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Abstract
Background: Factor analysis (FA) has been widely applied in microarray studies as a data-reduction-tool
without any a-priori assumption regarding associations between observed data and latent structure
(Exploratory Factor Analysis).

A disadvantage is that the representation of data in a reduced set of dimensions can be difficult to interpret,
as biological contrasts do not necessarily coincide with single dimensions. However, FA can also be applied
as an instrument to confirm what is expected on the basis of pre-established hypotheses (Confirmatory
Factor Analysis, CFA). We show that with a hypothesis incorporated in a balanced (orthogonal) design,
including 'SelfSelf' hybridizations, dye swaps and independent replications, FA can be used to identify the
latent factors underlying the correlation structure among the observed two-color microarray data. An
orthogonal design will reflect the principal components associated with each experimental factor. We
applied CFA to a microarray study performed to investigate cisplatin resistance in four ovarian cancer cell
lines, which only differ in their degree of cisplatin resistance.

Results: Two latent factors, coinciding with principal components, representing the differences in cisplatin
resistance between the four ovarian cancer cell lines were easily identified. From these two factors 315
genes associated with cisplatin resistance were selected, 199 genes from the first factor (False Discovery
Rate (FDR): 19%) and 152 (FDR: 24%) from the second factor, while both gene sets shared 36. The
differential expression of 16 genes was validated with reverse transcription-polymerase chain reaction.

Conclusion: Our results show that FA is an efficient method to analyze two-color microarray data
provided that there is a pre-defined hypothesis reflected in an orthogonal design.
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Background
DNA microarrays are often used to identify genes that are
differentially expressed among different predefined
classes of samples. In a two-color microarray system both
RNA samples are separately labeled with different colors,
mixed, and hybridized together to an array. The ratio of
the two-color signal intensities for each spot represents a
relative measure of gene expression. There are different
types of design of two-color microarrays for identifying
differentially expressed genes, such as the reference design
(most commonly used), balanced block design, and loop
design [1].

Two-color microarray data analysis generally consists of
two stages. In the first stage, microarray data are filtered
and normalized, e.g. adjusted for some of the systematic
and technical variation that affects the measured gene
expression levels. There are different methods to correct
(normalize) microarray data for systematic and technical
variation [2-8]. In the second stage of microarray data
analysis, statistical methods are used to identify the genes
that are differentially expressed between the different
classes of samples. Most of these statistical methods use
similar basic statistics and differ mainly in their determi-
nation of the significance threshold. Therefore, when
applied to microarray data they give very similar overall
results [9,10].

Factor analysis (FA) can be applied as a data-reduction-
tool without any a-priori assumption regarding associa-
tions between observed data and latent structure (Explor-
atory Factor Analysis, EFA). For this purpose FA has been
widely applied in microarray studies [3]. A disadvantage
of EFA is that the representation of data in a reduced set of
dimensions can be difficult to interpret. On forehand the
interpretation of the extracted factors is not fixed and bio-
logical contrasts do not necessarily coincide with single
dimensions.

Yet, FA could be very well used for gene selection when it
is applied as an instrument to confirm what is expected on
the basis of pre-established hypothesis (Confirmatory
Factor Analysis, CFA) [11]. When two-color microarray
experiments are designed such that a hypothesis can be
defined a-priori regarding the latent structure among the
observed two-color microarray data, biologically relevant
factors can be easily identified from which genes can be
selected (as the correlation structures of the biologically
relevant factors with the arrays should mirror the applied
design).

In this paper we will illustrate CFA as a powerful statistical
tool to analyze DNA microarray data. As a model a micro-
array study is used in which the differences in gene expres-
sion related to cisplatin resistance are measured, using

two-color microarrays, for four ovarian cancer cell lines
(A2780, CP70, C30 and C200), which only differ in their
degree of cisplatin resistance. A2780, the parental cell
line, is cisplatin sensitive and its sublines CP70, C30 and
C200 are increasingly resistant to cisplatin (5, 75 and 125
times compared to A2780, respectively).

Background methodology
Confirmatory Factor Analysis
The fundamental idea underlying the factor analytic mod-
els is that not all causative variables can be directly
observed. These unobserved variables are referred to as
latent structure of factors. Information about factors can
be obtained by inspecting how the factor elements are
formed from linear combinations of the observed varia-
bles. In an EFA, there is no specified structure of the rela-
tionships among the variables under study. In a
confirmatory factor analysis the retrieved factors should
reflect contrasts that correspond to differences in sample
characteristics. There are a-priori defined constraints on
the relationships among the latent factors and the varia-
bles under study. It is in this sense that the FA is thought
of as confirmatory.

In the here illustrated model, differences in gene expres-
sion between four ovarian cancer cell lines (A2780, CP70,
C30 and C200) are related to their degree of the cisplatin
resistance. The level of cisplatin resistance can be consid-
ered as the latent factor among the observed gene expres-
sion data. The latent factors, referred to as ξ, are depicted
as a circle at the top of Figure 1. The ξ is imperfectly meas-
ured by a number of observed variables, e.g. two-color
microarrays. While it is assumed that the number of
observed variables in X is greater than the number of
latent factors in ξ, there is no a-priori assumption about
the exact number of latent factors. In our example, seven
two-color microarrays are used, referred to as X1 to X7,
and they are indicated by the squares in Figure 1. The
measurement errors in the observed variables, referred to
as δX1 to δx7, are depicted as circles at the bottom of the
Figure 1. X1 to X7 are said to be effected by or load on ξ,
the level of cisplatin resistance. The loadings, referred to as
λX1 to λX7, are indicated by the arrows connecting the
latent factor to the observed variables.

In a microarray experiment there are i = 1,..., n performed
arrays and j = 1,..., p probed genes. Typically, j is in the
order of thousands, while i is in the order of 10–100. The
gene expression measurements of the microarray experi-
ment are represented by a matrix X = [x1,...,xn] of dimen-
sion n × p, with arrays as columns and genes as rows. Each
element xij corresponds to the gene expression measure-
ment for the jth gene of the ith array. The expression level
xij of each gene can be reconstructed by the standard linear
equation
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This means that the observed expression for the jth gene
of the ith array is the sum of its activities in each of s latent
factors (contrasts in the levels of cisplatin resistance
between the 4 cell lines), denoted by ξsj, weighted by the
activity of this latent factor in array i, denoted by λsi, plus
some array-specific noise δsi.

This can be represented in matrix format as:

X = Λξ + δ

Where Λ is the p × p matrix of factor loadings (the correla-
tion structure of each of the latent factors s with the arrays
i) and ξ is the n × p matrix of factor scores (the levels of

activity of each gene j within each of the s latent factors)
and δ is the matrix of residuals as result of dimension
reduction.

By subtracting the mean from both the observed and
latent variables it is possible to define the covariance
matrix of a vector of variables in terms of expectations of
vector products. In addition, it is assumed that the latent
factors are uncorrelated (i.e. orthogonal). For that, in the
here-illustrated example, we applied the method of Singu-
lar Value Decomposition (SVD), the equivalent of princi-
pal components analysis. This method assumes that the
extracted factors are uncorrelated and orders the factors
according to percentage explained variation (successive
factors account for less and less variation overall). The
number of extracted factors can maximally be equal to the
total number of arrays.

xij si sj
s

S

si= +
=
∑λ ξ δ

1

Confirmatory Factor Analysis Model of the microarray studyFigure 1
Confirmatory Factor Analysis Model of the microarray study. The differences in gene expression related to cisplatin 
resistance are measured, using two-color microarrays, for four ovarian cancer cell lines (A2780, CP70, C30 and C200), which 
only differ in their degree of cisplatin resistance. The latent factors representing level of cisplatin resistance are depicted as a 
circle at the top of the figure. The squares represent the observed variables, e.g. the microarrays. The arrows connecting the 
latent factor and the arrays illustrate the loadings of the arrays on the latent factor. (In our model the latent factors do not load 
on the 'SelfSelf' hybridization, X1 (λx1

* = 0)). The circles at the bottom of the picture symbolize the measurement errors. (This 
design was performed in triplicate with three independent cultures of the ovarian cancer cell lines).
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The confirmatory factor model is identified if the con-
straints have been imposed in such a way that there is a
unique set of parameters that can generate the covariance
structure. More specific, if a parameter can be solved for in
terms of the variances and covariances of the observed var-
iable, it is identified. The constraint that retrieved factors
have to be orthogonal is applied as some patterns under-
lying the microarray data are expected to be correlated
with biological processes and others with experimental
artifacts.

After identification has been established, estimation can
start. The objective in estimating the factor model is to
find estimates of the latent factors and errors that repro-
duce the sample matrix of covariances as closely as possi-
ble. The fitting function used in the here-illustrated
example, is the Unweighted linear Least Squares (ULS).
The problem of scale dependency was solved by perform-
ing the analyses on the correlation structure instead of the
covariance structure.

Hybridization design
The hybridization design of the micro-arrays was as fol-
lows:

- The design was balanced: the four ovarian cancer cell
lines were hybridized to the microarrays according to a
reference design, indicating that all samples were hybrid-
ized against the cisplatin sensitive cell line A2780 (com-
mon reference). The microarray data were expressed as
Cy5/Cy3 ratios for each spot.

- The design included a 'SelfSelf' hybridization, X1 in Fig-
ure 1. Note that all observed microarray data were
expected to load on the latent factor ξ, except for X1 (λx1
= 0). This is because there should be no biological differ-
ence between the two-color signal intensities of 'SelfSelf'
experiments and therefore the 'SelfSelf' hybridization was
assumed not to load on the latent factor.

- The design included dye swaps, X2 and X5, X3 and X6,
X4 and X7 in Figure 1. CP70, C30 and C200 were labeled
with Cy5 and hybridized against Cy3-labeled A2780, X2,
X3, and X4 in Figure 1, respectively. Then the dyes were
swapped: CP70, C30 and C200 were labeled with Cy3 and
hybridized against Cy5-labeled A2780, X5, X6, and X7,
respectively. The sign of the loadings of X2, X3 and X4
were assumed to be opposite to the signs of the loadings
of X5, X6 and X7, as these were the dye swaps. The magni-
tude of the loadings of X2 and X5, X3 and X6, X4 and X7
were assumed to be similar, as the same ovarian cancer
cell lines were hybridized to these arrays. Once the latent
factors had been identified using their correlation struc-
ture with the observed variables, differences in level of cis-

platin resistance would appear as contrasts between
similar arrays after correction (sign change) for dye swaps.

- The design was performed in triplicate with three inde-
pendent cultures of the cell lines. It was expected that rep-
licate arrays, e.g. the two replicates of X1 to X7, would
show the same loadings.

Analysis
First the observed variables were standardized, i.e. FA was
separately applied to the Cy5 and Cy3 microarray data to
subtract the variation all arrays had in common. The first
factor explaining the largest part of the variation, could be
considered as variation the arrays have in common [3].
This factor could be used for array quality control, as it
would have lower or distinctly different correlations with
arrays of lesser quality. In addition, plotting the standard-
ized Cy5 signal intensities against the standardized Cy3
signal intensities, allowed us to test whether the hybridi-
zations were non-competitive [12]. However, from a
mathematical point of view there is no objection to
directly subjecting Cy5/Cy3 ratios to FA.

In the second step, CFA was performed to uncover which
of the factors coincided with differences in levels of cispl-
atin resistance between the four ovarian cancer cell lines
and to select the genes with the highest loadings on those
factors.

It was assumed that a random process leading to non-nor-
mal distributions would likely affect all extracted factors
(biological and non-biological) to an equal degree. There-
fore, it was assumed that the statistical distribution of the
gene expression data under the null hypothesis could be
estimated from the factors that most likely represent
noise. Because we expected that the biological factors
would result in genes with more extreme scores than those
present in the non-biological factors we performed the
analysis on scores with equal rank. First, the elements of
each retained (biological) factor were rank-ordered and
normalized to a mean of zero and to a standard deviation
of one. Then the elements with the same rank for each of
the factors representing noise were averaged and renor-
malized. Because the distribution affected by biological
effects has more weight in the tails of the distribution, the
elements with the most extreme scores will be larger in
absolute value than the elements with the same rank from
the rank averaged factors. Subsequently, the genes with
the same rank with the largest difference values (≤ -1 and
≥ 1) from the averaged distribution were selected. This
happened to result in selecting the genes with the most
extreme scores. The threshold below or above (≤ -1 and ≥
1) genes were selected was used to obtain a false discovery
rate (FDR) by observing how many elements of the rank
averaged factors were below or above this threshold.
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For a script of the applied method, the corresponding
author can be contacted.

Results
First step of the FA procedure: standardization of the Cy5 
and Cy3 data
The first factors from the Cy5 and Cy3 data explained 85%
of the total variation and represented variation common
to all arrays. Figure 2 shows that the correlations between
the Cy5 and Cy3 data of each array and the first factor
were highly similar. This figure also indicates that the
quality of the arrays was very comparable. By subtracting
this common variation from the Cy5 and Cy3 data all
gene specific variation that does not contribute to differ-
ences between arrays was eliminated (i.e. the Cy5 and Cy3
data were standardized by subtracting the first factor).

After elimination of the common variation, the standard-
ized Cy5 and Cy3 signal intensities of all arrays combined
showed a positive correlation (Figure 3). When Cy5 signal
intensities in a specific array were lower than average, also
Cy3 signal intensities were lower than average, and
reversely, implying that the hybridizations were non-com-
petitive. The phenomenon of non-competitive hybridiza-
tion as seen in our cDNA microarrays was recently also
described for long-oligonucleotide microarrays by 't Hoen
and colleagues [12].

Second step of the FA procedure: identification of the 
biologically relevant factors
In the second step, the factors representing differences in
cisplatin resistance between the four ovarian cancer cell
lines were identified. We identified two factors (the first
and second factor) of which the correlation structures
with the observed variables, e.g. arrays, reflected the bal-
anced reference design (Figures 4 and 5).

The first factor explained a considerable part of the
remaining variation between arrays (40%). The first factor
did not correlate with the 'SelfSelf' hybridizations. Fur-
thermore, the sign of the loading of dye swap experiments
on the first factor was opposite and replicate experiments
showed the same loading (Figure 4). After the sign of the
dye swaps was changed, all the arrays showed similar
loadings on the first factor. Thus, this factor reflected the
contrast between A2780 (used as reference in each array)
and CP70 + C30 + C200. The microarray data of the more
resistant ovarian cancer cell lines C30 and C200 had a

Correlations between the standardized Cy5/stand-ardized Cy3 ratios from each array and the first fac-tor retained with FAFigure 4
Correlations between the standardized Cy5/stand-
ardized Cy3 ratios from each array and the first fac-
tor retained with FA.

Correlations between the Cy5 and Cy3 data from each array, respectively, and the first factor retained with FAFigure 2
Correlations between the Cy5 and Cy3 data from 
each array, respectively, and the first factor retained 
with FA.

Scatterplot of the standardized Cy5 signal intensities against the standardized Cy3 signal intensities of all arraysFigure 3
Scatterplot of the standardized Cy5 signal intensities 
against the standardized Cy3 signal intensities of all 
arrays.
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consistently higher (about 4%) loading on this factor than
the data of the less resistant cell line CP70.

The second factor was only associated with a minor
amount of variance (11%), but its correlation structure
with the arrays reflected 'SelfSelf' hybridizations, dye
swaps and replicate experiments. After correction for dye
swaps, this factor could be interpreted as a contrast
between CP70 and C30 + C200 (Figure 5), as the sign of
the loading of the microarray data of CP70 on the second
factor was opposite to the sign of the loadings of the data
of C30 and C200. The absolute weight of the microarray
data of C30 (mean: 8%) was much lower than that of the
data of C200 (mean: 19%) and CP70 (mean: 25%), so
this factor reflected mainly the difference between the
least and most cisplatin resistant cell line.

After the factors coinciding with biological contrasts (dif-
ferences in cisplatin resistance between the cell lines) had
been identified, the genes responsible for these contrasts
were selected as the most extreme ones from the first and
second factor. From the first factor 199 genes (FDR: 19%)
were selected and from the second factor 152 genes (FDR:
24%). Both gene sets had 36 genes in common.

Of the 199 genes selected from the first factor, the expres-
sion of 99 genes was up-regulated and the expression of
100 genes was down-regulated in CP70 + C30 + C200
compared to A2780. Of the 152 genes selected from the
second factor, the expression of 24 genes was up-regulated
and the expression of 128 genes was down-regulated in
C30 + C200 compared to CP70. To validate the expression
of genes selected from the biological factors, reverse tran-
scription-polymerase chain reaction (RT-PCR) was per-
formed for 16 genes with GAPDH as a control: COL3A1,
ENO2, FGF18, JUN, LHX2, MEIS1, MEIS2, PBX3, PDG-

FRL, PRICKLE1, SAT, SHB, TIMP2, TLX1, TOP1 and
UACA. Figure 6 demonstrates that the differential expres-
sion pattern of the 16 genes, as determined with RT-PCR,
was comparable to the FA results of the microarray data,
confirming the reliability of our analysis of the microarray
data. Additionally, in Table 2 is shown that there is over-
lap between our gene lists and gene lists from other
groups who have profiled A2780 and its cisplatin/oxalipl-
atin resistant subline(s), confirming our results [13-16].
Furthermore, FatiGO was used to annotate the genes with
Gene Ontology (GO) terms (biological process and

RT-PCR results for 16 genes of the 4 ovarian cancer cell linesFigure 6
RT-PCR results for 16 genes of the 4 ovarian cancer 
cell lines. F1, up- (↑) or down- (↓) regulated in CP70 + C30 
+ C200 compared to A2780. F2, up- (↑) or down- (↓) regu-
lated in C30 + C200 compared to CP70.

Correlations between the standardized Cy5/stand-ardized Cy3 ratios from each array and the second factor retained with FAFigure 5
Correlations between the standardized Cy5/stand-
ardized Cy3 ratios from each array and the second 
factor retained with FA.
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molecular function) and to compare the distribution of
the main GO terms between the gene list selected from the
first and second factor [17]. As shown in Table 3, the dis-
tributions of the main GO terms were not significantly
different between the two groups of genes.

Discussion
In general FA, as effected by SVD, is applied to two-color
microarray data for summarizing, filtering and pre-
processing data (EFA), although several studies have
shown FA can be used for gene selection [18-29]. A weak-
ness of straightforward application of FA to microarray
data without any a-priori expectations regarding the latent
structure among the observed data is that there is no
straightforward way of objectively assessing model per-
formance. However, in our microarray study we have
shown that rather than applying FA directly to the analysis
of microarray data, when the structure of the relationships
among the variables (e.g. arrays) is specified a-priori,
reflected by the design of the study, FA is an efficient
method to analyze two-color microarray data.

Based on this pre-defined hypothesis two latent factors
coinciding with differences in cisplatin resistance between
four ovarian cancer cell lines were easily identified. The
first factor retrieved during the fist step of FA represented
the common variation of arrays and the first two factors
retrieved during the second step represented differences
between arrays. The variation of the arrays is generally
explained by only a small number of factors, of which the
first (the major source of variation) represents variation
the arrays have in common [18,20-24,26,27]. One of the
two factors that represented differences between arrays
was interpreted as the contrast between the cisplatin sen-
sitive A2780 cells and the cisplatin resistant CP70, C30
and C200 cells. The other factor was explained as the con-
trast between the mild cisplatin resistant CP70 cells and
the extreme cisplatin resistant C30 and C200 cells. From
the first factor 199 genes and from the second factor 152
genes were selected and 36 genes were shared by both
gene sets. This overlap makes it very plausible that the two
retrieved factors are indeed biologically meaningful. It is
biologically plausible that genes that are important for the
difference between cisplatin sensitive cells and cisplatin
resistant cells are also responsible for the difference in the
degree of cisplatin resistance.

By using SVD for the computation of the latent factors
underlying the microarray data, we obtain uncorrelated
(i.e. orthogonal) factors. Therefore the outlier genes
selected from each factor are not necessarily the same. The
expected number of outlier genes common to both factors
under the hypothesis of no relation is 1.6, which is much
lower than the actually found number of 36. Comparison
of selected genes sets from biologically relevant factors

between arrays may, thus, be an important tool to validate
that the factors are indeed biologically meaningful. The
biological relevancy of the factors was also supported by
the finding that the loadings of the expression data of the
ovarian cancer cell lines on the two contrasts differed
which could also be attributed to the differences in the
levels of cisplatin resistance of the cell lines. Furthermore,
the FA data were supported by RT-PCR results for 16 genes
and literature [13-16].

Analyzing microarray data with CFA has several advan-
tages. With only one algorithm, that is available in any
standard statistical software package, both stages of micro-
array data analysis can be performed. By applying FA, var-
iation in microarray data caused by biological differences
can be separated from variation related to the microarray
technique. By using SVD, we assumed that some latent
factors are expected to be correlated with biological proc-
esses and others with experimental artifacts. So, applying
FA to microarray data also means that to select differen-
tially expressed genes between different classes of sam-
ples, the classes do not have to be defined a-priori.

An advantage of using ULS as fitting method is that no
assumption about the distribution of the microarray data
has to be made. Other microarray analysis methods often
assume that the gene expression data follow normal dis-
tribution, but in reality the distribution is not necessarily
symmetric and its tails can differ in size and shape. A ran-
dom process leading to non-normal distributions will
likely affect all extracted factors (biological and non-bio-
logical) to an equal degree. Therefore, the statistical distri-
bution of the gene expression data can be estimated from
the factors that most likely represent noise.

The problem of scale dependency was solved by perform-
ing the analyses on the correlation structure instead of the
covariance structure. In this analysis we were not hindered
by the difficulty that for ULS no formal tests are available.
Instead the false discovery rates for genes selected from
biological factors were calculated as indicators for their
quality. In addition, there was no real need to assess the
fit of the model as the retrieved factors reflected the design
of the study, and the false discovery rate was calculated
being an indicator for the quality of our proposed cispla-
tin resistant genes.

The identification of biologically meaningful factors is
uniquely dependent on the data and cannot be guaran-
teed. By randomization and balancing of possible con-
founders of microarray experiments, such as the order of
processing (during one of the many steps of microarray
experiments), the systematic (biological and instrumen-
tal) effects will be orthogonal and are likely to show up as
factors. Rotation of the Factor analysis structure is eventu-
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ally possible and will not result in a substantial decrease
in the amount of variance explained.

Another disadvantage may be that to use CFA the design
of the two-color microarray study ideally should include
'SelfSelf' hybridizations, dye swaps and independent rep-
lications, which may not always be the most efficient
design due to the increasing number of arrays. Biological
factors are not easily identified when FA is applied to
designs not including orthogonal contrasts, i.e. without
'SelfSelf' hybridizations or dye swaps, necessary to pre-
define the structure of the relationships among the varia-
bles (e.g. arrays). Examples of such designs not including
orthogonal contrast are balanced block designs or loop
designs [30,31].

Conclusion
In conclusion, our results show that FA is an efficient
method to analyze two-color microarray data provided
that there is a pre-defined hypothesis reflected in an
orthogonal design.

Methods
Sample preparation and microarray experiments
Total RNA was isolated from the ovarian cancer cell lines
A2780, CP70, C30 and C200 (kindly provided by T.C.
Hamilton, Fox Chase Cancer Centre, Philadelphia, US) in
three independent experiments by guanidine isothiocy-
anate treatment and subsequent purification by cesium
chloride ultracentrifugation. After DNAse treatment, the
RNA was linearly amplified according to the T7 amplifica-
tion protocol of the Central Microarray Facility of The
Netherlands Cancer Institute [32]. Each amplified RNA
(cRNA) sample was then independently labeled with Cy3
(green) and Cy5 (red).

The labeled samples were hybridized to the 18K cDNA
microarrays produced at the Central Microarray Facility of
the Netherlands Cancer Institute (NCI, Amsterdam, The
Netherlands) according to the balanced reference design
described in Table 1 and Figure 1; All four ovarian cancer
cell lines, A2780, CP70, C30 and C200 were hybridized
against A2780 (common reference). Dye swaps were per-
formed for all experiments, except for the 'SelfSelf' hybrid-
ization of A2780. This design was used for the 3
independent RNA isolations from the cell lines (3 inde-
pendent cell cultures). In addition one extra 'SelfSelf' was
performed in the second replication of the design, result-
ing in a total of 22 hybridizations [32].

Fluorescent images of the microarray slides were obtained
with the Affymetrix GMS428 scanner (Santa Clara, CA).
For both fluorophores, signal intensities for each spot
were quantified by dedicated IMAGENE 5.6 software (Bio-
discovery, Marina Del Rey, CA).

Reverse transcription-polymerase chain reaction (RT-
PCR)
Sixteen of the differentially expressed genes were further
assessed in the 4 ovarian cancer cell lines by RT-PCR.
cDNA was synthesized from 5 μg total RNA using oligo dT
primers and MMLV transcriptase. The primer sequences
and PCR conditions for the genes are described in Table 4.
PCR products were electrophorized in a 1.2% agarose gel
in 1x Tris-borate EDTA buffer.

Gene Ontology (GO) annotation
FatiGO was used to annotate the genes with GO terms
(biological process and molecular function) and to com-
pare the distribution of the main GO terms between the
gene list selected from the first and second factor [17].
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EFA: Exploratory Factor Analysis

CFA: Confirmatory Factor Analysis

FDR: False Discovery Rate

SVD: Singular Value Decomposition
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GO: Gene Ontology
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Table 1: Overview of the balanced reference design*

Hybridization design Array Cy3 (green) Cy5 (red)
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Ref-C200 4 A2780 C200
CP70-Ref 5 CP70 A2780
C30-Ref 6 C30 A2780
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cell cultures). In addition one extra 'SelfSelf' was performed in the 
second replication of the design, resulting in a total of 22 
hybridizations.
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Table 3: Comparison of the main Gene Ontology categories among the gene lists

Gene Ontology: Level 3 A2780 vs. CP70 + C30 + C200 CP70 vs. C30 + C200

N° Genes (%)1 N° Genes (%)2 P

Biological Process
Cellular physiological process 60 (81) 39 (78) 0.82
Metabolism 43 (58) 29 (58) 1
Regulation of cellular process 24 (32) 15 (30) 0.85
Organismal physiological process 23 (31) 10 (20) 0.22
Regulation of physiological process 22 (30) 16 (32) 0.84
Cell communication 20 (27) 13 (26) 1
Localization 18 (24) 10 (20) 0.66
Response to stress 13 (18) 5 (10) 0.30
Response to biotic stimulus 10 (14) 5 (10) 0.78
Cell adhesion 10 (14) 3 (6) 0.36
Negative regulation of biological process 9 (12) 5 (10) 0.78
Response to external stimulus 9 (12) 3 (6) 0.36
Morphogenesis 7 (9) 3 (6) 0.73
Organ development 6 (8) 5 (10) 0.75

Molecular Function
Protein binding 33 (40) 24 (40) 1
Ion binding 27 (33) 15 (25) 0.35
Nucleic acid binding 18 (22) 12 (20) 0.84
Transferase activity 14 (17) 3 (5) 0.04 (1)3

Transcription factor activity 8 (10) 3 (5) 0.36
Receptor activity 7 (9) 11 (18) 0.12
Nucleotide binding 7 (9) 4 (7) 0.76
Hydrolase activity 6 (7) 9 (15) 0.17
Enzyme inhibitor activity 6 (7) 4 (7) 1
Receptor binding 5 (6) 5 (8) 0.74

1 74 genes with Gene Ontology annotation for biological process and 82 for molecular function; 2 50 genes with Gene Ontology annotation for 
biological process and 60 for molecular function; 3 FDR adjusted p-value.

Table 2: Comparison of our gene list with gene lists described in literature

Reference: Cell lines A2780 vs. CP70 + C30 + C200 CP70 vs. C30 + C200

Up-regulated Down-regulated Down-regulated*

[13]: 6 cisplatin resistant cell pairs, 
including A2780 and CP70

JUN (↑) and IFITM1 (↓) MRC2(↓)

[14]: A2780 and oxaliplatin 
resistant C10B

FER1L3 (↑), LIPA (↑), IFITM1 (↑), 
NMI (↑) and ALCAM (↑)

SOC2 (↓), MID1(↓), TFPI (↓), 
MMRN (↓), CCR1 (↓) and NID2 

(↑)

MMP3 (↑), SPARC (↑), FER1L3 
(↑), TM4SF1 (↓), CRIM1 (↓) and 

PEG10 (↓)
[16]: 4 oxaliplatin resistant cell 
pairs, including A2780 and R4

NFE2L1 (↑), IFITM1 (↓) TIP120B (↑) TIMP2 (↑), COTL1 (↑), IL1R1 (↑), 
SPARC (↑) and SLC4A2 (↓)

[15]: A2780, cisplatin resistant 
ACR6 and ACRP

S100A11 (↓) and SLC25A6 (↓) PEG10 (↑), TMSB4X (↓) and 
COL5A2 (↓)

The arrows behind the genes indicate whether the gene was up-regulated (↑) or down-regulated (↓) in the cisplatin/oxaliplatin resistant subline(s) 
compared to the cisplatin/oxaliplatin sensitive parental cell line according to microarray or SAGE data of other groups. * The genes selected from 
factor 2 that were also described in literature were all down-regulated in C30 + C200 compared to CP70.
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Table 4: Primer sequences and PCR conditions

Gene Primer sequences Ta (C°) Cycles

GAPDH F: 5'-caccaccatggagaaggctgg-3' R: 5'-ccaaagttgtcatggatgacc-3' 65 30
COL3A1 F: 5'-agcctccaactgctccta-3' R: 5'-gtccgggtctacctgatt-3' 56 30
ENO2 F: 5'-gtctgctgctcaaggtcaac-3' R: 5'-tccaggcaagcagaggaatc-3' 54 30
FGF18 F: 5'-cttcctgctgctgtgcttcc-3' R: 5'-cactccttgctggtgccatc-3' 57 30
JUN F: 5'-gctatctaggtggagttg-3' R: 5'-gcacatgccacttgatac-3' 46 30
LHX2 F: 5'-tgaaggacagcctggtctac-3' R: 5'-gagctgcttcaagtccttgg-3' 56 30
MEIS1 F: 5'-gctgttccagcatctaacac-3' R: 5'-tgttgctgaccgtccattac-3' 50 30
MEIS2 F: 5'-gatcacgccgttatgttgcc-3' R: 5'-gctggagttcgagtgatgag-3' 49 30
PBX3 F: 5'-caggaagcaggacatcgg-3' R: 5'-ttggctctgtaatctgagtgtt-3' 56 30
PDGFRL F: 5'-gtggagctaccctgcgtatc-3' R: 5'-ctgggagaaggtacaaagagttc-3' 60 35
PRICKLE1 F: 5'-aggtacggtattgccagtctt-3' R: 5'-cgaacactgcaacttcacctc-3' 60 35
SAT F: 5'-tcactcgccgaggttccttg-3' R: 5'-acagcagcactcctcactcc-3' 53 30
SHB F: 5'-gtttaatggcaacgagaagcg-3' R: 5'-tcctcacagccacgggatag-3' 60 35
TIMP2 F: 5'-ggaaacgacatttatggcaacc-3' R: 5'-acccagtccatccagaggc-3' 60 30
TLX1 F: 5'-acctcactggcctcaccttc-3' R: 5'-cagaccacggctgcagattc-3' 57 30
TOP1 F: 5'-gaaggaacagctagcagatg-3' R: 5'-agaactctgcctcttgagac-3' 50 30
UACA F: 5'-cactgaatgacacgttagcca-3' R: 5'-atcctgcacctttctcatgct-3' 60 35

Ta, annealing temperature.
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