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Abstract
Background: Kinesins, a superfamily of molecular motors, use microtubules as tracks and
transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor
domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis)
has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several
photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a
unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-
plant systems and infer their evolutionary relationships.

Results: We used the kinesin motor domain to identify kinesins in the completed genome
sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed
genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform
comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony
approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in
our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering
plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least
nine of the 14 known kinesin families. Seven of ten families present in flowering plants are
represented in Chlamydomonas, indicating that these families were retained in both the flowering-
plant and green algae lineages.

Conclusion: The increase in the number of kinesins in flowering plants is due to vast expansion
of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-
terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the
middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or
animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the
functional diversification of kinesins. Results from our gene-tree analyses indicate that there was
tremendous lineage-specific duplication and diversification of kinesins in eukaryotes. Since the
functions of only a few plant kinesins are reported in the literature, this comprehensive
comparative analysis will be useful in designing functional studies with photosynthetic eukaryotes.
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Background
Cytoskeletal networks (microtubules [MTs], actin and
intermediate filaments) play important roles in many fun-
damental processes in eukaryotes including cell growth,
cell division and development of organisms [1,2]. Under-
standing cytoskeleton organization, dynamics and func-
tions is an active area of research in biology. Molecular
motors that organize and remodel cytoskeleton and trans-
port various cellular components (e.g, vesicles, organelles,
chromosomes, RNA and protein complexes) play funda-
mental roles in all aspects of cell and developmental biol-
ogy of eukaryotes [1,2]. High throughput genomic
sequencing projects have greatly facilitated the identifica-
tion of the full complement of molecular motors in sev-
eral phylogenetically diverse species ranging from simple
unicellular to complex multicellular organisms [1,2].

Molecular motors that function on cytoskeletal networks
belong to three groups: kinesins, dyneins and myosins.
These motors utilize energy derived from ATP hydrolysis
and transport cargo unidirectionally on one of the fila-
mentous cytoskeletal tracks (MTs or F-actin) in the cell.
Both kinesins and dyneins use MTs as tracks for motility
whereas myosins use actin filaments (F-actin) [3,4].
Kinesins constitute a superfamily of MT motor proteins
ubiquitous in all eukaryotic organisms [1,2,5,6]. In the
mid 1980s, the first kinesin was discovered in squid giant
axons as a "novel force generating protein" involved in
vesicular transport [7]. Since then, an explosion of

research has centered upon the continual discovery, clas-
sification and functional characterization of the kinesin
superfamily. Members of the kinesin superfamily have a
highly conserved motor domain of ~350 amino acid resi-
dues, which contains ATPase and MT binding activities,
located at the N terminus, C terminus or internally [1,8].
A short neck region that often contains family-specific fea-
tures and is adjacent to the motor domain works in con-
cert with the catalytic core to produce movement [8,9]. In
addition, many kinesins have a less conserved coiled-coil
region that is important for dimerization and a non-con-
served tail domain that is thought to interact with specific
cargo. All kinesins bind MTs and perform a variety of
force-generating tasks such as movement of chromo-
somes, vesicles, organelles and RNA protein complexes,
spindle formation and elongation, activation of protein
kinases, movement of loosely bound rafts of soluble
cargo, and MT polymerization and dynamics [5,9-13].

Since the motor-domain sequence is conserved in all
kinesins, it has been used to search completed eukaryotic
genome sequences for encoded kinesins. Based on phylo-
genetic analyses of known kinesins using the conserved
motor domain sequences, fourteen families designated as
Kinesin-1 to Kinesin-14 are recognized [14]. Members of
most families have an N-terminal motor domain whereas
one family (Kin-13) has an internal motor and one family
(Kin-14) has a C-terminal motor. Kinesins move unidirec-
tionally on MTs. Kinesins with the N-terminal motor

Table 1: Number of kinesins in the completed genomes of 19 Eukaryotes

Species # Reference Databases used in our 
analyses

C. merolae 5 Analyzed here [106]
C. reinhardtiia 23 Analyzed here [104]
A. thaliana 61 [43] [103]
P. trichocarpaa 52 Analyzed here [104]
O.s japonica cv. nipponbarea 41 Analyzed here [97, 100]
O.s indica cv. 9311a 45 Analyzed here [100]
T. pseudonanaa 22 Analyzed here [104]
D. melanogaster 25 [146] [111]
H. sapiensb 40 [6] [98, 110]
C. elegans 19 [147] [112]
S. cerevisiae 6 Yeastgenome.org [116]
S. pombe 9 pombe GeneDB [117]
P. chryosporium 8 Analyzed here [104]
P. sojaea 43 Analyzed here [104]
C. intestinalisa 25 Analyzed here [104]
P. falciparum 9 Analyzed here [114]
D. discoideum 13 [148] Analyzed here [113]
L. major 54 Analyzed here [115]
G. lamblia 24 Analyzed here [107]

Table 1 represents individual number of kinesins found in 19 eukaryotic species. Five of the 529 sequences are from Mouse and are not shown here. 
Thirteen of these species were analyzed in this paper. aThere are potentially more kinesins than listed; see individual tables for more information. 
bThere may be up to 45 potential kinesins as reported. Only 44 were found in our database searches, 4 of which contained incomplete motor 
domains and were not listed in the total.
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show plus end motility whereas the C-terminal motors
move toward the minus ends of MTs [1,15-17].

While a "complete" inventory of Arabidopsis kinesins has
been reported, functional studies of plant kinesins are
limited to a few loci [18,19]. Several plant kinesins have
been shown to function in mitosis, meiosis and/or cytoki-
nesis [20-28]. KCBP, a C-terminal minus-end-directed cal-
modulin-binding kinesin of the Kinesin-14 family, is
involved in trichome morphogenesis and cell division
[29-31]. This kinesin is negatively regulated by calmodu-
lin as well as another novel calcium-binding protein
(KIC) with a single EF hand [32,33]. An internal kinesin
of the Kinesin-13 family in Arabidopsis is also involved in
trichome morphogenesis [34]. AtFRAl, an N-terminal
kinesin family member is involved in oriented deposition
of cellulose myofibrils; mutants show aberrant deposition
of cellulose microfibrils in secondary walls of fibers that
are less organized when compared to the wild type [35].
Two Arabidopsis kinesins are targeted to mitochondria
whereas another kinesin interacts with geminivirus repli-
cating protein [36,37]. An interesting prospect of MT and
microfilament crosstalk has recently been exemplified by
studies with a plant-specific kinesin (GhKCHl) from cot-
ton. This member of the Kinesin-14 family has a calponin
homology domain, which appears to be important in
mediating dynamic interaction between actin filaments
and MTs [38]. The motility properties of only a few plant
kinesins have been analyzed [39-41].

Thus far, genome-wide analysis of kinesin encoding genes
in plants was performed only with one plant species (Ara-
bidopsis thaliand), which uncovered 61 kinesins. The
number of kinesins in Arabidopsis is the largest as com-
pared to human, mouse and other completed genomes
[42,43]. Recently, genome sequences of six phylogeneti-
cally divergent photosynthetic eukaryotes (two cultivars
of rice, poplar, a green alga, a red alga and a diatom) have
been completed. In addition, genomes of seven other
non-plant systems including Giardia, which may represent
the deepest known branch in the eukaryotic lineage ([44-
47]; but see [48,49]) have also been sequenced. The avail-
ability of these genome sequences offers opportunities to
address a number of important questions related to

kinesin evolution and function. These include: i) do other
plants, like Arabidopsis, have a large repertoire of kines-
ins? ii) are there any kinesin families that are specific to
plants or a particular lineage? iii) how many kinesin fam-
ilies are represented in all eukaryotes? iv) what is the evo-
lutionary relationship among plant kinesins and between
plant and non-plant kinesins? v) what is the full comple-
ment of kinesins in early-derived simple unicellular pho-
tosynthetic eukaryotes as well as in organisms that
represent early diverging eukaryotic lineages? vi) how
have these kinesins contributed to evolution of kinesins
in the most recent complex multicellular flowering
plants? vii) do plant kinesins have any domains that are
unique to plants? and viii) what is the contribution of
gene duplications and losses to kinesin evolution? To
address these questions, we have mined 529 kinesin
sequences from 19 phylogenetically diverse species. We
have performed comprehensive analyses with this data set
and inferred gene trees using Bayesian and parsimony
methods. Our gene-tree analyses included 249 sequences
from photosynthetic eukaryotes and 280 from non-pho-
tosynthetic systems. Many of these sequences were not
included in any previous analyses. Although flowering
plants have the largest number of kinesins, three or four
of the 14 kinesin families are not represented in flowering
plants whereas three of them may not be present in any
photosynthetic eukaryote. Results presented here also
indicate that flowering plants have the most kinesins pri-
marily due to expansion of the Kinesin-7 and Kinesin-14
families. Our gene-tree analysis revealed seven of the ten
families found in flowering plants are represented in a
simple unicellular chlorophyte alga. Ten of the 14 families
are represented in Giardia lamblia ([44-47]; but see
[48,49]), an early derived eukaryote, suggesting that most
families were already present early in the evolution of
extant eukaryotes. Plant kinesins have several domains
that are not shared with non-plant systems suggesting
functional specificity and diversification in plants.

Results and Discussion
Kinesins in photosynthetic and non-photosynthetic 
eukaryotes
In this study we have analyzed genome sequences of 19
eukaryotic species, which represent almost all major line-

Table 2: C. merolae kinesins and their structural features

Gene ID Protein length EST Additional 
Domains

MD location # of exons Family

CMC157C 916 Yes N 1 5
CMQ429C 1175 Yes CC N 1 7
CMO070C 1290 No CC N 1 12
CMT097C 1160 Yes CC, LH2 I 1 14
CMR497C 851 Yes CC C 1 14

CC, Coiled-coil; LH2, Lipoxygenase; N, N-terminal; I, Internal; C, C-terminal.
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ages (opisthokonts, amoebozoa, plants, alveolates, heter-
okonts, discicristates and excavates) of eukaryotes [50],
for kinesins. Species were selected so as to include most of
the eight major lineages in the consensus phylogenetic
tree presented by Baldauf [50]. Inclusion of representative
members of non-plant groups is expected to help us iden-
tify plant-specific kinesins. Of the eight major eukaryotic
lineages [50], only one lineage (cercozoa) was not sam-
pled in our analysis because none of the species in this lin-
eage has been fully sequenced. Among the 19 species
analyzed, seven represent phylogenetically divergent pho-
tosynthetic eukaryotes that belong to monocots (two rice
cultivars, Oryza sativa ssp. japonica cv. nipponbare and
Oryza sativa ssp. indica cv 93-11), dicots (Arabidopsis thal-
iana and Populus trichocarpa), a chlorophyte alga
(Chlamydomonas reinhardtii), a red alga (Cyanidioschyzon
merolae) and a diatom (Thalassiosira pseudonana). So far,
kinesins have been analyzed only in one plant (Arabidop-
sis) system [43] whereas the genome sequences of six
other photosynthetic eukaryotes have been completed
recently. The red (C. merolae) and green (C. reinhardtii)
algae were included in our analysis because they are
inferred to be early derived members of the lineage that
gave rise to modern heterokonts and embryophyta [51],
respectively. Inclusion of these species allows for the anal-
ysis of evolutionary relationships between kinesins of
algae and flowering plants. The 12 non-plant species sam-
pled include opisthokonts, amoebozoa, alveolates, heter-

okonts, discicristates and excavates. We have included
members (Giardia, Leishmania, Plasmodiuni) of three
extant lineages that diverged before the plant-animal split
[46]. In addition, Giardia is thought to be a member of the
earliest extant branch on the eukaryotic tree based on the
phylogeny inferred from several different genes, as well as
a proteome-based eukaryotic phylogeny [44-47]. It would
be interesting to see how many kinesin families were
present before the divergence of plants, animals and fungi
as it is likely that these families would represent a "basic
set" of kinesin motors [52]. We have also included Dicty-
ostelium discoideum, which is believed to have diverged
after the plant-animal split but before the divergence of
fungi from animals [46].

As detailed in the methods section, we have used a variety
of approaches to systematically analyze the completed
genome sequences of 19 species to identify the kinesins. A
total of 529 kinesins were identified and used in our phy-
logenetic analysis. Table 1 shows the number of kinesins
in each of these species and lists the databases used in our
searches. The details of the kinesins including gene IDs,
gene organization, domain and family information for
each species, except Arabidopsis, are presented in Tables 2
to 7 and Additional files 1 to 12. The details of Arabidop-
sis kinesins were reported previously [43]. The number of
kinesins varies considerably among species. In general
flowering plants have the highest number of kinesins (Fig.

Table 7: T. pseudonana kinesins and their structural features

Gene ID Protein length EST Additional 
Domains

MD location # of exons Family

133437 318 No ND 3 1
128511 330 No ND 2 1
119229 340 Yes N 5 4
135880 529 No CC N 8 5
137385 404 No C 4 6
121289 380 No CC N 6 7
105812 485 No CC N 2 9
142737 454 No CC N 3 9
132625 338 No N 4 12
112325 597 No CC I 1 13
116492 532 No C 4 13
107522 528 No I 1 13
122963 453 No N 5 14
123312 365 Yes C 3 14
12124 362 No C 4 14
124560 606 No CC C 9 14
151754 391 No C 1 14
152375 328 No ND 4 14
110182 428 No N 3 UG
156428 396 No N 2 UG
163717 305 No ND 3 UG
155696 757 No CC N 6 UG

Possible kinesins with truncated motor domain: 10932, 170556, 159990, 154168, 142297. CC, Coiled-coil; ND, Not determined; UG, Ungrouped; 
N, N-terminal; I, Internal; C, C-terminal.
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Number and distribution of kinesinsFigure 1
Number and distribution of kinesins. Tabular and graphical representation of the number of kinesins found in completely 
sequenced genomes used in our analysis. The number of kinesins is shown on the y-axis with the 19 species displayed across 
the x-axis. Different colors represent the distribution of kinesins into specific families. The data table below the chart details 
the specific number of kinesins in each family per species. For individual sequence IDs, please see Tables 2 through 7 and Addi-
tional files 1 through 12. Cm, Cyanidoschyzon merolae; Cr, Chlamydomonas reinhardtii; At, Arabidopsis thaliana; Pt, Populus tri-
chocarpa; OsJ, Oryza sativa ssp. Japonica; OsI, Oryza sativa ssp. Indica; Tp, Thallassiosira pseudonana; Dm, Drosophila melanogaster; Hs, 
Homo sapiens; Ce, Caenorhabditis elegans; Sc, Saccharomyces cerevisiae; Sp, Schizosaccharomyces pombe; pc, Phaenerochaete chry-
osporium; Ps, Phytopthora sojae, Ci, Ciona intestinalis; Pf; Plasmodiumfalciparum; Dd, Dictyostelium discoideum; Lm, Leishmania major; 
Gl, Giardia lamblia.
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Unrooted Bayesian tree of the 529 kinesins based on their motor domain ami no-acid-plus-gap-charactersFigure 2
Unrooted Bayesian tree of the 529 kinesins based on their motor domain ami no-acid-plus-gap-characters. Sup-
port values from each parsimony and Bayesian analysis are presented adjacent to the nodes. Support values above each branch 
correspond to Bayesian posterior probabilities whereas values below each branch correspond to parsimony jackknife support. 
In both cases the leftmost values are for the amino-acid-plus-gap-characters analyses and the rightmost values are for amino-
acid-characters analyses. Bayesian posterior probabilities for the amino-acid-plus-gap-characters are also shown in bold. If a 
branch was unresolved in one of the other three analyses, it is indicated by "-" at the respective node. If a branch was contra-
dicted in one of these other three analyses, it is indicated by underlined red font at the respective node with the single highest 
posterior probability or jackknife support value for the contradicting clade(s) shown. Ungrouped kinesins are presented on the 
left side of the main polytomy, with the exception of the plant-specific ungrouped family that is shown on the upper right of the 
tree. The Ps and Lm unresolved blocks each contain 4 and 9 sequences, respectively (See Additional files 7 and 11 these 
sequence IDs). Brackets denote the major eukaryotic groupings in accordance with Baldauf's nomenclature [50]. Blue brackets 
indicate taxa that are from multiple groups, black brackets indicate protozoan species and red brackets are reserved for 
opisthokonts. Although Pt00151235 is grouped within this family by Bayesian analysis, we favor the parsimony resolution of it 
as a member of the Kinesin-10 family. For full names of species see Fig. 1 legend.
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Expanded view of plant-specific ungrouped kinesins and Kinesin-1 familyFigure 3
Expanded view of plant-specific ungrouped kinesins and Kinesin-1 family. Expansion of the plant-specific ungrouped 
and Kinesin-1 clades from Fig. 2. Green brackets indicate plant specific groups, mixed clades are shown in blue brackets and 
black brackets indicate protozoan species. Green circle and blue square indicate gene duplications in flowering plants and 
dicots, respectively. See Fig. 2 legend for an explanation of support values. Support values in italicized blue font indicate those 
clades supported in the parsimony analyses except for the exclusion of Ps 128382 (see text). For full names of species see Fig. 
1 legend. Fl. Plants, flowering plants.
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Expanded view of Kinesin-2 and Kinesin-3 familiesFigure 4
Expanded view of Kinesin-2 and Kinesin-3 families. Expansion of the Kinesin-2 and Kinesin-3 families from Fig. 2. There 
are no plant kinesins present in either of these families. Red brackets indicate opisthokonts, mixed clades are shown in blue 
brackets and black brackets indicate protozoan species. See Fig. 2 legend for an explanation of support values. For full names of 
species see Fig. 1 legend.
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Expanded view of Kinesin-4 and Kinesin-5 familiesFigure 5
Expanded view of Kinesin-4 and Kinesin-5 families. Expansion of the Kinesin-4 and Kinesin-5 families from Figure 2. 
Experimentally studied Arabidopsis kinesins are indicated in parenthesis with their published names in bold. Green brackets 
indicate plant-specific groups, mixed clades are shown in blue brackets and red brackets indicate groupings composed of 
opisthokonts. Green circles and blue squares indicate gene duplications in flowering plants and dicots, respectively. See Fig. 2 
legend for an explanation of support values. For full names of species see Fig. 1 legend.
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Expanded view of Kinesin-6 and Kinesin-8 familiesFigure 6
Expanded view of Kinesin-6 and Kinesin-8 families. Expansion of the Kinesin-6 and Kinesin-8 families from Fig. 2. Mixed 
clades are shown in blue brackets and red brackets indicate groupings composed of opisthokonts. See Fig. 2 legend for an 
explanation of support values. For full names of species see Fig. 1 legend. Fl. Plants, flowering plants.
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Expanded view of Kinesin-7 familyFigure 7
Expanded view of Kinesin-7 family. Expansion of the Kinesin-7 family from Fig. 2. Experimentally studied Arabidopsis 
kinesins are indicated in parenthesis with their published names in bold. Green brackets indicate plant specific groups, mixed 
clades are shown in blue brackets and black brackets indicate protozoan species. Green circles, blue squares and a red triangle 
indicate gene duplications in flowering plants, dicots and monocots, respectively. See Fig. 2 legend for an explanation of support 
values. For full names of species see Fig. 1 legend. Fl. Plants, flowering plants.
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Table 4: P. trichocarpa kinesins and their structural features

Gene ID Protein length EST Additional 
Domains

MD location # of exons Family

LG_VIII000260 429 Yes I 10 UG
LG_II000635 921 No CC, ARM N 19 UG
LG_III0949 943 Yes CC, ARM N 20 UG
LG_II000522 970 No CC, VWA N 23 4
LG_VII000272 1036 Yes CC N 25 4
00020976a 1290 Yes CC N 27 4
02310007a 1280 No CC N 27 4
00160756a 1031 No CC N 22 5
LG_I001798 1077 No CC N 22 5
00060694a 1049 No CC N 23 5
LG_XVI0226 1031 Yes TM N 23 5
LG_XIII0655 944 Yes CC N 23 6
LG_XII000185 964 Yes CC N 13 7
scaffold 28000071 952 No CC N 14 7
LG_IX0409 939 Yes CC N 14 7
570109b 909 Yes N 17 7
LG_II000243 915 No N 13 7
00020745a 701 No N 18 7
00160532a 939 Yes CC N 23 7
LG_IV1283 1139 Yes CC, ZF N 25 7
LG_XIV000016 817 Yes CC N 19 7
LG_VI0681 1233 Yes CC N 27 7
00120495a 784 Yes CC I 7 8
00151235a 656 No HHH N 17 10
LG_VIII001511 853 No CC N 8 10
LG_X000373 964 Yes CC N 6 10
01300020a 2921 No CC N 35 12
LG_IX000131 1300 No CC N 22 12
00012593a 1196 No CC, KR N 15 12
LG_XIV000891 1278 Yes CC, KR N 17 12
LG_II001048 1281 No CC, KR N 17 12
00100152a 814 Yes CC I 12 13
02100029a 734 Yes I 11 13
01330083a 1022 No CC, CH I 19 14
00140705a 957 Yes CH I 18 14
00120480a 847 No CC, CH C 18 14
00150291a 1020 No CC, CH C 19 14
LG_III001053 1133 No CC, CH I 21 14
1400045b 1085 Yes CH I 16 14
00060440a 1079 No CH I 17 14
00111158a 1129 No CC I 16 14
LG_I003040 1212 No CC I 16 14
LG_II001016 1046 Yes CC I 19 14
00130189a 778 No CC I 13 14
02560013a 767 No CC I 12 14
07000001a 498 Yes I 10 14
LG_I000011 947 No CC N 11 14
LG_XIII000327 637 No CC I 10 14
LG_VII001210 1070 No CC N 21 14
LG_XI1218 1232 Yes MyTH4, B4.1, CC C 23 14
LG_XI0089 801 Yes CC C 16 14
LG_XI000300 752 Yes CC C 16 14

aFor sequence acquisition at JGI, prefix with "eugene3." bFor sequence acquisition at JGI, prefix with "estext_fgeneshl_pg_vl.C_". Other possible 
kinesins with truncated motor domains: fgenesl_pg.C_LG_I000890, 0344001b, 00700259b and 08910001b. MyTH4, Myosin tail homology 4; B4.1, 
Band 4.1; CC, Coiled-coil; KR, Kinesin-Related; VWA, Von Willebrand factor type A; CH, Calponin homology; ARM, Armadillo repeat; HHH, 
Helix-hairpin-helix; ZF, Zing finger; TM, Transmembrane domain; UG, Ungrouped; N, N-terminal; I, Internal; C, C-terminal.
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Expanded view of Kinesin-9 and Kinesin-10 familiesFigure 8
Expanded view of Kinesin-9 and Kinesin-10 families. Expansion of the Kinesin-9 and Kinesin-10 families from Fig. 2. An 
experimentally studied Arabidopsis kinesin is indicated in parenthesis with its published name in bold. Green brackets indicate 
plant-specific groups, mixed clades are shown in blue brackets and red brackets indicate groupings composed of opisthokonts. 
Green circle and blue square indicate gene duplications in flowering plants and dicots, respectively. See Fig. 2 legend for an 
explanation of support values. Support values in italicized blue font indicate those clades supported in the parsimony analyses 
except for the inclusion of Pt 00151235 (see text). For full names of species see Fig. 1 legend. Fl. Plants, flowering plants.
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Expanded view of Kinesin-12 and Kinesin-13 familiesFigure 9
Expanded view of Kinesin-12 and Kinesin-13 families. Expansion of the Kinesin-12 and Kinesin-13 families from Fig. 2. 
Experimentally studied Arabidopsis kinesins are indicated in parenthesis with their published names in bold. Green brackets indi-
cate plant specific groups, mixed clades are shown in blue brackets, black brackets indicate protozoan species and red brackets 
indicate groupings composed of opisthokonts. Purple diamond indicates a gene duplication after the divergence of red and 
green algae from one another yet prior to the divergence of green algae from flowering plants. Green circles and blue squares 
indicate gene duplications in flowering plants and dicots, respectively. See Fig. 2 legend for an explanation of support values. 
Support values in italicized blue font indicate those clades supported in the parsimony analyses except for the exclusion of Pt 
00151235 (see text). For full names of species see Fig. 1 legend. Fl. Plants, flowering plants.
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Expanded view of Kinesin-14 familyFigure 10
Expanded view of Kinesin-14 family. Expansion of the Kinesin-14 family from Fig. 2. Motor domain localizations are indi-
cated adjacent to taxon labels. Experimentally studied Arabidopsis kinesins are indicated in parenthesis with its published name 
in bold. Green brackets indicate plant specific groups, mixed clades are shown in blue brackets, black brackets indicate proto-
zoan species and red brackets indicate groupings composed of opisthokonts. Green circles, blue squares and a red triangle 
indicate gene duplications in flowering plants, dicots and monocots, respectively. See Fig. 2 legend for an explanation of support 
values. For full names of species see Fig. 1 legend.
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1). Arabidopsis still has the largest repertoire of kinesins
[61] amongst the completed plant genomes, with P. tri-
chocarpa next [52]. Oryza sativa ssp. japonica and O.s. indica
have 41 and 45 kinesins, respectively. Some changes in
this number may occur as refinement of newly sequenced
genomes proceeds. Not only does Arabidopsis have the
most kinesins of all plants; it has the most of all 19 species
analyzed (Fig. 1). It is surprising to see the large difference
in kinesin number between the two species of early-
derived unicellular photosynthetic eukaryotes (C. rein-
hardtii and C. merolae). The green alga, C. reinhardtii, has
about five times [23] the number of kinesins as the red
algae, C. merolae, which has the least number of kinesins
(only five) of all species sampled. Dictyostelium discoideum,
the social soil amoeba, has 13 kinesins. This is consistent
with what one would expect from a free living amoeba
that must search for its food and be active in cytoskeletal
motility, in addition to being able to shift from a unicel-
lular state to a multicellular fruiting body by coordinated
aggregation of individual cells [46]. Another interesting
species with many kinesins is the intracellular immune
system pathogen L. major. This parasite has the most
kinesins among non-photosynthetic eukaryotes (Fig. 1).
Leishmania has a considerably larger repertoire of kinesins
than the amoeboid parasite, many of which appear to
have evolved by multiple gene duplications (see below).

Even though cis-splicing machinery exists in this parasite,
its 54 kinesins are all translated from single exon genes
(Chris Peacock, pers, comm.). The reason why this para-
site has so many kinesins is an interesting prospect to con-
sider. How many of these kinesins are actually functional
remains to be seen. Whether or not these kinesins func-
tion in facilitating Leishmania-host-cell interaction is cur-
rently unknown.

Construction and analyses of kinesin gene trees
We used 529 kinesin motor domain sequences in our
gene-tree analysis. The alignment of amino acid
sequences was performed using DIALIGN-T [53]. DIA-
LIGN-T represents an improvement over DIALIGN 2.2.1
[54] in that it is less liable to favor short sequence frag-
ments of high similarity over longer fragments of lower
similarity [53]. In contrast to programs such as Clustal X
[55], which perform global alignments, DIALIGN finds
regions of local similarity without necessarily aligning the
entire sequences with one another [56]. Because DIALIGN
does not perform alignments following a guide tree, the
alignments produced were expected to be relatively robust
to artifacts that may be introduced when aligning diver-
gent sequences in a pairwise manner [57]. DIALIGN has
been shown to perform well relative to other alignment
programs in aligning conserved domains within rapidly

Table 3: C. reinhardtii kinesins and their structural features

Gene ID Protein length EST Additional 
Domains

MD location # of exons Family

C_160226 768 No CC N 12 2
C_1880008 786 Yes CC N 21 2
C_120157 1917 No CC N 23 4
C_260133 1008 Yes CC N 23 4
C_340020 1510 No CC, N- Syn N 20 4
C_530027 1115 No CC N 13 5
C_1480016 1520 No CC N 18 7
C_710026 825 No CC N 24 7
C_1310024 935 No CC N 19 8
C_250150 961 No CC N 17 9
C_50080 776 No CC N 12 9
C_260066 967 No CC N 9 9
C_620070 610 No CC N 11 9
C_1350007 1248 No CC N 19 12
C_730040 647 No CC I 8 13
C_510041 968 No CC I 14 14
C_670066 855 No CC C 17 14
C_1030008 1136 Yes MyTH4, B4.1, CC C 18 14
C_60218 837 No CC C 18 14
C_120136 918 No CC C 18 14
C_460075 1152 No CC N 15 UG
C_790050 1484 No CC N 24 UG
C_570090 1366 No CC N 12 UG

Other potential kinesins that had either truncated motor domains or unfinished sequences are: C_60056, C_200191, C_130219, C_230013, 
C_300121, C_70192, C_990021, C_7460001, C_770005, C_930065. MyTH4, Myosin tail homology 4; B4.1, Band 4.1; CC, Coiled-coil; N-Syn, N 
terminal syntaxin; UG, Ungrouped; N, N-terminal; I, Internal; C, C-terminal.
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evolving (with respect to both indels and substitutions)
regions [53,58,59]. Four kinesin trees were constructed
with motor domain amino acid sequences using both the

parsimony and Bayesian approaches. For each approach,
amino-acid-characters and amino-acid-plus-gap-charac-
ters were used. The DIALIGN-T alignment (see Additional

Distribution of domains found within kinesins of 19 speciesFigure 11
Distribution of domains found within kinesins of 19 species. Schematic showing the presence or absence of particular 
domains and which families these domains are found in across the 19 species sampled. Species are listed horizontally across the 
top of the figure with the various domains listed vertically. Presence of a domain is indicated by a solid circle and its absence by 
a hollow circle. LH2, Lipoxygenase; Syn, N-terminal Syntaxin; MyTH4, Myosin Tail Homology 4; ARM, Armadillo; VWA, Von 
Willebrand Factor, Type A; ZF, Zinc finger; KR, Kinesin-Related; CH, Calponin Homology; HTH, Helix-Turn-Helix; HHH, 
Helix-Hairpin-Helix; FHA, Fork Head Associated; PH, Pleckstrin homology; CAP-Gly, Glycine rich domain found in Cytoskele-
ton Associated Proteins (CAPs); GGL, G-protein gamma motif like; WD-40, A 40 amino acid repeat motif with W and D 
dipeptides at the terminus; 3' Exo, 3' Exoribonuclease; CNB, Cyclic Nucleotide Binding; TPR, Tetratricopeptide repeat; MFS, 
Major Facilitator Superfamily; TM, Transmembrane; IPRP; Inositol polyphospate related phosphatase; C2, Protein kinase C con-
served region 2; VHS, Domain present in Vps-27, Hrs, STAM; MORN, Membrane occupation and recognition nexus. In T. pseu-
donana, most kinesins are short (Table 7 and Figure 12), which could be due to poor quality of the gene models. Hence, it is 
possible that they contain additional domains. For full names of species see Fig. 1 legend.
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file 13), data matrices (see Additional files 14 to 17) used
to construct the tree and two parsimony and one Bayesian
trees (see Additional files 18 to 20) are available online.

The abbreviated unrooted Bayesian tree for the amino-
acid-plus-gap-characters analysis is presented in Fig. 2 as
our best estimate of the relationships within the kinesin
gene family. The expanded view of kinesin subfamilies is
presented in Figures 3 to 10. This analysis was favored
over those that did not incorporate gap characters because
it incorporated all available characters from the motor
domain and is, therefore, favored by the total-evidence
criterion [60,61]. Furthermore, inclusion of the gap char-
acters increased both the number of clades resolved (439
→ 453 Bayesian; 288 → 296 parsimony) and average
branch support (90.3% → 92.0% Bayesian; 87.3% →
87.5% parsimony) in both the Bayesian and parsimony
analyses, which is consistent with the general patterns
found by Simmons et al., [62]. The Bayesian analysis was
favored over the parsimony analysis because the inferred
Bayesian tree is more resolved than the parsimony tree
and the additional resolution is largely congruent with
previous analyses with respect to resolution of the 14
kinesin families. The other three gene trees from both
Bayesian and parsimony analyses are available as supple-
mental data (see Additional files 18 to 20).

Each branch of the Bayesian tree in Fig. 2 indicates the
posterior probability from the amino-acid-plus-gap-char-
acters analysis at the upper left of the branch. To allow for
inspection of the support for each branch provided by the
other analyses, the posterior probability from the amino-
acid-characters-only analysis is at the upper right of each
branch, the parsimony jackknife support from the amino-
acid-plus-gap-characters analysis is at the lower left, and
the parsimony jackknife support from the amino-acid-
characters-only analysis is at the lower right. If a branch
was unresolved in one of these other three analyses, it is
indicated by "-" at the respective location. If a branch was
contradicted in one of these other three analyses, it is indi-
cated by underlined red font at the respective location
with the single highest posterior probability or jackknife
support value for the contradicting clade(s) shown.

Conflict between parsimony and Bayesian trees
There were three cases of well supported, conflicting reso-
lution in which both Bayesian trees were contradicted by
both parsimony trees. First, in the parsimony trees Pt
00151235 was well supported as nested within the second
Kinesin-10 clade, whereas it was well supported as nested
within the Kinesin-14 clade in the Bayesian trees. Aside
from this single sequence, the Kinesin-10 and Kinesin-14
clades were largely congruent in all four trees (Figs. 8, 10).
The parsimony resolution is supported by the Kinesin-10-
specific domains that Pt 00151235 has, whereas the

sequence lacks the Kinesin-14-specific domains. There-
fore, we favor the parsimony resolution of Pt 00151235 as
a member of the Kinesin-10 family (Table 4). Second, in
the parsimony trees Tp 121289 was well supported as the
sister group of Tp 163717, whereas the clades of (Tp
121289, Ps 127973) and (Tp 163717, Lm F22.0560) were
well supported in the Bayesian trees with the former clade
resolved with the Kinesin-7 family (Figs. 2, 7). There are
no additional domains of Tp 121289 or Tp 163717 to dis-
tinguish between these alternative resolutions. Third, in
the parsimony trees Ps 128382 was unresolved in the
main polytomy, whereas it was well supported as nested
within the Kinesin-3 clade in the Bayesian trees (Fig. 4).
The Bayesian resolution is supported by the Kinesin-3-
specific domain that Ps 128382 has.

To test for long-branch attraction [63] in the parsimony
analyses between Pt 00151235 and the second Kinesin-10
clade, the amino-acid-plus-gap-characters parsimony
jackknife analysis was repeated after eliminating all nine
other sequences in the second Kinesin-10 clade [64].
However, this explanation was not supported because Pt
00151235 was unresolved in the main polytomy rather
than moving to within the Kinesin-14 clade. Likewise, to
test for long-branch attraction in the parsimony analyses
in the second case of conflicting resolution, the parsi-
mony jackknife analysis was repeated after eliminating Tp
163717. However, this explanation was not supported
because both Tp 121289 and Ps 127973 were unresolved
in the main polytomy rather than being resolved as sister
groups. Therefore, we were unable to discard either of the
two alternative hypotheses regarding the relationships of
Tp 121289 and Tp 163717. Because Ps 128382 was unre-
solved in the main polytomy on the parsimony trees, it
was not possible to apply this test to it.

Many new kinesins are not grouped into recognized kinesin 
families
All 14 currently recognized kinesin families [14] are repre-
sented in our inferred gene tree (Fig. 2). All members in
each family are presented in Figs. 3 to 10. However, 11%
of the sequences (58 of 529 sequences) were not resolved
among the lineages corresponding to previously recog-
nized families (Fig. 2). Most of these kinesins are from
Leishmania, Giardia, Phytopthora, Chlamydomonas and Thal-
lassiosira. These sequences may represent novel kinesin
families and/or early-derived members of the 14 recog-
nized kinesin families that are not resolved as such in our
inferred gene tree. Several clades that are not part of the
known families contained members from two eukaryotic
groups, indicating that they are not unique to one of the
eight main eukaryotic lineages [48]. A strongly supported
clade of ten kinesins (Figs. 2, 3 plant-specific ungrouped)
from flowering plants were not resolved into any of the 14
kinesin families. However, these formed a distinct clade
Page 18 of 37
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(Fig. 2 and Fig. 3 plant-specific ungrouped) with strong
support values from all four analyses. Interestingly, the
members of this group also have an armadillo domain
that is not present in any invertebrates or vertebrates (see
domain analysis section below).

At least three of the 14 kinesin families are absent in 
flowering plants
The distribution of kinesin families in the 19 species sam-
pled is shown in Fig. 1. Some families (e.g. Kinesin-5;
Kinesin-13 and Kinesin-14) are present in almost all of

Table 5: O. sativa ssp. japonica kinesins and their structural features

Gene ID Protein length cDNA Acces-
siona

Additional 
Domains

MD location # of exons Family

OsSBCC009381 909 CC, ARM N 20 UG
OsSBCC020273 868 CC, ARM N 19 UG
OsSBCC026309 434 CC N 15 1
OsSBCC029113 1045 AK067738

AK100974b
CC N 25 4

OsSBCC008366 1260 AK106279 CC, HTH N 25 4
OsSBCC016982 1027 AK068757 CC N 21 5
OsSBCC010233 818 N 18 5
OsSBCC028993 988 CC N 21 5
OsSBCC004978 854 AK102833 N 23 6
OsSBCC002024 954 AK103077 CC N 14 7
OsSBCC007775 618 AK100979 CC N 11 7
OsSBCC028926 965 AK065731

AK102208b
N 12 7

OsSBCC030982 877 AK072633
AK100918b

N 13 7

OsSBCC015147 1116 CC N 23 7
OsSBCC008574 975 AK121333 CC N 23 7
OsSBCC035459 642 CC N 14 7
OsSBCC030333 1368 CC N 32 7
OsSBCC002630 743 CC I 8 8
OsSBCC012732 729 AK103310 CC N 16 8
OsSBCC008809 896 CC N 6 10
OsSBCC019161 563 AK073413 HHH N 11 10
OsSBCC014774 955 AK101769 HHH I 19 10
OsSBCC038188 2798 CC N 36 12
OsSBCC011576 1221 AK121995 CC, KR N 16 12
OsSBCC014640 1109 CC, KR N 16 12
OsSBCC002748 774 CC I 13 13
OsSBCC017229 819 CC I 12 13
OsSBCC010387 1051 AK106465 CH I 16 14
OsSBCC037918 919 AK065586 I 17 14
OsSBCC022107 1169 AK064200 CC I 20 14
OsSBCC003463 1317 AK101026 CH, CC I 25 14
OsSBCC038356 1003 AK106725 CC I 15 14
OsSBCC009123 1080 AK063381 CC I 21 14
OsSBCC018779 840 AK1 02894 CC I 13 14
OsSBCC001075 793 AK070313 CC N 10 14
OsSBCC029770 580 AK071093 CC N 10 14
OsSBCC020793 1311 CC N 24 14
OsSBCC016659 1274 AK073209 MyTH4, B4.1, CC C 23 14
OsSBCC023227 762 AK063949 CC C 14 14
OsSBCC051135 367 AK063949 N 9 14
OsSBCC016426 788 AK122184

AK064973b
CC C 17 14

aAvailable cDNA accession numbers for KOME database [145]. bIndicates KOME cDNA accessions that may represent alternatively spliced 
isoforms. Other possible kinesins with truncated motor domains OsSBCC015355, OsSBCC019553, OsSBCC035936, OsSBCC025788, 
OsSBCC033202, OsSBCC015813, OsSBCC012593, OsSBCC000978, OsSBCC005893, OsSBCC005892, OsSBCC007770, OsSBCC006810, 
OsSBCC035600. MyTH4, Myosin tail homology 4; B4.1, Band 4.1; CC, Coiled-coil; CH, Calponin homology; HTH, Helix turn helix; HHH, Helix-
hairpin-helix; ARM, Armadillo repeat; KR, Kinesin-Related; UG, Ungrouped; N, N-terminal; I, Internal; C, C-terminal.
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the main eukaryotic lineages. Although flowering plants
have the largest number of kinesins, at least three of the 14
families are conspicuously absent in flowering plants. It is
unclear whether either three or four (Kinesin-2, Kinesin-3,
Kinesin-9 and/or Kinesin-11) of these 14 families are
absent in flowering plants because of the entirely unre-

solved flowering-plant clade (Figs. 2 and 3). Members of
Kinesin-2 form either homo- or heterodimers and are
present in ciliated and flagellated cells and function in
organelle-intraflagellar transport [2,9]. Interestingly, the
flagellated unicellular photosynthetic eukaryote
Chlamydomonas has one Kinesin-2, which is also involved

Table 6: O. sativa ssp. indica kinesins and their structural features

Gene ID Protein length Additional 
Domains

MD location # of exons Family

OsIBCD008900 899 CC, ARM N 20 UG
OsIBCD019322 891 CC, ARM N 19 UG
OsIBCD024826 434 CC N 15 1
OsIBCD027529 1045 CC N 25 4
OsIBCD007936 1260 CC, HTH N 25 4
OsIBCD016250 1027 CC N 21 5
OsIBCD009684 1637 CC, ZF N 29 5
OsIBCD027399 951 CC N 20 5
OsIBCD004715 2588 ARM N 40 6
OsIBCD001985 954 CC N 14 7
OsIBCD007402 828 CC N 12 7
OsIBCD027313 947 N 12 7
OsIBCD029182 1102 CC N 15 7
OsIBCD014393 1140 CC N 23 7
OsIBCD008139 948 CC N 23 7
OsIBCD031186 1014 CC N 23 7
OsIBCD033171 642 CC N 14 7
OsIBCD028585 1236 CC N 31 7
OsIBCD002607 768 CC I 6 8
OsIMBCD012108 783 CC N 17 8
OsIBCD008347 904 CC N 6 10
OsIBCD018270 563 HHH N 11 10
OsIBCD014035 722 HHH N 18 10
OsIBCD035525 2887 CC N 40 12
OsIBCD010981 1129 CC, KR N 15 12
OsIBCD0139 10 1085 CC, KR N 15 12
OsIBCD016493 811 CC I 12 13
OsIBCD009838 1007 CH I 17 14
OsIBCD035259 913 I 18 14
OsIBCD021045 1225 CC, CH I 20 14
OsIBCD005609 892 CC, CH C 18 14
OsIBCD003270 938 CC, CH C 22 14
OsIBCD014642 1014 CC, CH I 19 14
OsIBCD035672 994 CC I 15 14
OsIBCD008627 1080 CC I 21 14
OsIBCD017918 831 CC I 13 14
OsIBCD001052 793 CC N 10 14
OsIBCD025572 604 CC N 10 14
OsIBCD025570 502 CC N 7 14
OsIBCD019841 1311 CC N 24 14
OsIBCD015937 1274 MyTH4, B4.1, CC C 23 14
OsIBCD022126 762 CC C 14 14
OsIBCD012736 486 I 10 14
OsIBCD031252 622 CC C 18 14
OsIBCD015695 788 CC C 17

Other possible kinesins with truncated motor domains: OsIBCD000942, OsIBCD001990, OsIBCD002704, OsIBCD006479, OsIBCD011989, 
OsIBCD014306, OsIBCDOlSlll, OsIBCD019933, OsIBCD024322. MyTH4, Myosin tail homology 4; B4.1, Band 4.1; CC, Coiled-coil; CH, Calponin 
homology; HTH, Helix-turn-helix; ZF, Zinc Finger; HHH, Helix-hairpin-helix; ARM, Armadillo repeat; KR, Kinesin related; UG, Ungrouped; N, N-
terminal; I, Internal; C, C-terminal.
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Domain schematics for unicellular photosynthetic eukaryotesFigure 12
Domain schematics for unicellular photosynthetic eukaryotes. Schematic diagrams showing the domain architecture 
of kinesins in C. merolae, C. reinhardtii and T. pseudonana. Family classifications are shown to the right of the proteins.
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Domain schematics for P. trichocarpaFigure 13
Domain schematics for P. trichocarpa. Schematic diagram showing the domain architecture of kinesins in P. trichocarpa. 
Family classifications are shown to the right of the proteins.
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in intraflagellar transport [65]. Since flowering plants lack
cilia or flagella in their life cycle, this family of kinesins is
lost in this lineage. It would be interesting to see if the
land plants that have ciliated/flagellated cells in their life
cycle (e.g., bryophytes, pteridophytes and gymnosperms)

retained this family of kinesins. Unfortunately, genomes
of plants that belong to these groups have not been
sequenced to address this. Members of the Kinesin-3 fam-
ily are involved in organelle transport. The Kinesin-3 fam-
ily is expanded in animals with seven members in

Domain schematics for O. sativa ssp. japonicaFigure 14
Domain schematics for O. sativa ssp. japonica. Schematic diagram showing the domain architecture of kinesins in O. sativa 
ssp. japonica. Family classifications are shown to the right of the proteins.
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humans, the largest of any family. Interestingly, 17 of the
54 Leishmania kinesins are grouped within the Kinesin-3
family and this grouping is strongly supported by both
Bayesian analyses. It appears that lineage-specific duplica-
tion of genes contributed to expansion of this family. The
fork-head-associated (FHA) domain present in vertebrate
members of this family is absent in all Kinesin-3 members
of Leishmania, suggesting that the acquisition of this
domain occurred after the divergence of the Leishmania
and animal lineages. The Kinesin-1 family, which is also
involved in transport of vesicles, is underrepresented in
plants. It was previously speculated [43] that there might
be a higher plant Kinesin-1/KHC family member but it
was not conclusive. It appears that Arabidopsis and O.
sativa have one Kinesin-1/KHC gene and the diatom has
two, whereas there may not be a Kinesin-1 in
Chlamydomonas. Overall, cargo-transporting kinesins are
either absent (Kinesin-2 and Kinesin-3) or underrepre-
sented (Kinesin-1) in flowering plants. The cargo-trans-
port functions of some of these kinesins are either not
needed in flowering plants or performed by members of
other families of kinesins or cargo transporting myosins,
which are expanded in plants [2,66]. Although Kinesin-9
family members are absent in flowering plants, they are
present in two photosynthetic eukaryotes (four in
Chlamydomonas and two in diatoms). It appears that this
family is lost in flowering plants. The functions of the
Kinesin-9 family are unknown [9]. Members of the
Kinesin-11 family function in signal transduction and
contain a few highly divergent kinesins and are absent not
only in plants but in many other lineages [67,68].

Forty indica kinesins have orthologs in japonica and three
of these (IBCD021045, IBCD025572 and IBCD012736 in
kinesin 14 family, see Figure 10A&B) are duplicated in
indica only. The duplications found in indica may have

occurred recently or japonica sequence may not be com-
plete. In addition, two kinesins in indica (IBCD031186 in
kinesin 7 family, see Figure 7; IBCD014642 in kinesin 14
family, see Figure 10A) have no counterparts in japonica
whereas one kinesin in japonica (SBCC002748, see Figure
9) has no counterpart in indica, suggesting that either a
specific kinesin is lost in one cultivar or it is due to differ-
ences in unsequenced gaps in the genome of these two
rice cultivars.

Two families (Kinesin-7 and Kinesin-14) are vastly 
expanded in plants
Kinesin-14, the C-terminal motor family, and the Kinesin-
7 family have greatly expanded in plants through gene
duplication. Kinesin-14 is a diverse family containing
eukaryotic representatives from almost all major eukaryo-
tic groups; therefore, the members of this family are likely
to play important evolutionarily conserved cellular roles.
Kinesin-14 family members show minus-end motility and
perform multiple functions in cell division and organelle
transport [9,18]. Kinesin-14 is the largest family of kines-
ins in flowering plants (about 35% of Arabidopsis kines-
ins fall in this group). Flowering plant kinesins in this
family contain several domains that are not present in
non-plant kinesins. In the Kinesin-14 family, there are
several subfamilies in which the motor domain is located
in the middle or at the N or C terminus. It is interesting to
observe the many plant-specific kinesin duplications (Fig.
10). Based on the inferred phylogenetic relationships
among the plant species sampled [50,69-71], we infer a
minimum of nine duplications in the top clade of flower-
ing-plant lineage (see 10A, internal motor-1 and -2) prior
to the divergence of monocots from dicots, seven duplica-
tions within the dicot lineage, and one duplication within
the monocot lineage (see Fig. 10A). Because the green and
red algae Kinesin-14 sequences are resolved as sister to the

Duplication map for O. sativa ssp. japonica kinesinsFigure 15
Duplication map for O. sativa ssp. japonica kinesins. Figure showing the approximated distribution of Oryza kinesins on a 
chromosomal duplication map based upon [94]. All accession numbers should be prefixed with "OSBCCO" if searching [100].
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upper Kinesin-14 flowering-plant clade, we also infer that
there was a plant-specific duplication prior to the diver-
gence of the red and green algae. One of the two copies
was then lost in both the red and green algae lineages, yet
retained in the flowering-plant lineage.

The first subfamily of the Kinesin-14 family has plant-spe-
cific kinesins that are shared by the both the green and the
red algae (Fig. 10A). Members of flowering plants in this
group have a calponin-homology (CH) domain that is
not present in green or red algae, suggesting that this
domain was gained in the flowering-plant lineage (see
domain analysis section). The second group that is well
supported by all four analyses only includes kinesins from
flowering plants (Fig. 10A). Interestingly, members of
these two top most groups have an internal motor
domain instead of the C-terminal motor domain for
which this family is named. Another group that is
restricted to the plant kingdom deals with the N-terminal
flowering plant-specific group in the Kinesin-14 family
(See Fig. 10B). Perhaps the N-terminal and internal motor
groups in the family could have arisen in flowering plants
by domain shuffling of a C-terminal motor. The members
of the seventh group with a C-terminal motor contain a
myosin tail homology 4 (MyTH4) region and talin-like
region (also known as Band 4.1 or FERM) that are not
present in any non-plant kinesins. The last large subfamily
of the Kinesin-14 family is reflective of true C-terminal
motors in plants, diatoms, animals and protozoans (Fig.
10B). From this analysis it appears that the Kinesin-14
family is composed of multiple subfamilies instead of the
two previously reported Kinesin-14A and Kinesin-14B
families [14]. Based on the location of the motor and the
presence of other domains, there could be up to eight sub-
families within the Kinesin-14 family (five of which are
likely to be plant-specific). There appears to be several
dicot- and monocot-specific duplications in plant kines-
ins of this family. Several of the subfamilies resulted pri-
marily due to the emergence of novel kinesins in the plant
lineage. The members of this family with the C-terminal
motor domain have been shown to be minus-end motors
[8,72]. Although plant motors with a C-terminal domain
translocate toward the minus-end of MTs [39-41], it is not
known if the internal and N-terminal plant motors are
also minus-end motors. The functions of several Arabi-
dopsis Kinesin-14 family members that contain the motor
domain at the C terminus (e.g., KatA/ATKl [At4g21270],
ATK5 [At4g05190], KCBP [At5g65930]), N terminus
(GRIMP/KCA1 [At5gl0470]) and KCA2 [At5g65460]) or
in the middle (KatD [At5g27000]) have been analyzed.
Several of these (ATK1, ATK5, KCBP) are involved in some
aspect of cell division [20,23,24,28,29,31], suggesting
that the plant kinesins of this family play important roles
in cell division. The cotton homolog of Arabidopsis KatD
localizes to cortical MTs and microfilaments and interacts

directly with F-actin [38]. GRIMP/KCA1 interacts with a
geminivirus replication protein and localizes to segregat-
ing chromosomes and spindle poles [37]. Both GRIMP/
KCA1 and KCA2 interact with a cyclin-dependent kinase
(CDKA;1), which controls cell cycle progression, and
localizes to MTs and phragmoplast [73], suggesting a role
for these also in cell division. The fact that plants have
unique MT arrays such as the preprophase band and
phragmoplast that play critical roles in plant cell division,
lack centrosomes to organize MTs to establish a bipolar
spindle [1] and have no (or few) dyneins, [74,75], which
are also minus-end motors, suggests that plants would
require novel kinesins to perform these plant-specific
roles and to cover the functions performed by dyneins in
animals. In addition, several reports indicate that plants
transport macromolecules (e.g. RNA and proteins) and
viruses form cell to cell through plasmodesmata [1,76].
Such transport activities may also require kinesins. Hence,
it is possible that the expansion of kinesins in plants
accounts for the need for plant-specific motors in flower-
ing plants.

Kinesin-7/CENP-E is the second largest kinesin family in
plants and one clade (plant-specific clade in Fig. 7) con-
tains kinesins from only photosynthetic eukaryotes with a
green algal kinesin as a sister group to those from the flow-
ering plants. The flowering-plant-specific clade is strongly
supported by both Bayesian and parsimony analyses.
Hence, multiple members in a species in this clade (e.g.,
seven in Arabidopsis) are inferred to have arisen by at least
six gene duplications in the flowering-plant lineage prior
to the divergence of monocots from dicots, five in the
dicot lineage, and one in the monocot lineage. The func-
tions of two members of this clade have been reported.
Kinesins encoded by At1g18370 (also called NACK1/
HINKEL) [25,26] and At3g43210 (also called STUD/TET-
RASPORE/NACK2) [25,27] encode functionally related
motors. Loss-of-function mutants of these kinesins
revealed their role in cytokinesis [25-27,77]. Interestingly
the NACK1 activates a MAP kinase (MAPK) [25]. The sec-
ond clade in this family also contains flowering plants,
amoebozoa and heterokonts, but not opisthokonts (verte-
brates, invertebrates and fungi). Two Arabidopsis mem-
bers of this group are targeted to mitochondria [36],
implying an unknown function for these kinesins in this
organelle. The third group contains kinesins from flower-
ing plants and amoebozoa. Members of these groups are
inferred to be more closely related to one another than to
the small, animal subfamily. Because of extensive duplica-
tion in the CENP-E family in plants, the members of this
family may have been recruited to perform plant-specific
functions. In animals, members of this family function in
capturing kinetechore MTs. Studies with some members
of plant kinesins that belong to Kinesin-7 indicate their
role in cytokinesis and some unknown function in mito-
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chondria [36,77]. Overall, our analyses indicate that there
was tremendous diversification in Kinsin-14 and Kinesin-
7 families in flowering plants.

Seven of the ten kinesin families in flowering plants are 
present in Chlamydomonas
Chlamydomonas, a member of chlorophyte algae, repre-
sents the sister group of the flowering plants given our
taxon sampling [46,50]. Hence, the analysis of kinesin
families in this species should provide some insights into
evolution of kinesins in flowering plants. Chlamydomonas,
despite the fact that it is unicellular, has 23 kinesins (Table
3). Twenty of these were grouped into nine recognized
families whereas the remaining three are ungrouped
(Table 3). Kinesin-1, -3, -6, -10 and -11 families are absent
in Chlamydomonas. Of the ten kinesin families present in
flowering plants, seven are present in Chlamydomonas (Fig.
2). Three families (Kinesin-1, -6 and -10) of flowering
plants are inferred to have been lost in the Chlamydomonas
lineage. Two families (Kinesin-2 and Kinesin-9) that are
present in Chlamydomonas were lost in the flowering-plant
lineage. One of these families (Kinesin-2) is involved in
intraflagellar transport. As mentioned above, the absence
of flagella/cilia in flowering plants may have resulted in
the loss of this family.

The red alga (C. merloae) has only five kinesins that belong
to four families (Table 2) whereas the diatom (T. pseudo-
nana) has 25 kinesins (about the same number as in the
green alga) that fall into nine known kinesin families with
four kinesins unresolved (Table 7). Although the green
alga and the diatom have nine families, unlike
Chlamydomonas, the diatom has Kinesin-1 and Kinesin-6
but may not have members of the Kinesin-2 or Kinesin-8
families. Remarkably, Kinesin-14 is the largest family in
all photosynthetic eukaryotes. Among the 14 recognized
families, only four (Kinesin-5, -7, -12 and 14) were shown
to be present in all photosynthetic eukaryotes (Fig. 11).
The absence of myosins and dyneins in the red alga (C.
merolae) suggests that kinesins play important roles in this
species [48,78].

Giardia, an early-derived eukaryote, has ten of the 
fourteen kinesin families
In Giardia there are 24 kinesins (see Additional file 12).
This is more than half the number of kinesins found in
humans [6]. However, Giardia has no recognizable
myosin [48], suggesting that kinesins perform most of the
transport functions. Sixteen of the 24 kinesins in Giardia
were resolved into ten known families whereas the
remaining eight were unresolved (see Additional file 12).
If Giardia is indeed part of the earliest derived extant line-
age of the eukaryotes and therefore existed prior to the
plant-animal split [44,46,47] the ten families with repre-
sentatives in Giardia are inferred to represent the basic set

of kinesin families in early eukaryotes. The families that
are not represented in Giardia are Kinesin-6, -10, -11 and
-12. Hence, these families may have emerged later in
eukaryotic evolution through gene duplication. Four of
the ungrouped kinesins in Giardia did not group with
kinesins from other species whereas the remaining four
grouped either with Leishmania or Chlamydomonas kines-
ins (see Fig. 2). Many of the domains found in flowering
plants and animals are not present in Giardia (Fig. 11).

Other kinesin families in plants
All flowering-plant kinesins from the Kinesin-4 family
form a well-supported clade as the sister group of a Chy-
lamydomonas sequence (Fig. 5). Two Chlamydomonas
kinesins in this family did not group with flowering
plants, though this resolution was not supported in the
parsimony analyses (Fig. 5). A member of this family is
involved in cell wall deposition [35]. Kinesin-5 family
motors function in cell division and spindle formation
[79]. All flowering-plant kinesins of the Kinesin-5/BIMC
family form a well-supported clade sister to the single
Chlamydomonas sequence (Fig. 5). Plant members of this
family, like their animal counterparts, are likely to func-
tion in cell division [80]. Members of the Kinesin-6 family
that function in cytokinesis in animals are not inferred to
have undergone any gene duplications in plants (in which
both copies have been retained as functional genes).
There is only one kinesin of this family in each of the flow-
ering plant species analyzed here and none in the green or
red algae. Since cytokinesis in plants is quite different
from animals [1], it appears that members of other kines-
ins families perform this function. Kinesin-8 members are
found in plants, fungi and animals. Oryza and Arabidopsis
have two Kinesin-8 genes whereas Populus has one (Fig.
6). The non-plant members function in nuclear migration
and mitochondrial transport. The function of plant mem-
bers of this family remains unknown. Plant kinesins asso-
ciated with the Kinesin-10 family were resolved as two
separate clades from the main polytomy (Fig. 8) indicat-
ing that two copies of Kinesin-10 were present in flower-
ing plants prior to the divergence of monocots from
dicots.

The Kinesin-12 family members function in organelle
transport [9]. This family includes kinesins from both
plants and animals. There are multiple members of this
family in each flowering plant species. The flowering
plant members formed two distinct clades, one as a sister
group to Chlamydomonas, with the red algae sequence as
sister to both (Fig. 9). Based on this resolution, we infer at
least one gene duplication after the divergence of red and
green algae from one another yet prior to the divergence
of green algae from flowering plants, three duplications in
the flowering-plant lineage prior to the divergence of
monocots from dicots, and two duplications within the
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dicot lineage. Two plant members of this group localize to
a plant-specific structure called the phragmoplast [22].
Members of the Kinesin-13 family, most of which have
internal motors, transport vesicles and have MT depolym-
erizing activity [81,82]. Plant members of this family also
form a distinct clade with the Chlamydomonas kinesin as a
sister group (Fig. 9). These internal-motor plant kinesins
are distinct from the other internal-motor plant kinesins
(found only in plants) in the Kinesin-14 family.

Domain analysis
Domain analysis was performed on all eukaryotes used in
this study as described in the Methods section. The most
prevalent domain is the coiled-coil region; almost every
kinesin sequence analyzed has a coiled-coil prediction
(based on the SMART algorithm [83] (see Tables 2, 3, 4, 5,
6, 7 and Additional files 1 to 12). Among the kinesins ana-
lyzed here, about 30 known functional domains (not
including the motor domain and coiled-coil region) are
found. Fig. 11 shows the list of functional domains and
their presence in various species. A schematic diagram of
kinesins depicting all the domains in the green alga, red
alga and diatom are shown in Fig. 12 whereas domain fig-
ures of Populus and one species of Oryza are shown in Figs.
13 and 14, respectively. Domains in Arabidopsis kinesins
were reported previously [43]. Various known domains in
non-plant systems are indicated in Additional files 1 to
12. Interestingly, not a single domain is present in all
kinesins. Instead, most domains are restricted to a partic-
ular lineage (Fig. 11) suggesting that most of these are
gained later in evolution and have novel functions. This is
also supported by the fact that in Giardia most of these
domains (except fork head associated and helix-turn-helix
domains) are absent. Some domains such as myosin tail
homology domain 4 (MyTH4) and band 4.1 (also called
talin-like region or FERM) are restricted to green algae and
flowering plants (Fig. 11). Although MyTH4 and band 4.1
domains are present in several animal proteins including
some myosins, they are not found in non-plant kinesins.
Interestingly, in Arabidopsis the MyTH4 and band 4.1 are
present in one kinesin and are not present in any other
protein encoded in the genome [83]. We have previously
shown that MyTH4 and talin-like regions are involved in
binding to MTs [84], suggesting that it may be involved in
cross-linking and/or bundling MTs. It was recently shown
that MyTH4 and band4.1 in myosins also bind MTs [85],
hence these domains are likely to function in cross-linking
actin and MT cytoskeleton and/or transfer of cargo
between two different cytoskeletal elements.

Calponin homology (CH) and kinesin-related (KR)
domains are found in flowering plants but not in green
and red algae or heterotrophs (Fig. 11). There are several
kinesins with one CH domain and a KR domain in each
flowering plant analyzed here (see Figs. 13 and 14). All

CH domain kinesins belong to the Kinesin-14 family and
were resolved as the first clade in this family (see 10A).
The only other protein family that has the CH domain is
fimbrin. Plant fimbrins have four copies of the CH
domain and bind F-actin. The CH domain is a protein
module of about 110 residues found in cytoskeletal and
signal transduction proteins either as a single copy or mul-
tiple copies in tandem. Proteins with a tandem pair of CH
domains cross-link F-actin, bundle actin or connect inter-
mediate filaments to cytoskeleton [86]. Proteins with a
single copy are involved in signal transduction [87].
Although plant kinesins have only one CH domain,
recently it was shown that a kinesin with this domain
interacts with F-actin, suggesting that the kinesins with
this domain may be involved in interaction between actin
and MT cytoskeleton [38]. The function of the KR domain
is not known. However, the kinesins with this domain
associate with the phragmoplast [21,22] and belong to
the Kinesin-12 family (Fig. 9). Several flowering-plant
kinesins and one non-plant (Leishmania) kinesin have
armadillo/betacatenin-like (ARM) repeats that are known
to mediate protein-protein interactions. Diverse proteins
contain ARM repeats that form a superhelix of helices and
function in intracellular signaling and cytoskeletal regula-
tion. Although none of the vertebrate and invertebrate
kinesins have an ARM, a Kinesin-2 family-associated pro-
tein called KAP3 in animals contains the ARM repeat
[2,88]

Animal kinesins have some domains that are not found in
photosynthetic eukaryotes. These include fork-head asso-
ciated (FHA), pleckstrin homology (PH), CAP-Gly
domains and WD-40 repeats. The FHA domain is known
to interact with phosphothreonine in proteins. Cap-gly is
a glycine-rich domain of about 40 amino acids that is
found in cytoskeleton-associated proteins (CAPs). The
WD-40 repeats are also short (about 40 residues) motifs
that often terminate in Trp-Asp (W-D) dipeptide and facil-
itate the formation of multi-protein complexes. Two of
these domains (FHA and PH) are present in several proto-
zoans (Fig. 11), suggesting that these domains may have
been present in kinesins in the most recent common
ancestor of all extant eukaryotes.

The only domain common to both plants and animals
(both invertebrates and vertebrates) is the helix-hairpin-
helix (HHH) DNA binding motif in the Kinesin-10 family
that functions in chromosome segregation (Fig. 11). A
member of this family has been shown to bind DNA ([89]
and it is likely that others with this domain also bind DNA
and function in chromosome segregation. However, the
HHH domain is not present in fungi or the green or red
algae, suggesting that plant and animals may have
acquired this domain independently. Overall, the domain
distribution in kinesins suggests several domains were
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added to plant and animal kinesins after the plant-animal
split. Interestingly, there are several domains present only
in either Leishmania or Phytopthora sojae, which suggests
tremendous diversification of kinesins in lower eukaryo-
tes that may have to do with their unique life cycle and cell
biology. In diatom, most kinesins are short (Table 7 and
Figure 12), which could be due to poor quality of the gene
models.

Genome duplication in flowering plants may have 
contributed to the expansions of kinesins in this group
Whole genome duplications are believed to be a driving
force for genome evolution in angiosperms since many
modern diploids appear to be ancient polyploids [90,91].
In Arabidopsis, the duplicated segments represent about
58% of the genome and several kinesins are present in the
duplicated regions [43,92]. In Oryza, 18 pairs of dupli-
cated segments cover 65.7% of the mapped super-scaf-
folds [93]. To visually represent the number of O. sativa
ssp. japonica kinesins that fall within these segmental
duplicated regions, an approximated chromosome map
was generated according to the genomic map presented by
Guyot and Keller, [94]. Figure 15 depicts the distribution
of kinesins across the 12 Oryza chromosomes. Roughly 26
of the 41 japonica kinesins are within duplicated seg-
ments. Chromosome 3 has the most kinesin genes (6),
whereas chromosome 10 has none. The remaining chro-
mosomes contain one or more kinesin encoding genes.
The duplicated region in the long arm of chromosome 1
contains three kinesins (OSBCC02630, OSBCC02748,
OSBCC03463); the corresponding duplicated block on
chromosome 5 has only two (OSBCC18779,
OSBCC19161), which could be suggestive of a gene loss
event. The duplicated block on the short arm of chromo-
some 2 also may have experienced a gene loss event as it
is bereft of any kinesins, whereas its counterpart on the
long arm of chromosome 6 contains a single
(OSBCC22107) kinesin.

Intron/exon organization of kinesin genes
Information on the presence of introns in kinesins of all
species analyzed here is presented in Tables 2 to 7 and
Additional files 1 to 12. All kinesins in Chlamydomonas
and flowering plants have many introns whereas introns
are absent in kinesin genes of red alga, Giardia and Leish-
mania. Because of the large number of introns in kinesin
genes of most species, the diversity of kinesin motors may
increase by alternative splicing of kinesin pre-mRNAs.
Although the extent of alternative splicing of kinesin pre-
mRNAs in plants is not known, there are examples in ani-
mals where alternative splicing of some kinesins results in
generation of isoforms with different domains and with
distinct functions [95,96].

Conclusion
Flowering plants have the largest number of kinesins
among all species yet sequenced. Gene duplication and
functional diversification of specific families (e.g.,
Kinesin-14 and Kinesin-7) appears to have contributed to
the high number of kinesins in flowering plants. Addition
of novel domains to kinesins in lineage-specific groups
contributed partly to the functional diversification of
kinesins. The Kinesin-14 family, which typically contains
a C-terminal motor, has many plant kinesins that have the
motor domain in the middle or at the N terminus as well
as at the C terminus. The presence of most kinesin families
of flowering plants in Chlamydomonas indicates that these
families were retained in both lineages. Since plants have
no or few dyneins, it appears that the kinesin family of MT
motors has expanded in plants. Despite the large number
of kinesins in flowering plants, three or four of the 14 rec-
ognized families are absent. The vast expansion of some
kinesin families in flowering plants suggests that they are
likely to perform plant-specific functions. Many kinesins
in Leishamania, Giardia and Chlamydomonas were not
resolved with known kinesin families and may represent
novel kinesin families and/or early-derived members of
the 14 recognized kinesin families that are not resolved as
such in our inferred gene tree. Lineage-specific domain
architecture in the plant and opisthokont lineages and
absence of these domains in kinesins of other eukaryotes
suggests acquisition of these domains more recently. The
gene-tree analysis presented here is important for under-
standing kinesin evolution and should provide a frame-
work to study cellular roles of kinesins. The challenge
ahead is to elucidate the functions of individual kinesins
and their regulation.

Methods
Identification and analyses of kinesins in recently 
completed genome sequences
All BLAST searches were conducted by using three distinct
motor domain sequences from the Kinesin-1 (human
KHC, N-terminal motor), Kinesin-13 (mouse KIF2, inter-
nal motor domain) and Kinesin-14 (AtKCBP, C-terminal
motor domain) families. Unless otherwise noted, BLAST
searches were done using all three motor domains as que-
ries. In all BLASTP searches we used an E value cut off of
1. With this cut off value, all database searches yielded
kinesins and many unrelated proteins. We then per-
formed domain analysis on all hits as described below in
section II. All proteins with kinesin motor domain are
retained whereas the rest are eliminated.

i) Oryza sativa ssp. japonica
All of the available genome sequences of this subspecies
were extensively analyzed for kinesins as described below.
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a) Searches at NCBI and Bioverse
BLASTP searches at [97] using the "Oryza sativa" (ssp.
japonica) protein database were performed. Sequences
with each motor-domain search were concatenated into a
single file and duplicates were removed. The same query
sequences were used in BLASTP searches against the nr
database at NCBI [98]. After the output files were parsed
and compared with the original PlantBlast searches, a pre-
liminary total of 41 kinesins were identified. To identify
the kinesins that may not have been annotated in the
genome using the gene-prediction programs, TBLASTN
searches were performed against the PlantBlast "Oryza
sativa" DNA sequence database. This search resulted in
identification of one new kinesin that was not part of the
preliminary total obtained via BLASTP searches.

Analysis of Bioverse Oryza database at [99] using the key-
word, "kinesin" yielded 72 hits. The amino acid sequences
from these 72 hits were extracted for BLASTP searches
against the nr and PlantBlast databases at NCBI and
against each other. This analysis resulted in identification
of two new additional kinesins (bringing the total to 44),
whereas the rest corresponded either to previous kinesin
predictions or were not kinesins.

b) Searches at Oryza genome databases
The protein predictions for ssp. japonica were downloaded
from rice genome database [100]. Recently, the analysis of
two subspecies of Oryza (indica and japonica) was refined
[93]. The Syngenta predictions were refined by using a
new program, BGF (Beijing Gene Finding), developed by
the Gene Finding Team at BGI for gene identification in
eukaryotic genomic DNA sequences. It is based on
Dynamic Programming and HSMM (Hidden Semi-
Markov Model) algorithm with a special emphasis on
Oryza genomes [101]. BLASTP searches were performed.
The output files were parsed, concatenated and duplicates
were removed. Fifty-five possible kinesins were found and
their full-length amino acid sequences were retrieved.
FGENESH (another gene finding program) predictions
were also downloaded from [100] and used for BLAST
searches. The predicted kinesins here were blasted against
the BGF Syngenta predictions and no new kinesins were
found. The kinesins obtained from NCBI were used in a
BLASTP search against the BGF Syngenta predictions. All
sequences from NCBI were accounted for by the BGF Syn-
genta sequences. Closer inspection of the output file
revealed that two submissions made by independent
investigators to GenBank, AAF78897 (817aa) and
CAE05519 (1094aa) are duplicates, with AAF78897 being
a truncated version of CAE05519. AAF78897 was elimi-
nated from the original NCBI list because the CAE05519
sequence is similar to the BGF predicted OSSBC014640
(1109aa) in sequence length. Also predictions
XP_450031.1 and XP_450032.1 are duplicates.

XP_450032.1 (971aa) is the truncated version of
XP_450031.1 (1035aa), which better corresponds to
OSSBCC029113 (1045aa). Hence, XP_450032.1 was
eliminated. XP_483647.1 and XP_483646.1 (986aa and
1003aa, respectively) are also duplicates, but we elimi-
nated XP_483646.1 from the NCBI list because the 986
amino acids of XP_483647.1 were a better match with
OSSBC028926 (965aa). Consequently, theoriginal list of
44 NCBI kinesins has been decreased to 41. This analysis
showed that all 41 kinesin sequences derived from NCBI
searches were referenced to the BGF Syngenta predicted
japonica sequences. Therefore, BGF Syngenta kinesins
were used in order to foster continuity for gene-tree anal-
yses. Analysis of all 55 BGF kinesins using Interproscan
[102] resulted in (see Section II) a total of 41 kinesins.

ii) Oryza sativa ssp. indica
For the subspecies indica cv. 93-11, BGF and FGENESH
protein databases were downloaded from the ftp site at
[100]. BLASTP searches were performed as above using
similar criteria. After parsing the output files, the 54
FGENESH predictions were reciprocally blasted against
the 55 BGF indica sequences and it was found that all
FGENESH predictions were included in the BGF predic-
tions. Analysis of these sequences using Interproscan as
described in Section II yielded a total of forty-five indica
kinesins.

iii) Arabidopsis thaliana
A. thaliana accession numbers for kinesins were obtained
[43] and used to retrieve the full-length sequences of all
61 kinesins from TAIR [103].

iv) Populus trichocarpa
A predicted protein database is not yet available for P. tri-
chocarpa. This database presented a unique problem as the
gene/protein predictions were done using four
(FGENESH, EUGENE, GRAIL, GENEWISE) eukaryotic
gene-prediction programs. Protein predictions at [104]
from each program were searched using the keyword,
"kinesin". This analysis yielded 115 putative kinesins (36
FGENESH, 50 EUGENE, 5 GRAIL/GENWISE, 24 EST_EXT
FGENESH). Duplicate removal and domain analyses pro-
duced a set of 52 unique sequences (see Section II).

v) Cyanidioschyzon merolae
The C. merolae annotated coding sequences and translated
ORF databases at [105,106] were used for BLASTP
searches. This search yielded five kinesins, which were
extracted using the search function at [106] and inputting
the locus accessions.

vi) Chlamydomonas reinhardtii
BLASTP searches were performed against the Version 2
protein models database at [104]. The hits were parsed of
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duplicates and 35 sequences were extracted from the data-
base. This analysis yielded 23 kinesins (see Section II).

vii) Thalassiosira pseudonana
T. pseudonana release 1.0 predicted proteins database was
downloaded from JGI and used for BLASTP searches.
Twenty-seven kinesins were extracted, but only 22 were
used in our gene tree analyses (see Section II).

viii) Ciona intestinalis
C. intestinalis release 1.0 predicted-proteins database was
downloaded from JGI and analyzed in the manner
described above. Thirty-five potential kinesins were
found, but the last hit was only 93 amino acids long and
was discarded.

ix) Phanerochaete chryosporium
Due to the lack of a predicted protein database for P. chry-
osporium, potential kinesin sequences were acquired by
means of advanced-keyword searches at JGI with the
query, "kinesin". Eleven hits were found and downloaded
in FASTA format but only eight were used in gene-tree
analyses (see Section II).

x) Phytophthora sojae
The P. sojae predicted protein database was downloaded
from [104] and used for BLASTP searches. Interproscan
analysis of 56 hits led to 43 possible kinesins.

xi) Giardia lamblia
A translated ORF database for G. lamblia was downloaded
from [107]. BLASTP searches of this database returned 24
hits. These sequences were extracted from the database
and analyzed using Interproscan.

xii) Homo sapiens
The IDs of 36 kinesins obtained from the Kinesin
HomePage [108] were used to acquire the protein
sequences using batch entrez at NCBI [109]. Sequences
were run through Interproscan for domain analysis and
only 32 sequences were kept (see Section II).

Since this number is smaller than what was found in pre-
viously published studies, the CELERA protein database
was downloaded from [110] and used for BLASTP
searches. Forty-four putative kinesins were obtained and
analyzed by Interproscan.

Sequences harboring motor domains that were less than
290 amino acids were discarded. The remaining 26
sequences were blasted against the 32 NCBI kinesins to
remove duplicates. Eight unique CELERA sequences were
appended to the 32 NCBI sequences for a working total of
40 human kinesins.

xiii) Drosophila melanogaster
BLASTP searches using HsKHC at [111] were performed.
Sequences were downloaded and reciprocally blasted
against each other. Five sequences (CG1453-PA, -PB, -PC,
-PD and -PE) are replicates, thus only CG1453-PA was
retained for analysis. Likewise, 8183-A and 8183-B are
duplicates and 8183-A was kept. Also CG9913-A and B are
duplicates and only 9913-A was kept. After Interproscan
analysis 25 possible kinesins were found.

xiv) Caenorhabditis elegans
BLASTP searches were performed at [112]. Nineteen
sequences were retrieved and run through Interproscan.
Sequence F22F4.3, which has a short motor domain (248
amino acids) was removed and corresponding
GI|7499692 from NCBI, which has a longer predicted
protein was used instead.

xv) Dictyostelium discoideum
Protein sequences were downloaded from [113] and used
for BLASTP searches. Thirteen possible kinesin hits were
retrieved and analyzed by Interproscan.

xvi) Plasmodium falciparum
P. falciparum-predicted protein databases
(Pfa3D7_WholeGenome_Annotated_PEP_2004.11.23
and
Pfa3D7_WholeGenome_Automatic_PEP_2004.11.23)
were downloaded from [114] and used in BLASTP
searches. Nine sequences were found from the annotated
PEP database, whereas 25 sequences were recovered from
the automated PEP database.

The 25 automated PEP sequences were extracted and
reciprocally blasted to eliminate duplicates. A cross blast
was performed between the two databases that resulted in
9 kinesins.

xvii) Leishmania major
The L. major amino acid database was downloaded from
[115] and used for BLASTP searches. Fifty-five sequences
were retrieved and reciprocally blasted to search for dupli-
cates. The final number of kinesins in this species is 54
after one duplicate was removed.

xviii) Saccharomyces cerevisiae
BLASTP searches at [116] recovered six kinesins.

xix) Schizosaccharomyces pombe
BLASTP searches at [117] resulted in nine kinesins.

Additional searches of six frame translations of the
genome sequences have not yielded any new kinesins.
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Analysis of domains and retrieval of motor domain 
sequences
a) Interproscan analyses
Interproscan [118] was downloaded to perform batch
analyses of the full-length sequences of the putative kines-
ins from all species. Start and end positions of motor
domains were obtained by SMART predictions. The 55
full-length BGF-japonica sequences were scanned; inspec-
tion of OsSBCC020712 (indica ortholog,
OsIBCD019766), a 192 amino acid protein provided the
impetus for establishing the criteria necessary to generate
a working list of kinesins for gene-tree analyses. Global
alignments of all japonica kinesins to AtKCBP were exam-
ined and any sequences missing conserved domains such
as ATP binding sites or with motor domains that were
generally shorter than 290 amino acids were discarded.
Adherence to these criteria reduced the 54 potential
japonica kinesins to 41. Following these criteria, ssp. indica
sequences were reduced to 45. The 115 P. trichocarpa hits
(FGENESH, EUGENE, EST_EXT FGENESH) were scanned
and filtered of any sequences that did not contain motor
domains. Of these, 52 hits (21 FGENESH, 21 EUGENE,
10 EST_EXT FGENESH) contained the motor domain.
The remaining sequences that did not contain the motor
domain were eliminated as well as those that contained
truncated motor domains
(FGENESHl_pg.C_scaffold_70000181 and
FGENESHl_pg.C_LG_I000890). Thirty-five C. reinhardtii
sequences were scanned and all sequences with motor
domains shorter than 290 amino acids were discarded to
yield 23. Some T. pseudonana proteins were extremely
short and consisted only of truncated motor domains.
Consequently, the working number of kinesins was low-
ered to 22. Thirty-four C. intestinalis sequences were
scanned and the number of kinesins was reduced to 29
due to truncated motor domains or very short sequences.

Scans of the 11 P. chryosporium sequences reduced the
number of kinesins in this species to eight. Homo sapiens
sequences GI6225915 and GI3978240 are duplicates.
Sequence GI19923949 with a motor domain (232aa) was
excluded. Twenty-six D. melanogaster kinesins were
scanned and only 25 were truly predicted kinesins. The 55
L. major sequences were scanned and one sequence
(LmjF25.2410) was removed because it had no motor
domain.

b) Extraction of motor domain
Motor-domain sequences were extracted from their entire
protein sequences by using the EMBOSS seqret utility
[119] with base ranges obtained from SMART predictions.
Concatenation of all motor domain files together yielded
a final number of 529 kinesin sequences for gene-tree
analysis. All coiled-coil predictions were found by utiliza-
tion of SMART predictions at [83]. A total of 529

sequences were included in the analysis. Ten sequences
had one or two ambiguous amino acids, for a total of 12.
Prior to alignment, all 12 internal stop codons (from eight
sequences with one to three internal stops each) were
changed to amino acid ambiguities ("X").

Gene-tree construction
Alignment of amino acid kinesin-motor-domain
sequences was performed using DIALIGN-T 0.1.2 [53]
with the default settings (length of a low-scoring region =
4; maximum fragment length that is allowed to contain
regions of low quality = 40). Amino acids from individual
sequences that DIALIGN did not align (5,126) were
replaced with ambiguities. The DIALIGN output file was
6,046 positions long. Of these, 2,584 positions included
aligned amino acid(s) and 834 (32%) of those positions
were parsimony-informative.

SeqState 1.2 [120] was use to implement simple indel
coding [121] for gaps that were flanked by aligned resi-
dues at both the amino and carboxy termini. Of the 1,190
non-terminal gap characters, 668 were parsimony-
informative. Fifty-one percent of the cells were either
missing data or inapplicables for the parsimony-informa-
tive gap characters, as were 60% of the cells for the parsi-
mony-informative amino acid characters. To examine the
effect of incorporating gap characters into the study, gene-
tree analyses were performed both with and without the
gap characters. Gene-tree analyses were performed using
amino acid characters. Although amino acid characters
have problems with convergence [122,123] and compos-
ite coding [124], that nucleotide characters are not subject
to, they are expected to perform relatively better when
high genetic distances occur among closely related termi-
nals included in the analysis [125], as is the case here. This
expectation is based on silent substitutions undergoing
saturation (i.e., multiple hits along individual branches).
Gene-tree inference was performed using both parsimony
and Bayesian MCMC [126] approaches. Parsimony tree
searches were performed using PAUP* 4.0b10 [127] with
all characters assigned equal weights. Jackknife analyses
were performed using 1,000 replicates with each replicate
consisting of one tree-bisection-reconnection heuristic
search and only one tree held. Following Farris et al.,
[128], the deletion probability for each character was set
at 36.7879% and "Jac" resampling was emulated, result-
ing in support values roughly equivalent to those pro-
vided by the bootstrap [129].

Bayesian tree searches were performed using MrBayes 3.1
[130] with a mixed amino acid model. All analyses were
performed with four chains per analysis and trees sampled
every 100 generations. A preliminary analysis of over 3.6
million generations for the amino-acid-characters-only
data matrix was performed using MrBayes 3.0b4. To speed
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convergence in the final analyses, the MAP tree topology
found in this preliminary analysis was specified as the ini-
tial user tree with 20 permutations [131].

For the amino-acid-characters-only data matrix, three
independent runs were performed for between 1,001,000
and 1,628,500 generations each. All three runs asymptot-
ically approached the same stationarity within the first
200,000 generations, and the remaining 30,919 trees were
used to infer the posterior probabilities for individual
clades. The analysis that reached 1,628,500 generations
was performed in parallel on two dual-processor 1.8 GHz
Power Mac G5 computers and ran for approximately 6
weeks. The other two independent runs were executed for
seven weeks on a cluster of dual-processor 1 GHz IBM
PCs. The data matrix that included gap characters was ana-
lyzed using a mixed model with the binary Felsenstein
(1981)-type model applied to the gap-characters partition
with the ascertainment bias set to variable, as suggested by
Ronquist et al., [131]. The no-common-mechanism
model [132] was not applied to the gap characters because
MrBayes 3.1 crashed when applying this model together
with a parametric model in a mixed-model analysis. Seven
independent runs were performed for between 272,500
and 1,118,100 generations each. All seven runs asymptot-
ically approached the same stationarity, six of which did
so within the first 150,000 generations, and the seventh
within the first 450,000 generations because of a late step-
wise increase in likelihoods. The remaining 28,000 trees
were used to infer the posterior probabilities for individ-
ual clades. The analysis that reached 1,118,100 genera-
tions was executed in parallel for approximately five
weeks on two dual processor 1.8 GHz Power Mac G5 com-
puters, whereas the other six independent runs were exe-
cuted for seven weeks on the previously mentioned
cluster.

Majority-rule consensus trees for the Bayesian analyses
were calculated using PAUP*. Note that although Baye-
sian analyses appear to be more efficient than parsimony
analyses [133], they also can produce inflated support val-
ues [134-136]. Also of concern for Bayesian analyses of
these data matrices, which include high proportions of
cells with missing data and inapplicables, is that smaller
clades may receive high support despite ambiguous reso-
lution of "wildcard" terminals [137]. This may account, in
part, for the greater resolution in the Bayesian trees (439
and 453 clades resolved in the amino-acid-only and
amino-acid-plus-gap-character analyses, respectively)
than in the parsimony trees (288 and 296 clades resolved)
given the many completely unresolved terminals in both
the Bayesian (36 and 20 terminals) and parsimony (107
and 112 terminals) trees.

The rooting of the kinesin family used by Goodson et al.,
[138], Kim and Endow [139], and Reddy and Day [43] is
arbitrary. Outgroup sequences are to be selected such that
all members of the ingroup are more closely related to one
another than any one of them is to the outgroups (i.e., the
ingroup should be monophyletic relative to the outgroup;
[140]. Although ScSMY1 is "a highly divergent kinesin
protein" [139], this does not satisfy the criterion of select-
ing an outgroup. See Lawrence et al., [42] for an alterna-
tive rooting, wherein ScSMY1 is nested within the
Kinesin-I family. Following Hirokawa [3], Miki et al., [6],
Iwabe and Miyata [52], Schoch et al., [141] and Abdel-
Ghany et al., [142], our gene trees are presented as
unrooted. All gene trees (except Fig. 2) were drawn using
a combination of automatic and manual methods. The
use of TreeGraph 1.0b8 [143] greatly facilitated the mak-
ing of complex tree figures. Though TreeGraph allows one
to specify node labels, ours were inputted manually using
an external drawing program. TreeGraph can be down-
loaded from [144].

Analysis of gene structure and expression data
Gene-structure information was obtained by performing
searches with gene identifiers at the appropriate web
pages. For G. lamblia, the complete contig assembly was
downloaded and used as a database for BLASTN searches
using the 24 G. lamblia sequences in nucleotide format
(obtained from [107]). All 24 sequences returned contig
hits that were 100% identical with no gaps, indicating that
there are no introns in G. lamblia kinesins. For the eight
human Celera sequences, a Celera transcript database was
downloaded and searched with the Celera protein IDs for
corresponding transcripts that have been annotated with
exon number.

Expression data were collected by performing BLAST
searches against appropriate databases (O. sativa ssp.
japonica, H. sapiens EST database, L. major EST database).
A full sequence file containing japonica cDNAs was down-
loaded from [145] and used for BLASTP searches using the
41 BGF Syngenta kinesins as queries. No cDNA data were
available for indica sequences. For the NCBI human kines-
ins, EST data were determined by performing a TBLASTN
search against the human EST database using the 32 NCBI
sequences. Leishmania major expression data were
obtained by performing a TBLASTN search using the 54
full-length sequences against a database of 2,184 EST
sequences. There were no hits found.

Mapping of kinesins in O. sativa ssp. japonica 
chromosomes
Chromosomal duplications in ssp. japonica on the
genomic map were based on Guyot and Keller [94]. Chro-
mosomes were rescaled appropriately and kinesins were
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mapped according to base pair positions obtained from
[100].
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