were built using different number of princi-
ple components, and we chose 4 principle components as
the discriminants and LDA as the classification method
that combined to minimize the error rate in leave-one-out
cross validation (LOOCV). Detailed LOOCV results are
provided in Table 4 [see Additional file 1]. Based on our
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Expression data

Know classes: e.g.
lung cancer subtypes

Gene feature selection —l

Data reduction
using PCA

—_—

Build supervised predictor

|

Model evaluation and selection by LOOCV

i

Prediction of cell lines into known classes

Figure 3

Classification of cancer cell lines using supervised learning
methods. PCA: principal component analysis. LOOCV: leave-
one-out cross validation.

classification model, 6 of the 7 cell lines we tested were
classified as adenocarcinomas and NCI-H322M was clas-
sified into the squamous cell carcinoma subtype (Table
3).

Other than the tissue of origin, cancers can also be classi-
fied by the stage depending on how far the cancer has
spread and by the grade that describes how similar to nor-
mal cells that cancer cells appear under the microscope. In
the primary lung cancer gene expression profiling dataset
[16], cancer stage annotation was provided for 113 aden-
ocarcinomas. Among them, 76, 24 and 13 patients are
classified into stage I, stage II and stage III/IV, respectively.
Using similar supervised learning methods (Figure 3), we
attempted to classify the 6 cell lines that were identified to
represent adenocarcinmas with respect to tumor stages.
We chose 79 genes and kNN (k = 6) as the discriminant
and the classification method, respectively, to build a
model that has a minimal error rate in LOOCV (Table 5)
[see Additional file 1]. Among the 6 adenocarcinoma cell

http://www.biomedcentral.com/1471-2164/7/166

lines, 5 were classified into the stage II group and A549
was classified into the stage III/IV group (Table 3). Gene
expression profiles of the 79 gene feature, as illustrated by
a heat map (Figure 4), demonstrates that they are
expressed at similar levels between stage I and stage I1I/TV
groups but exhibited a distinct expression pattern in stage
I patients. For example, gene cluster 2 includes genes that
are up-regulated in stage II and III/IV patients versus the
stage I group. Over expression of many cluster 2 genes in
stage II or later is not surprising as gene descriptions pro-
vided by Affymetrix probe set annotation [17] reveals
some of these genes such as PTHLH, homeo box B7, a
transcriptional activator that functions in angiogenesis,
immediate early response 3, angiopoietin-like 2 are
known to play a role in angiogenesis and others including
several collagen family genes are involved in extracellular
remodeling during tumor spread. Similar expression pat-
terns of these marker genes observed in the 6 cell lines
when compared with stage II and III/IV patients (Figure 4)
strongly suggest that these cell lines can be used as ideal
models for late stage lung adenocarcinomas.

Subclassification of CNS cancer cell lines

Malignant gliomas are the most common type of brain
tumors. Recent investigations have developed a gene
expression profiling approach to delineate molecular fea-
tures of gliomas and to classify high-grade gliomas includ-
ing glioblastoma and anaplastic oligodendrogliomas
[18]. Global gene expression data have been generated for
14 histologically classic glioblastomas and 7 anaplastic
oligodendrogliomas [18]. In the NCI60 panel, all of the
CNS cancer cell lines are derived from gliomas. To deter-
mine which high-grade gliomas each of the CNS cancer
cell lines is most suitable as a model system for, we again
used supervised learning algorithms to classify the 4 CNS
cell lines representative of primary gliomas (Table 2). We
tested the top 20 genes that are most significantly differ-
entially expressed between glioblastomas and anaplastic
oligodendrogliomas. In our final model, we used the top
3 genes and kNN (k = 3) classification algorithm that gave
rise to an error rate of zero in LOOCV (Table 6) [see Addi-
tional file 1]. When this classification model was applied

Table 2: 51 of 59 NCI160 cell lines represent their presumed tumors of origin.

Tumor type  Cell lines representing correct tumor origins Cell lines with incorrect tumor origins
Breast MCF7, MDA-MB-435, BT-549, T-47D, MDA-MB-231, HS578T NCI/ADR-RES

CNS SNB-19, SNB-75, U251, SF-268 SF-295, SF-539

Colon HT-29, COLO205, HCT-15, KM12, HCC-2998, HCT-116, SW-620 -

Kidney A498, CAKI-I, RXF-393, 786-0, ACHN, TK-10, UO-3I SNI2C

Leukemia RPMI-8226, SR, CCRF-CEM, K-562, MOLT-4, HL-60 -

Lung NCI-H226, NCI-H322M, NCI-H460, HOP-62, HOP-92, A549, EKVX NCI-H23, NCI-H522

Melanoma LOX IMVI, M14, MALME-3M, UACC-62, UACC-257, SK-MEL-2, SK-MEL-5, SK-MEL-28 -

Ovary OVCAR-3, IGROVI, SK-OV-3, OVCAR-4, OVCAR-5, OVCAR-8 -

Prostate - PC3, DU-145
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Gene cluster

Stage I v Stage II v Stage INI/TV
NCI-H460, EKVX, HOP-92, NCI-H226, HOP-62  A949

Figure 4

Subclassification of 6 lung adenocarcinoma cell lines into tumor stages. Gene expression of the 79 gene discriminant is illus-
trated by a heat map. Red and green represent high and low levels of expression respectively. The y-axis represents 79 genes
and the x axis represents | |3 lung adenocarcinomas and 6 NSCLC cell lines. 6 cell lines are labeled and | 13 adenocarcinomas
are grouped in to stage |, Il and lIl/IV.

to the 4 CNS cell lines, all of them were classified as gliob- ~ Subclassification of leukemia cell lines

lastomas (Table 3). Classification of acute leukemias is based on the observa-
tion of variable clinical outcome and difference in nuclear
morphology. Traditionally, acute leukemias are classified
into acute lymphoblastic leukemias (ALL) that arise from

Table 3: Classification of non-small cell lung cancer, CNS cancer and leukemia cell lines into tumor subtypes or tumor stages.

Cell lines No. of Known classes Gene Classification LOOCV error Prediction results
cell lines feature method rate
Lung 7 AD, SQ, COID, 4 PC LDA 0.01 AD (NCI-H226, NCI-H460, HOP-62,
SCLC HOP-92, A549, EKVX) SQ (NCI-H322M)
Lung AD 6 stage |, stage Il 79 genes kNN (k = 6) 0 stage |l (NCI-H226, HOP-62, HOP-92,
stage lII/IV EKVX, NCI-H460) stage IIl/IV (A549)
CNS 4 CG, CO 3 genes kNN (k = 3) 0 CG (SNB-19, SNB-75, U251, SF-268)
Leukemia 6 ALL, AML, MLL 12 genes kNN (k = 7) 0 AML (RPMI-8226, SR, K-562, MOLT-4, HL-

60) ALL (CCRF-CEM)

*AD: adenocarcinoma. SQ: squamous cell carcinoma. COID: pulmonary carcinoid tumor. SCLC: small cell lung cancer. CG: classic glioblastoma.
CO: classic oligodendroglioma. ALL: acute lymphoblastic leukemia. AML: acute myeloid leukemia. MLL: mixed lineage leukemia. LDA: linear
discriminant analysis. kKNN: k nearest neighbour. PC: principal components. LOOCYV: leave-one-out cross validation.
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lymphoid precursors and acute myeloid leukemias (AML)
that arise from myeloid precursors. 25% of ALL carrying a
chromosomal translocation involving the mixed-lineage
leukemia gene (MLL) have a particularly poor clinical out-
come and are recently classified as a separate category
MLL. Distinct gene expression profiles have been observed
between ALL, AML and MLL in several studies of acute
leukemias using gene expression profiling [19,20]. Here
we took advantage of available clinical classifications of
72 leukemia samples that were confirmed by their gene
expression profiling signature to classify the leukemia cell
lines in the NCI60 panel. After testing of different number
of genes that are most differentially expressed between the
three subtypes and different classification methods, we
used a 12 gene signature and the kNN (k = 7) algorithm
to build our model (Table 7) [see Additional file 1]. Table
3 indicates that 5 of 6 cell lines are categorized into the
AML group and CCRF-CEM was regarded as an ALL cell
line.

Discussion

Cancer cell lines have served as the primary experimental
system for exploring cancer molecular biology and phar-
macology. Although the value of cell lines in cancer
research and anti-tumor compound screening is much
appreciated, there is continued skepticism that cell lines
under-represent the features of the primary tumors that
they were derived from. Previous studies to some extent
addressed these concerns by applying experimental
approaches such as DNA finger printing to validate and
authenticate cancer cell lines. In the last several years,
microarray technology has been used to generate gene
expression data for hundreds of tumor samples and pro-
vided a new paradigm of molecular based cancer classifi-
cation. Previous work using gene expression profiling to
compare cell lines and primary tumors has only focused
on individual cancer types. A systematic effort in this area
has been lacking to investigate if NCI60, the panel of can-
cer cell lines most widely used in cancer research and drug
screening, represent their tumors of origin. Here we
describe a novel approach to compare cell lines and pri-
mary tumors by computational analysis of publicly avail-
able gene expression profiling data of NCI60 cell lines and
more than 500 primary tumor specimens. We were able to
not only provide evidence to determine if a cancer cell line
is correctly labeled to represent its corresponding tumor
origin, but also classify a cell line into tumor subtypes or
stages that the cell line may be most appropriate as a
model system.

In contrast to some perceptions, our analysis suggested
that most cancer cell lines are representative of their orig-
inal tumor types. Global gene expression profiles in 51 of
59 NCI60 cell lines are most similar to that of their corre-
sponding tumor origins. Although 8 cell lines have gene

http://www.biomedcentral.com/1471-2164/7/166

expression profiles more similar to tumor types other than
their presumed origins, they do have strong correlations
to their corresponding tumor types with correlation coef-
ficients in the range of 0.7 (Table 2). Extensive experimen-
tal follow-up studies are necessary to clarify our
computational analysis. However, there are several possi-
ble explanations for some of the discrepancies between
the labels of these 8 cell lines and their gene expression
profiles. Both prostate cell lines PC-3 and DU-145 had
expression profiles with lower correlation coefficients to
prostate cancers than other tumor types (Figure 2; data
not shown). The lack of maximal correlation could be due
to that PC-3 and DU-145 are androgen independent but
most primary prostate cancers are androgen dependent
[21,22]. The hormonal dependence affects cell growth
and may cause significant changes of gene expression pro-
files [23]. Since the two cell lines were initiated from bone
and brain metastases of prostate adenocarcinomas respec-
tively [21,22], an alternative explanation is that the pro-
genitor cells that they are derived from had lost the gene
expression patterns of differentiated cells from the pros-
tate. Among the 7 breast cell lines, only NCI/ADR-RES did
not have an expression profile most similar to breast can-
cer biopsies. NCI/ADR-RES, originally known as MCF7/
adr, is adriamycin resistant and was established through
selection of MCF7 cells that are resistant to stepwise
increasing concentrations of adriamycin [24]. Therefore, it
is possible that adriamycin resistant MCF7 cells had
altered gene expression profiles that are characteristic of
cells from breast tissue. Indeed, it has been shown that in
drug resistant cell lines, expression of some genes are
induced during the selection process [24-26]. Upon fur-
ther inspection of our correlation analysis results, we dis-
covered that NCI/ADR-RES gene expression profile is
most similar to those of ovarian cancers (data not shown).
This finding is consistent with a recent report that NCI/
ADR-RES is strikingly similar to an ovarian cancer cell line
OVCARS based on a karyotyping study [11] and therefore
supports our approach in using global gene expression
profiles to evaluate the similarity between cell lines and
primary cancer tissues.

Because we were able to obtain clinical annotations of the
tumor samples used in gene expression profiling studies
[16,18,19], 7 non-small cell lung cancer, 4 CNS cancer
and 3 leukemia cell lines were classified into tumor sub-
types or stages using supervised learning methods. 6 of the
7 NSCLC lines were classified as adenocarcinomas. This
result has clarified the confusion in the literature regard-
ing classification of some NSCLC cell lines. For example,
NCI-H226 has been annotated as an adenocarcinoma cell
line in some studies [27] but as a squamous carcinoma
cell line in others [28]. Our supervised learning based
classification using more than 100 primary tumor sam-
ples as the training dataset strongly suggest NCI-H226 is
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of adenocarcinoma origin. We also predicted tumor stages
for the 6 adenocarcinoma cell lines. A549 falls into the
stage I1I/IV group and the other 5 were predicted to repre-
sent stage II tumors (Table 3). Since the 79 gene feature
that we used to build the classification model exhibited a
similar expression profile between the stage Il and stage
III/IV patients (Figure 4), the 5 cell lines classified as stage
II tumors could be in the stage I1I/IV group as well. Never-
theless, our results are consistent with the fact that cancer
cell lines are generally derived from late stage cancers that
have accumulated necessary genetic mutations for unlim-
ited growth in vitro.

Our prediction of leukemia subtypes for 4 of the 6 acute
leukemia lines is not in agreement with its description
provided by American Type Culture Collection (ATCC).
Specifically, SR and RPMI-8226 are classified into the
AML category. However, they are lymphoma and mye-
loma cell lines, respectively, and therefore we recognize it
would be inappropriate to attempt to classify them into
either AML or ALL since lymphoma and myeloma are
pathologically different than leukemia. Moreover, K-562
is also classified into the AML class, but it is derived from
a patient with chronic myeloid leukemia (CML). Simi-
larly, it would be inappropriate to classify it into one of
the acute leukemia subtypes, AML or ALL. MOLT-4 is doc-
umented to be derived from a patient with ALL. However,
we classified it into the myelogenous origin because it
exhibits gene expression patterns more similar to AML
than ALL (Table 3; data not shown). Characterization
using immunological, cytogenetic and molecular biology
approaches has clearly confirmed the identify of MOLT-4
as an ALL cell line [29]. One possible explanation for our
misclassification is that we built classifiers based on gene
expression profiles of 20 ALL and 28 AML patients from a
single cohort. Therefore, even we achieved an error rate of
zero in leave-one-out cross validation, it is possible that
our classifier is not generally applicable. When microarray
data on more ALL and AML patients from different
cohorts become available in the future, we might be able
to more accurately classify leukemia cell lines by building
an improved classifier.

Attempts have been made in the past for comparison and
integrative classification of primary tumors and tumor
derived cell lines using gene expression profiling [8,9].
However, hierarchical clustering analysis generated den-
drograms with cell lines and primary tumors falling into
two distinct branches [8]. We also observed such separa-
tions when array datasets for NCI60 and 9 primary tumor
types were subjected to hierarchical clustering (data not
shown). One possible explanation is that gene expression
differences between cell lines of different tumor origins
are overshadowed by more significant differences
between cell lines and primary tumors. Here we devel-
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oped a simple analysis of correlation coefficients as a met-
ric to measure the similarity between each cell line and
different tumor types. In our approach, the general differ-
ences between cell lines and primary tissue samples
would not interfere with comparisons between a cell line
and multiple tumor types. Unlike previous studies that
artificially selected genes differentially expressed between
cell lines and primary tumors [9], our testing is robust and
unbiased as we only removed genes that are deemed unex-
pressed in more than 80% of the array datasets. More sig-
nificantly, to our knowledge, this is the first attempt to
predict tumor subtypes or stages that the cell lines are suit-
able as model systems by applying supervised learning
methods that have error rates close to zero in cross valida-
tions.

We also recognize the limitations in our study. First, gene
expression profiles in cell culture in vitro may not reflect
gene expressions evaluated when cells are grown in vivo. A
recent study has shown that although two glioblastoma
cell lines (U251 and U87) have disparate gene expression
profiles when grown in monolayer cell cultures, they had
similar gene expression patterns when grown as intracere-
bral xenografts in nude mice [30]. Therefore, a more
insightful approach would be comparing gene expression
profiles between primary human tumors and cell lines
grown in xenograft models when such data become avail-
able. Second, correlation based analysis only provides
hints on if a cell line is more representative of its pre-
sumed tumor origin than other tumor types, but does not
provide a quantative measure on how close the cell line
represents the corresponding cancer. Third, subclassifica-
tion of cancer cell lines is not in fact available. Therefore,
it is not possible to experimentally validate our predic-
tion. Our classification based on supervised learning
approach only provides suggestions on which cancer sub-
type that a cell line most closely represents. Fourth, overall
genomic gene expression profiles were used in our statis-
tical testing of gene expression correlations between cell
lines and tumor samples. However, specific genes and
pathways may be involved in development of different
types of cancer. When this manuscript was in preparation,
a study published by Minn et al. has identified 54 genes
differentially expressed between one of the NCI60 breast
cell lines, MDA-MB-231 and its single-cell-derived sub-
line that has significantly higher lung metastatic activity
[31]. Expressions of this lung metastasis signature not
only mediate lung metastasis of MDA-MB-231 cells in
mice, but are also significantly associated with breast can-
cer metastasis to lung in human [31], suggesting that the
same set of genes plays a critical role in lung metastasis
both in cell line models and in humans. Therefore, future
analysis using expression of selected genes in known can-
cer development pathways would certainly shed light on
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the activity of these pathways in cancer cell lines in com-
parison with human tumors.

Conclusion

We developed and applied a novel approach for system-
atic comparative analysis and integrative classification of
NCI60 cell lines and primary tumors. Comparative analy-
sis suggested that 51 of 59 NCI6O cell lines we analyzed
represent their presumed tumors of origin. Some of the 51
cell lines with the correct origins were further classified
into different subtypes of cancer or different stages in can-
cer development based on supervised learning methods.
Our results could provide guidance to the selection of
appropriate cell lines for cancer research and pharmaceu-
tical compound screenings. Furthermore, this gene
expression profile based approach can be generally
applied to evaluate experimental model systems such as
cell lines and animal models for human diseases.

Methods

Data source

Gene expression profiling data on NCI60 cell lines pro-
vided by NCI's DTP program [32] are based on Affymetrix
U95Av2 oligonucleotide array platforms. While oligonu-
cleotide arrays measure the amount of mRNA in a single
sample, gene expression data generated using cDNA array
platforms are ratios of expression values in experimental
samples over those in a reference sample. The fundamen-
tal difference between the two array platforms poses a
technical barrier in integrative analysis of gene expression
data based on these two different platforms. In addition,
probe sets representing the same genes are designed differ-
ently on different Affymetrix oligonucleotide arrays. These
probe sets may behave differently in array hybridization
and produce discordant expression values. Therefore, we
chose only U95Av2 oligonucleotide array based data in
publicly available gene expression profiling datasets on
primary tumors (Table 1).

Gene expression data on NCI60 cell lines and primary
tumor samples were downloaded from URL addresses
shown in Table 1. All datasets were generated with
Affymetrix U95Av2 arrays. Gene expression data of lung
[16], prostate [33], CNS [18] cancers and leukemia [19]
were originally generated with Affymetrix MAS4 software.
We downloaded the .cel files and produced more accurate
gene expression data using Affymetrix MAS5 algorithm
with trimmed mean values normalized to 500. A trimmed
mean is the average value after removing the lowest 2%
and the highest 2% of all expression values. The down-
loaded array data for NCI60 cell lines and melanomas
were in MAS5 format and we re-normalized the data by
setting the trimmed means to 500. Data are only available
for 59 of the NCI60 cell lines. For breast, colon, ovary and
kidney cancers, we were only able to obtain MAS4 gene
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expression data and similarly, these data were normalized
with trimmed means equal to 500.

Pre-processing

We compiled the gene expression data for a total of 506
samples, after averaging the expression values over the
technical replicates in the lung dataset and in NCI60 cell
lines. The Affymetrix MAS5 algorithm provided the
"Absent/Present" calls for each probe set to indicate the
expression level is below/above the threshold of detec-
tion. An "Absent" call means the hybridization signal
derived from the perfect match probe is not provably dif-
ferent than that derived from the mismatch probe. In
MAS4 formatted datasets that we downloaded, "Absent/
Present"” calls are not provided and we arbitrarily assigned
the "Absent" calls to the probe sets with gene expression
values below 40. We chose 40 as a threshold to make the
"Absent/Present" calls so that the percentage of probe sets
with "Present” calls are similarly to that in the MAS5 data-
sets. To correct the systematic bias, we applied quantile
normalization across samples following the method in
Bolstad et al. [34] to the compiled dataset. We then fil-
tered out the probe sets that received "Absent" calls in
more than 80% of the samples as well as the Affymetrix
control probe sets, and this left 11,482 probe sets for fur-
ther analysis. We further performed a log2 transforma-
tion, and then standardized each sample to a mean of 0
and standard deviation of 1.

Comparative analysis of cell lines and primary tumors

We used Pearson's correlation coefficients to assess the
similarities between cell lines and the primary tumors.
Since different algorithms implemented in Affymetrix
MAS4 and MAS5 affect overall gene expression profiles,
we separated primary tumor samples into two groups that
include array data in MAS4 and MASS5 format, respectively
(see Table 1). We computed the Pearson's correlation
coefficients of gene expression profiles between each of
the 59 NCI60 cell lines and each primary tumor sample.
For each cell line, we performed pairwise t-test with
Scheffe multiple comparison adjustment comparing the
mean of the correlation coefficients between the cell line
and its corresponding tumor to the means of those
between the cell line and the other tumor types in the
same data format group, successively. We defined that a
cell line is representative of its tumor origin if there is no
other tumor type that has a significantly higher correla-
tion of gene expression profiles with the cell line than the
presumed tumor origin at a significance level of 0.05.

Integrative classification

Feature selection

Since many genes exhibit near constant expression levels
across the tumor samples, we first carried out a feature
selection for each classification to find a minimum set of
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features that are useful for classification. For the classifica-
tion of the lung cancer subtypes, we identified the 359
genes that are differentially expressed between at least 5
pairs of subtypes with a raw p-value cutoff of 0.005. Then
we performed principle component analysis on those 359
genes and chose the first p principle components. For the
classification of tumor stages of lung adenocarcinoma,
subtypes of CNS and subtypes of leukemia, we chose the
top p most significant genes that are differentially
expressed across classes, with an attempt to balance the
number of up-regulated genes, the number of down-regu-
lated genes and the total number of genes differing
between each pair of the classes. The criteria for the selec-
tion of p are discussed in the following "classification
methods" section.

Classification method

We compared different classification methods and found
that two simple classifiers, linear discriminant analysis
(LDA) and k-nearest-neighbor (kNN) performed reasona-
bly well. The k in kNN is chosen between 3-7 so that the
leave-one-out cross-validation (LOOCV) error rate is the
smallest. Leave-one-out cross-validation involves remov-
ing one data object in turn from the training set, training
a classifier on the remaining objects and then testing on
the removed one. The proportion of errors counted
throughout this process is called leave-one-out cross-vali-
dation error rate. The classifiers were built on the features
with p genes or p principle components. The value p was
chosen to be the smallest one that satisfies two criteria: (1)
the leave-one-out cross validation error rate of the classi-
fier is smaller than 0.01; and (2) the 3 consecutive classi-
fiers built on the features with p, p+1 and p+2 genes or
principle components give consistent predictions. The
classifier for each classification problem was chosen
between LDA and kNN by comparing the LOOCV error
rates.
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