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Abstract

Background: Complete or near-complete genomic sequence information is presently only
available for a few plant species representing a large phylogenetic diversity among plants. In order
to effectively transfer this information to species lacking sequence information, comparative
genomic tools need to be developed. Molecular markers permitting cross-species mapping along
co-linear genomic regions are central to comparative genomics. These "anchor" markers, defining
unique loci in genetic linkage maps of multiple species, are gene-based and possess a number of
features that make them relatively sparse. To identify potential anchor marker sequences more
efficiently, we have established an automated bioinformatic pipeline that combines multi-species
Expressed Sequence Tags (EST) and genome sequence data.

Results: Taking advantage of sequence data from related species, the pipeline identifies
evolutionarily conserved sequences that are likely to define unique orthologous loci in most species
of the same phylogenetic clade. The key features are the identification of evolutionarily conserved
sequences followed by automated design of intron-flanking Polymerase Chain Reaction (PCR)
primer pairs. Polymorphisms can subsequently be identified by size- or sequence variation of PCR
products, amplified from mapping parents or populations. We illustrate our procedure in legumes
and grasses and exemplify its application in legumes, where model plant studies and the genome-
and EST-sequence data available have a potential impact on the breeding of crop species and on
our understanding of the evolution of this large and diverse family.

Conclusion: We provide a database of 459 candidate anchor loci which have the potential to
serve as map anchors in more than 18,000 legume species, a number of which are of agricultural
importance. For grasses, the database contains 1335 candidate anchor loci. Based on this database,
we have evaluated 76 candidate anchor loci with respect to marker development in legume species
with no sequence information available, demonstrating the validity of this approach.

Page 1 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16907970
http://www.biomedcentral.com/1471-2164/7/207
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2006, 7:207

Background

The ancestors of crops were originally domesticated and
bred because they exhibited specific extraordinary features
that made them useful for human consumption, animal
food, or ornamental display. Understanding the genetics
of these man-selected features involves the identification
of underlying qualitative and quantitative trait loci
(QTLs) through genetic mapping.

Mapping efficiency and ultimately the ability to isolate
interesting loci can be improved by facilitating informa-
tion transfer from genetic model species to crops and vice
versa. Synteny, the conservation of gene order along the
chromosomes of related species, is a genomic property
that can be exploited for this purpose (reviewed in [1-3]).
Shared genetic loci can be used as landmarks for the align-
ment of linkage groups, thereby defining large chromo-
somal blocks (macrosynteny). The alignment of
sequences from related species often reveals the presence
of short regions of sequence conservation (microsynteny).
Comparing genomic sequences of genetic models such as
Arabidopsis [4] and rice [5,6], with large collections of
ESTs from related plants, enables the identification of
shared loci instrumental in projecting the large and repet-
itive genomes of many crop species onto the genomes of
the model species. However, comparisons between
genetic maps of distantly related species are usually diffi-
cult and less productive. Genomes often undergo chromo-
somal rearrangements, such as inversions, translocations,
duplications, deletions and cycles of polyploidization fol-
lowed by diploidization [7]. Plants, given their sexual pro-
miscuity and potential for vegetative reproduction, are
particularly prone to genome rearrangements [8]. For
example, whole genome duplications have occurred at
several occasions during the evolution of modern plant
species [9]. In the diploid phase, members of a duplicated
gene pair are retained or deleted at random in the two
duplicated regions, obscuring their common past. This
process results in diminished congruency between two
genomes that are separated by a polyploidization-dip-
loidization cycle. Hence, in order to avoid the pitfalls of
comparative genome mapping, the species to be com-
pared should be carefully chosen.

A central step in genome comparisons is the identification
of sequences that can readily be identified in genomes of
the species to be compared and serve as "anchors" of their
respective genetic maps. Commonly used markers, such as
microsatellite or AFLP markers, can give high resolution
genetic maps, but are of little comparative value since they
are not necessarily conserved across species boundaries.
Anchor sequences should be chosen to maximize the
potential to serve as markers in several species, and allow
the quick estimation of congruency between genetic maps
of the organisms. First generation comparative maps of
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plants relied on Southern hybridization of highly con-
served homologous probes and their scoring as RFLP
markers [10,11]. Markers requiring Southern hybridiza-
tion, although informative, are time consuming and labor
intensive. Furthermore, it can be difficult to generate spe-
cific hybridization markers, due to cross-hybridization to
other genomic regions. PCR based markers are much
more efficient as they are amenable to high throughput
automation and, if well designed, of high specificity.
Towards this goal we employ a genome-wide strategy
based on the identification of low-copy evolutionarily
conserved sequences within transcribed sequences of rep-
resentative species. These regions are used as primer
annealing sites for PCR amplification of intercalated
introns that are subsequently sequenced in order to ascer-
tain polymorphisms between mapping parents. This
approach ensures that non-repetitive, transcribed regions
of the genome are the primary targets of mapping efforts.

Here we present an automated pipeline for generation of
Comparative Anchor Tagged Sequence markers (CATS
[12]) and apply it to design a set of legume anchor mark-
ers.

Results

The aim of the bioinformatics pipeline was to develop
plant family anchor markers useful in order to exploit
colinearity between genomes of species with dense genetic
maps and crops with important agronomic traits.
Sequence polymorphisms constitute the basis of molecu-
lar genetics and methods using polymorphisms in non-
coding regions like introns are more effective due to
differences in evolutionary rate of DNA changes. Func-
tional coding regions and regulatory elements undergo
purifying selection, whereas, intron sequences are less
constrained and will display a higher degree of mutational
variation between any two ecotypes/varieties. Previously,
we have developed software for automated multiple align-
ment-based primer-finding (PriFi) that proposes primer
pairs in regions of high conservation for PCR amplifica-
tion of intervening sequences of low conservation, such as
introns [13]. The algorithm employed by the CATS pro-
posing pipeline is best illustrated as a series of consecutive
comparative selection filters followed by automated
primer-design using PriFi (Figure 1).

Identification of legume CATS

In the first step of the pipeline the experimenter selects
gene sequences for processing. Genome colinearity erodes
with phylogenetic distance. It is therefore crucial to
choose the resources that allow maximal information
transfer between species. Parameters that we considered
include the amount of EST information and their phylo-
genetic relationship. In order to develop legume CATS, we
chose resources originating from Lotus japonicus, Medicago
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The pipeline of the marker candidate algorithm. In the first step, EST collections of selected species are compared with
the proteome of the reference species in order to estimate the copy number. Sequences with one or two homologs in the
Arabidopsis proteome are considered because Arabidopsis has undergone a recent whole genome duplication whereas leg-
umes have not. EST sequences passing this criterion are compared to L. japonicus and M. truncatula genomic sequences in order
to score the presence and length of introns. Sequences with the same Arabidopsis reference are then aligned and primers are
designed using this alignment as input. For this purpose, the PriFi software [13] is used.
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Phylogenetic trees of legumes and grasses. Phylogenetic relationship of a) legumes and b) grasses. Species with sequence
information used in this study are shown together with selected other species. (Modified after [40])

truncatula, Phaseolus vulgaris and Glycine max. The phyloge-
netic relationship between these species is depicted in fig-
ure 2a. We have used the ready-clustered EST collections
downloadable from TIGR as input, but any assembled
collection of ESTs could serve equally well serve as entry
points.

Repetitive sequences are not useful for mapping purposes
since polymorphisms might reflect paralogous origin
rather than allelic variation. Furthermore, allelic variation
at a candidate marker locus can be partially or completely
masked by the presence of paralogous sequences, reduc-
ing the information content of such a marker. For exam-

ple, the Arabidopsis genome has more than 1000 genes
containing the extremely well conserved protein kinase
domain. Clearly, such sequences are not well suited to
identify unique anchors between genomes. Also, only
truly orthologous sequences are able to reveal the syntenic
relationships. Homologous single copy genes in any two
genomes are very likely being true orthologs. Since no leg-
ume genome sequence is complete yet we are relying on
legume-derived EST data in this study. The gene copy
number in legumes can be indirectly estimated by count-
ing the number of paralogous sequences in the full set of
inferred protein-coding sequences (the 'proteome') of a
reference species with a complete genome sequence. For

Table I: Arabidopsis homolog count for the collections of gene indices.

Lotus japonicus (v. 3.0)  Medicago truncatula (v. 8.0)

Glycine max (v. 12.0)  Phaseolus vulgaris (v. 1.0)

Total number of gene indices 28,460
One Arabidopsis homolog 2,647 (278)
Two Arabidopsis homologs 1,613 (172)
Total (one and two Arabidopsis homologs) 4,062 (450)

36,878 63,676 9,484
3,613 (869) 4,281 1,441
2231 (522) 3,349 1,009

5,644 (1,391) 7,630 2,450

The species name is followed by the Release version (in parenthesis), and the number of gene indices (Gl, combined EST clusters and singleton
ESTs) are indicated for each species. Numbers of ESTs with one and two Arabdopsis homologs are listed. The numbers in parenthesis indicate the
number of gene indices which show an intron when compared to the respective genomic sequence. L. japonicus Gls were compared to L. japonicus
genomic sequences, whereas M. truncatula Gls were compared to M. truncatula genomic sequences.
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Table 2: The numbers of identified CATS and their anchoring in current L. japonicus and M. truncatula maps

Reference Genome

Lotus japonicus

Medicago truncatula

Number of CATS
Number of map- anchored CATS

311
66

legumes, Arabidopsis is the phylogenetically closest spe-
cies with a complete genome sequence available. Since
Arabidopsis has been subject to a recent whole genome
duplication [4,16-20], its proteome reference provides a
conservative copy number estimate for legume pro-
teomes. Therefore, we allow legume CATS candidates to
have one or two homologs in Arabidopsis (Table 1).

In the next step, the selected EST sequences are aligned
with corresponding genomic sequences in order to score
intron positions and lengths. This ensures maximal
chances of detecting polymorphisms between mapping
parents at later steps, since intron sequences are under
relaxed evolutionary constraints. Intron position and
approximate length, however, are strongly conserved fea-
tures, even over long evolutionary distances [21]. Here, we
make use of the L. japonicus and M. truncatula genome
sequences [23], but the general idea could easily be
extended to the Arabidopsis or poplar genome sequences
[24], given the conserved nature of intron positions. We
also score the length of introns. This parameter is of inter-
est for two reasons: (i) short introns are less likely to be
polymorphic than longer ones, and (ii) using standard
polymerases the amplicon size is limited to a maximum
of ~3 kb. Aligning L. japonicus EST sequences to the L.
japonicus genome identified 450 sequences with introns of
appropriate length. Alignment of M. truncatula ESTs to the
M. truncatula genome identified 1,391 sequences with
introns of appropriate length.

Next, homologous ESTs from as many as possible of the
four legumes with the same best Arabidopsis protein
match are aligned. One of the included ESTs must origi-
nate from L. japonicus or M. truncatula and alignment to its
gene must reveal the presence of at least one intron of
appropriate length.

In a final step, the pipeline designs optimally spaced
intron-spanning forward and reverse primers in conserved
regions of multiple sequence alignments. To select the
optimal primer set among all possible combinations of
primers for any multiple alignment, a number of criteria
must be met. These include the number of taxons in the
alignment, the melting temperature and GC content of
the proposed primers and the length of the intron(s) sep-
arating the two primers. Also the distance from primer site
to the exon-intron junction is considered, since primers
that are located too close to an intron will not allow pos-

itive sequence confirmation of the PCR product. A com-
bined score for each primer pair allows their comparison
and ranking within and between candidate regions. Using
stringent cutoff levels, primers for a total of 459 CATS loci
were produced applying these steps (Table 2). Of these,
we were able to position 29 on the L. japonicus genetic
map and 66 on the M. truncatula map (Figure 3a and 3b).
Four markers have map-positions in both maps. Although
the sequencing of the two legume genomes is still incom-
plete, all chromosome arms from both M. truncatula and
L. japonicus are represented.

Synteny between to genomic regions can only be estab-
lished if markers are true orthologs. Orthology between
genes from different species is indicated by the matching
of gene trees and species tree. To test this, we constructed
a Neighbor-joining tree for each alignment. Of a total of
459 gene trees, 57 (12 %) topologies were incompatible
with the species tree, potentially due to sequences of par-
alogous origin in the alignment. These CATS should be
treated with care.

The sequence alignments, phylogenetic trees, known map
positions, primer reports and gene annotations of all
CATS are web-accessible [22].

Potential for marker development in the grass family

The development of legume CATS relied on the identifica-
tion of introns through comparisons of EST sequences to
still incomplete M. truncatula and L. japonicus genomic
sequences. Sequencing of both 450 Mbp model legume
genomes is still in progress [23], and our analysis is based
on 120 Mb of L. japonicus genomic sequence and 134 Mb
of M. truncatula genome sequence. Completion of the
gene rich sequences of these genomes will allow more
CATS candidates to be identified in the near future. To
demonstrate the potential and versatility of the pipeline
we applied it to the grass family (Poaceae) where both a
complete rice genome and large EST sequence collections
are available. The input data files of step one were chosen
to represent maximal phylogenetic diversity and sequence
information in grasses. The coding sequences of the well
annotated rice genome sequence served as one species,
and EST collections of wheat and sorghum as the two
comparison sequences. Introns were defined by the rice
annotation, and the number of paralogous rice sequences
was tallied from selfcomparison of the rice proteome.
Otherwise we followed the pipeline as outlined for leg-
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Distribution of CATS on a) L. japonicus b) M. truncatula chromosomes. Red and green triangles indicate positions of
markers with one and two homologous gene sequences in Arabidopsis, respectively. Chromosomes scale according to their

genetic length.

umes above. In total we were able to identify 1335 grass
CATS primer pairs. The distribution of these CATS on the
rice chromosomes is shown in Figure 4. All chromosomes
are covered. When developed as markers and mapped in
several species, these could add considerable density to
existing comparative mapping databases such as Gramene
[26]. The data for grass CATS developed here is web-acces-
sible [27].

Testing legume family anchor markers on the outlier
peanut

Peanut (Arachis hypogea) represents a phylogenetic out-
group to the clade from which the legume sequences were
sampled. Hence, it provides a challenging opportunity to

assess the potential of our pipeline to generate pan-leg-
ume family anchor markers. Recently a microsatellite
marker-based genetic map of the AA component of the
allotetraploid genome of peanut, has been developed
[28]. This map was developed using a mapping popula-
tion derived from a cross between A. duranensis, the most
probably AA genome donor of peanut, and the closely
related A. stenosperma. Anchoring this map to the genome
sequence of L. japonicus and M. truncatula will be a central
next step in the development of Arachis genetics. Towards
this goal, we tested 74 legume family CATS primer pairs
which were designed based on the degenerate consensus
sequence of the multiple alignment of two to four ESTs
included in the legume CATS pipeline. Testing was per-
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Distribution of CATS on rice chromosomes. Red and blue marks indicate the positions of markers with one and two
rice homologous gene sequences, respectively. The scale of chromosome diagrams reflects their relative physical sizes.

formed on the in-clade representative common bean and
the outlier Arachis to evaluate the robustness and general
applicability of the pipeline. We determined whether
these primer sets amplified the correct sequences, and
scored polymorphisms between mapping parents of cen-
tral mapping populations for both species (see Experi-
mental procedures). Of the 76 tested primer sets, 43 and
56 (or 58 and 75 %) amplified the expected product for
Arachis and bean, respectively. Sequencing of the PCR
products revealed that 79 % of the Arachis CATS were pol-
ymorphic between Arachis duranensis K7988 X A. steno-
sperma V10309. Among the bean CATS, 65 % were
polymorphic between the mapping parents Bat93 X
JaloEEP558.

Discussion

The automated bioinformatic pipeline described here
allows the large-scale generation of marker candidates
useful for map construction and comparisons in legumes
and grasses and, by extension, to any phylogenetic clade
with appropriate comparative sequence information.

Since only unique sequences are unambiguous as mark-
ers, the number of paralogous sequences in the target
genome is of interest. An approximation to this number is
obtained by counting homologous sequences in the pro-
teome of a reference species. Since no legume genome has
been completely sequenced to date, the pipeline relies on
EST data and is not able to discern between orthologous
and paralogous origin of homologous sequences. How-
ever, selecting sequences with only one or two homologs
in the Arabidopsis reference proteome enhances the prob-
ability of an orthologous relationship between homolo-
gous legume ESTs. For 88% of the CATS candidate
developed here, the gene tree follows the species tree, sug-
gesting orthology. Although these indirect criteria maxi-
mize congruency when comparing maps, they by no
means guarantee it. A common ancestor of the legumes
has undergone a whole-genome duplication [9,16-20],
potentially obstructing congruency through differential
gene loss in duplicated chromosomal regions. Whereas
macrosynteny is not recognizable between M. truncatula
and Arabidopsis [29], microsynteny is generally much
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better retained [15,29,30]. Within a given clade, such as
legumes or grasses, both micro- and macrosyntenic rela-
tions are readily identifiable [8,11,15,31].

A main application of this algorithm is the transfer of
genome information between model species and closely
related large genome crops. Dense genetic maps spanning
all linkage groups are of invaluable help for breeding pur-
poses. Comparison to genomes of other species, espe-
cially model species, can help in the development of new
markers in regions of interest and may allow educated
guesses at candidate genes in the region under investiga-
tion. It is therefore advantageous to use markers that can
serve as syntenic anchors, connecting genetic maps of as
many species as possible.

66 legume CATS were recently published [32]. Here we
extend this collection significantly by automating the bio-
informatics tasks involved. Applying this pipeline to the
currently available legume EST and genome data, we were
able to identify 459 CATS. An interactive table of these
CATS primers along with EST alignments, BAC sequences
and L. japonicus and M. truncatula map positions is web-
available [22].

Currently, the number of CATS to be identified in legumes
is limited by the incomplete M. truncatula or L. japonicus
genomic sequences. The sequencing of these genomes is
still in progress and will hence allow the identification of
many more CATS candidates in the future. Given the con-
served nature of intron position and approximate length
[21], the Arabidopsis genome sequence might be equally
valuable for the identification of introns, a strategy which
has been employed by Choi et al. [31,32]. However, apart
from increasing the number of CATS, such a measure does
not allow the linking of genetic map information to
sequence information in legumes.

It might be useful to include EST collections from other
related species for example ESTs from mung bean (Vigna
mungo) in the case of the legume family. For this purpose,
we have developed a web-based service, GeMprospector
[41,42], that allows the user to submit other EST collec-
tions to the pipeline, both for legumes and grasses.

The genome sequence used for defining introns makes it
possible to sample CATS with even dispersal across all
linkage groups or enriched in chromosomal regions of
interest. As expected, the success-rate of PCR amplifica-
tion using degenerate primers decreases with phylogenetic
distance of the test species from the species chosen to pro-
vide the sequence information for the pipeline. The ability
to predict successful primer pairs at the phylogenetic dis-
tance between the outlier Arachis and the clade defined by

http://www.biomedcentral.com/1471-2164/7/207

M. truncatua, L. japonicus and soybean is remarkable and
demonstrates the success of the pipeline.

Conclusion

We present a general framework for the automated design
of CATS marker candidates through mining of large-scale
sequence collections of diverse origin. The accompanying
databases allow legume and grass researchers to get
instant and easy access to unprecedented numbers of
CATS. Apart from their use as comparative anchor mark-
ers, CATS will be useful in the estimation of population
genetic parameters such as allele frequencies, effective
population sizes and inbreeding coefficients in natural
populations and outbreeding crops.

Methods

Biological sequence resources

The EST clusters used for this analysis were retrieved from
The Institute of Genome Research (TIGR). We down-
loaded the gene indices (clustered EST collections
[34,35]) for the legumes Lotus japonicus (Release 3.0:
28,460 sequences), Medicago truncatula (Release 8.0:
36,976 sequences), Phaseolus vulgaris (Release 1.0: 9,484)
and Glycine max (Release 12.0: 63,676 sequences) and the
grasses Hordeum vulgare (Release 9.0: 50,453 sequences),
and Sorghum bicolor, (Release 8.0: 39,148 sequences). The
Arabidopsis and rice (Oryza sativa) genome, proteome
and coding sequences were downloaded from the TIGR
FTP site. The L. japonicus and M. truncatula genomic
sequences were retrieved using NCBIs ENTREZ.

Bioinformatics resources

The Blast package [36] was obtained from the NCBI. For
comparison of nucleotide sequences, we used the Megab-
last program with a wordsize of 20 and cutoff e-value of
10-40. For DNA - protein comparisons, we used the Blastx
program (cutoff e-value 2 x 107). A series of Python
scripts were written to parse the Blast outputs and assem-
ble collections of homologous sequences. Multiple align-
ments were generated using ClustalW [25], and
automated primer design was achieved through applica-
tion of the PriFi program [13]).

CATS were placed on genetic maps of L. japonicus [37] and
M. truncatula [38] by means of the map position of the
genomic sequences used for intron finding.

DNA techniques

DNA was extracted from Arachis and bean as described in
[28] and [37], respectively. PCR products were sequenced
using Applied Biosystems BigDye version 3.1 and run on
an ABI PRISM 310 Genetic Analyzer.

The performance of the pipeline was validated experimen-

tally by making use of the suggested primer pairs to
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amplify homologous sequences from DNA of mapping
parents from two legume mapping populations. For bean,
the parents of the Bat93 X JaloEEP558 population [39],
and for Arachis the parents of the A. duranensis K7988 X A.
stenosperma V10309 cross were used [28]. PCR amplifica-
tion conditions were 40 cycles of [94°C 30 seconds, 48°C
30 seconds, 72°C 2 minutes].
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