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Abstract
Background: Rhabdomyosarcoma is a highly malignant soft tissue sarcoma in childhood and arises
as a consequence of regulatory disruption of the growth and differentiation pathways of myogenic
precursor cells. The pathogenic pathways involved in this tumor are mostly unknown and therefore
a better characterization of RMS gene expression profile would represent a considerable advance.
The availability of publicly available gene expression datasets have opened up new challenges
especially for the integration of data generated by different research groups and different array
platforms with the purpose of obtaining new insights on the biological process investigated.

Results: In this work we performed a meta-analysis on four microarray and two SAGE datasets of
gene expression data on RMS in order to evaluate the degree of agreement of the biological results
obtained by these different studies and to identify common regulatory pathways that could be
responsible of tumor growth. Regulatory pathways and biological processes significantly enriched
has been investigated and a list of differentially meta-profiles have been identified as possible
candidate of aggressiveness of RMS.

Conclusion: Our results point to a general down regulation of the energy production pathways,
suggesting a hypoxic physiology for RMS cells. This result agrees with the high malignancy of RMS
and with its resistance to most of the therapeutic treatments. In this context, different isoforms of
the ANT gene have been consistently identified for the first time as differentially expressed in RMS.
This gene is involved in anti-apoptotic processes when cells grow in low oxygen conditions. These
new insights in the biological processes responsible of RMS growth and development demonstrate
the effective advantage of the use of integrated analysis of gene expression studies.
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Background
Rhabdomyosarcoma (RMS) is the most common soft tis-
sue sarcoma in childhood while is rare but highly malig-
nant in adults. RMS arises as a consequence of regulatory
disruption of the growth and differentiation pathways of
myogenic precursor cells. Although in the last few years
several functional and genomic studies have been pub-
lished on RMS, many issues are still to be clarified such as
the identity of the myogenic precursor cell of RMS [1].

Recently, many studies focused on cancer have demon-
strated the great potential of the genomic approach based
on DNA microarray and chips for the identification of
new regulatory pathways involved in complex biological
processes like tumor development, proliferation [2] and
metastasis [3].

Among the genomic technologies for the study of cell
transcriptome at global level, DNA microarray and serial
analysis of gene expression (SAGE) methodologies have
already been used to study gene alterations in RMS. Khan
and colleagues [4] applied cDNA microarray technology
to find new potential markers able to distinguish different
types of small round blue cell tumors (SRBCT) including
26 samples of RMS. More recently, Baer research group [5]
investigated, with Affymetrix chips, the expression signa-
tures of 12 primary pediatric RMS and 11 Ewing's sarco-
mas.

Rhabdomyosarcomas are classified in two main subtypes:
embryonal RMS (ERMS) and alveolar RMS (ARMS).
ARMS represents approximately 25–30% of RMS and has
a worse prognosis than ERMS. Cytogenetic and molecular
analyses have demonstrated that ARMS frequently har-
bors two reciprocal chromosomal translocations
t(2;13)(q35;q14) or t(1;13)(p36;q14), in which PAX3 or
PAX7 and FKHR genes are juxtaposed producing two
novel fusion transcription factors PAX3-FKHR or PAX7-
FKHR. In relation to this classification, two genomic stud-
ies have been recently published. Wachtel and co-workers
[6] studied the similarities in the gene expression profiles
among 29 different RMSs, including ERMSs, translocation
negative and positive ARMSs using a genome-wide
Affymetrix chip. De Pittà et al. [7] adopted a custom mus-
cle-specific cDNA platform to compare the gene expres-
sion signatures of translocation positive and negative RMS
samples for the identification of possible marker genes.
Finally, with the SAGE technique, Schaaf et al. [8] identi-
fied genes differentially expressed in ERMS and/or ARMS
as compared with three different reference samples: old,
young and fetal skeletal muscle.

During the reviewing process of this manuscript a new
study on RMS expression profiles has been published [9].
Davicioni and Collaborators try to test what extent of
PAX-FKHR determine class and behaviors of ARMS using
oligonucleotide microarrays expression profiling of 139
primary RMS tumors and an in vitro model. We decided to
discuss and include this work in the paper as a further
evaluation of our results.

The availability of public gene expression repositories has
opened up a new realm of possibilities especially for
microarray data analysis. An essential challenge, in fact, is
given by the efficient integration of gene expression data
on the same issue generated by different research groups
using different array platforms and experimental condi-
tions. The data integration is done in order to confirm and
strengthen the results of single studies as well as to find or
complete common cellular pathways that are found
altered in specific physiological or pathological processes
under study. Pivotal studies of this type have been per-
formed on cancer [10]. The analysis of multiple gene
expression datasets concerning a common biological
problem, called "meta-analysis", has shown the capability
of retrieving much more relevant information than single
experiment datasets [11-13].

Here we present the results of a comprehensive meta-anal-
ysis that has been performed on all the available gene
expression datasets published on RMS in order: i) to eval-
uate the degree of agreement of the biological results
obtained by these different studies and, ii) to identify
common regulatory pathways that could be relevant for
the pathophysiology of RMS. In this study we have
adopted a robust statistical approach, similar to that pro-
posed by Rhodes and colleagues [10], for the analysis of
four DNA microarray/chip and two SAGE datasets pub-
lished on RMS. Two different approaches have been used
for our meta-analysis: the "single dataset" and the "match-
ing" approach. In the former approach, each dataset is
analyzed individually and Gene Ontology categories
(GO) and/or metabolic pathways (obtained by KEGG
databases) commonly enriched in most of the studies are
further investigated.

The low data reproducibility among microarray experi-
ments performed with different platforms and different
statistical analysis has recently stressed the strong variabil-
ity that seems intrinsic to this technology. In spite of this
variation, the classification of genes for which probes are
present in different platforms into functional categories or
pathways has demonstrated to favor the comparison of
the expression data obtained in different studies, despite
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substantial differences in the lists of differentially
expressed genes identified [14].

In our comparative analysis of RMS expression datasets
we have adopted such gene "matching" approach, select-
ing a set of "core" genes common to all platforms,
matched by Entrez Gene, and performing statistical anal-
yses on this gene core. Our results indicate a general down
regulation of pathways involved in energy and carbohy-
drate metabolism. In particular, oxidative phosphoryla-
tion, ATP synthesis, Krebs cycle pathways and several
genes with biological and molecular functions related to
ATP production and oxidoreductase activity show
decreased level of expression with respect to healthy skel-
etal muscle tissues. Furthermore, the list of differentially
expressed genes in common across the studies seems to
confirm and complete this biological aspect of the dis-
ease. In particular, the underexpression of genes for
energy production can be only partly due to the presence
of undifferentiated muscle tissues in RMS patients. Our
results, in fact, seem to suggest an important role for the
hypoxic cellular condition in the anti-apoptotic process
and then in the proliferation and growth of the tumor.
This could justify the highly aggressive and malignant
phenotype typical of solid tumors like RMS.

Supplementary information for the results obtained by
the meta-analysis can be browsed at [15].

Results and discussion
RMS is of great interest as a cancer model, not only for its
mostly unknown pathogenic pathway, but also for its
implication in cellular differentiation processes. There-
fore, a better characterization of the biological and molec-
ular processes and of the networks of interactions
involved in regulation of RMS gene expression would rep-
resent a considerable advance in basic and translational
research regarding this tumor. In this context, integrative
bioinformatics analysis using different sources of infor-
mation, has demonstrated to be a promising approach for
a better comprehension of pathogenic processes other-
wise not apparent from standard analysis methods. Tech-
nical differences between microarray platforms and
biological variability of samples can lead to differences
and fluctuation in gene expression profiles. Meta-analysis

on expression data can give a more robust and complete
insight on the biological process investigated, overcoming
these problems. In this work we performed a meta-analy-
sis on gene expression datasets obtained by four projects
that applied DNA microarray/chip technology and two
projects that used SAGE technology to study RMS (Table
1).

Meta-analysis on RMS expression data
Two different approaches have been used for data analy-
sis. The "Single dataset" approach performs statistical test
individually in each study and focuses the scientific inves-
tigation on functional categories of deregulated genes that
are common to most of the studies. The "Matching"
approach uses Entrez Gene ID for the generation of a
matched dataset where meta-profiles are used for the iden-
tification of common deregulated genes.

Single dataset approach
The results of each individual expression study have been
evaluated under the testing assumption of no relationship
between expression values of a gene and the distinction
between RMS and healthy tissue. P-values resulting from
statistical tests have been assigned to all genes and then,
after sorting them through p-values, q-values (false discov-
ery rate, FDR) [16] were calculated and associated to
genes. The FDR threshold for the identification of differ-
entially expressed genes has been set at 0.01. Figure 1
shows the q-values plots of the six datasets analyzed. The
X-axis is the rank index for genes sorted by p-values. Given
a specific value of q, the intersection with the curves shows
the number of genes identified as differentially under-
(panel A) or overexpressed (panel B) in each dataset.
Table 2 lists the total numbers and percentages of differ-
entially expressed genes resulting from the meta-analysis
of each single RMS dataset. From Fig. 1A,B and Table 2 it
is evident that RMS results in a general down regulation of
the transcriptome: 4 out of 5 studies (Khan, Baer, Wachtel,
Schaaf datasets) detect a higher number of underex-
pressed genes and the percentage they represent in the dif-
ferent platforms is comparable with the exception of Khan
dataset, which results in a higher difference (23% under-
expressed and 4% overexpressed). This discrepancy could
results from differences in the platforms. As suggested by
Rhodes et al. [11] the number of differentially expressed

Table 1: Rhabdomyosarcoma gene expression datasets used in the meta-analysis

Authors Journal Year Array platform Total N. probes N. of RMS samples

Wachtel et al. Cancer Research 2004 Oligo Affymetrix 22,283 29
Baer et al. Int. J. Cancer 2004 Oligo Affymetrix 12,558 12
De Pittà et al. Int. J. Cancer 2006 cDNA 4,992 14
Khan et al. Nature Medicine 2001 cDNA 6,567 26
Schaaf et al. FASEB J. 2005 SAGE 46,445 3
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False discovery rate (FDR) trend in each datasetFigure 1
False discovery rate (FDR) trend in each dataset. On the x-axis genes are ranked according to the p-values obtained by statis-
tical test, while on the y-axis the Q-value (FDR) is reported. Panel A: underexpressed genes; panel B: overexpressed genes.
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genes at a given q value is highly influenced by the total
number of probes and samples as well as by more general
issues like the nature of probe sequences, array quality,
etc.

Differentially expressed genes have been grouped into
functional categories and pathways according to GO and
KEGG, respectively. Then, GO and KEGG classes that
show altered genes in a number that is significantly
enriched in comparison to a random distribution have
been calculated for each platform. Significant classes with
FDR less than 0.05 have been compared across the studies
and ranked according to the number studies that appear
to share them. In the present approach, GO categories and
KEGG pathways represent statistical and biological units.
Focusing on these macro structures (partially overlapped
because the same gene product can be associated to vari-
ous biological functions and can be involved in more than
one metabolic pathway), it is possible to integrate results
coming from different studies achieving a comprehensive
picture of the biological processes involved The picture
could emerge only partially using each dataset individu-
ally. Differences among different expression signatures
can be generated by insufficient resolution power of the
statistical analysis applied, but also by the use of different
reference samples (see Methods for details). It should be
noted in fact that skeletal muscle is a composite tissue
with a dominant component of myofibres and satellite
cells plus connective and adipose tissues, blood cells etc.
Therefore, the contribution of different "contaminant"
cells to reference RNA preparations could be slightly dif-
ferent between normal muscle controls. However, we
believe that the key deregulated pathways responsible of
the muscle pathology should be evident in most of the
studies whatever the healthy muscle reference. In this con-
text meta-analysis is helpful to discover and highlight the
core biological aspects of the pathology.

Table 3 summarizes the result of this process: the GO and
KEGG gene categories that show an enriched presence in
at least four independent datasets are here indicated. In
this representation, different colors represent the expres-
sion levels of genes belonging to each category (green:

under-expression, red: over expression, black: mixture of
under and over expression). As a general overview, we can
conclude that most of the underexpressed genes codify for
products involved in energy production (ATP synthesis,
oxidoreductase activity, electron transport, oxidative
phosphorylation) and energy/carbohydrate metabolism
(ATP synthesis, oxidative phosphorylation, Krebs cycle,
carbon fixation).

The list of differentially expressed genes and of the
enriched GO and KEGG classes in the study of Davicioni
et al. [9] has been reported in Additional file 1. This new
analysis seems to validate our findings: all the molecular
and biological functions and the metabolic pathways
cited above are confirmed as significantly enriched and
downregulated.

To further investigate each pathway, we have generated
integrated KEGG maps with differentially expressed genes
identified in the different studies. Figure 2, for instance,
shows the integrated map of oxidative phosphorylation
and Krebs cycle, as obtained by the meta-analysis (data
from the six studies are shown in different colors). This
example clearly illustrates the results that are achieved
with our meta-analysis. In that particular functional maps
in fact, each single dataset individually examined gives
only a partial picture of these deregulated metabolic path-
ways. The integration of all datasets fills in the picture
with gene members that are not revealed by single analy-
sis, providing a comprehensive evaluation of the deregu-
lation of that metabolic process.

RMS is characterized by the presence of undifferentiated
muscle tissues, and therefore ATP production appears to
be decreased with respect to normal skeletal muscle tissue.
In this context, the metabolic pathways described before
that appears strongly deregulated from our analysis can be
considered as a consequence of the presence of such
undifferentiated cells. Nevertheless, absence of oxygen
has been recently associated to tumor progression and
growth. It is well known that cells undergo a variety of
biological responses when placed in hypoxic conditions,
including activation of signaling pathways that regulate

Table 2: Number and percentage of differentially expressed genes (FDR = 0.01) in each dataset.

Authors Overexpressed genes Underexpressed genes

Actual number Percentage Actual number Percentage
Wachtel et al. 1,837 8.3 2,374 10.7
Baer et al. 384 3.0 1,453 11.5
De Pittà et al. 585 11.7 593 11.8
Khan et al. 259 4.0 1,542 23.4
Schaaf et al. (Adult) 205 3.0 698 11.3
Schaaf et al. (Fetal) 344 5.6 531 8.6
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Table 3: Gene Ontology categories and KEGG metabolic pathways that have been found significantly enriched in more than 2 expression studies on 
RMS by the meta-analysis.

Gene Ontology Class description§ W$ B DP K SA SF # studies

Biological Process Cell killing x x x x x 5
Muscle contraction x x x x x 5
Biosynthesis x x x x 4
Appendage morphogenesis x x x x 4
Macromolecule metabolism x x x x 4
Myoblast differentiation x x x x 4
Endothelial cell differentiation x x x x 4
Regulation of organismal physiological process x x x x 4

Molecular Functions ↓ Oxidoreductase activity, acting on the CH-NH group of donors x x x x x x 6
↓ AMP deaminase activity x x x x x 5
Thioredoxin-disulfide reductase activity x x x x x 5
Cytoskeletal protein binding x x x x x 5
Primary active transporter activity x x x x x 5
↑ Phospholipid-hydroperoxide glutathione peroxidase activity x x x x x 5
RNA binding x x x x 4
4-alpha-glucanotransferase activity x x x x 4
Amylo-alpha-1,6-glucosidase activity x x x x 4
↑ Glutathione peroxidase activity x x x x 4
Protein C-terminus binding x x x x 4
Ornithine decarboxylase inhibitor activity x x x x 4
Heme-copper terminal oxidase activity x x x x 4
↓ Oxidoreductase activity, acting on NADH or NADPH x x x x 4
↓ Oxidoreductase activity, acting on sulfur group of donors x x x x 4
↓ Oxidoreductase activity, acting on heme group of donors x x x x 4
Hydrolase activity, acting on ether bonds x x x x 4
Intramolecular oxidoreductase activity x x x x 4
↑ Phosphatase activator activity x x x x 4
↓ Electron transporter, transferring electrons from coqh2-cytochrome c reductase complex and 
cytochrome c oxidase complex activity

x x x x 4

Cellular Component ↓ Proton-transporting ATP synthase complex (sensu Eukaryota) x x x x 4
↓ Proton-transporting ATP synthase complex, catalytic core F(1) (sensu Eukaryota) x x x x 4
↓ Transcription factor TFIIH complex x x x x 4
Cytoplasm x x x x 4
↓ Proton-transporting ATP synthase, catalytic core (sensu Eukaryota) x x x x 4
Cytosolic small ribosomal subunit (sensu Eukaryota) x x x x 4
Cytoskeleton x x x x 4
Isoamylase complex x x x x 4
↓ Proton-transporting ATP synthase complex x x x x 4
↓ Proton-transporting ATP synthase complex, catalytic core F(1) x x x x 4
↓ Proton-transporting ATP synthase, catalytic core x x x x 4
↓ Respiratory chain complex III x x x x 4

Metabolic Pathways Energy Metabolism
↓ Reductive carboxylate cycle (CO2 fixation) x x x x x x 6
↓ Oxidative phosphorylation x x x x 4
↓ ATP synthesis x x x 3
↓ Carbon fixation x x 2

Carbohydrate Metabolism
Glyoxylate and dicarboxylate metabolism x x x x 4
↓ Inositol metabolism x x x x 4
Glycolysis/Gluconeogenesis x x 2
↓ Pentose phosphate pathway x x 2

Biosynthesis and secondary metabolism 
Streptomycin biosynthesis x x x 3
Alkaloid biosynthesis I and II x x x x x x 6

Other
Ribosome x x x x 4
Apoptosis x x x 3
Chondroitin/Heparan sulfate biosynthesis x x x 3
D-Arginine and D-ornithine metabolism x x x 3
Prion disease x x x 3
Protein export x x x 3

$ W, B, K, DP, SA and SF stand respectively for Wachtel, Baer, Khan, De Pittà, Schaaf Adult and Schaaf Foetal datasets. Cells with an x represent enriched classes in the 
correspondent dataset.
§ The presence of arrows (↑ up or ↓ down regulation) in the category name indicates the expression levels of genes belonging to the class.
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Integrated metabolic map (from KEGG database) of Kreb cycle and Oxidative phosphorialtionFigure 2
Integrated metabolic map (from KEGG database) of Kreb cycle and Oxidative phosphorialtion. Boxes in red represent gene 
products that are differentially underexpressed in at least one dataset. Colored bands inside red boxes correspond to the data-
set in which the product gene is differentially expressed (according to the legend).
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proliferation, angiogenesis and death. Cancer cells may
have an adaptive behavior allowing tumors to survive and
grow under hypoxia, leading to worse prognosis and
resistance to radiation therapy [17] as observed in RMS.
The hypoxic phenotype has also been found in neuroblas-
toma [18], an early childhood tumor that shares several
features with RMS. Axelson et al. [18] suggested that
hypoxia condition contributes to cell de-differentiation
and tumor heterogeneity, even though the molecular
mechanism underlying this process is still undefined. Dis-
tinct tumor cells show a different response in hypoxic con-
dition. This last phenomenon is particularly marked in
solid tumors and specifically in RMS. Then, the results
obtained with our meta-analysis about energy production
down regulation can be thought as a consequence of the
pathology progress but also as a cause of the heterogeneity
and aggressiveness of the tumor.

The complete set of integrated KEGG maps significantly
enriched with genes altered in RMS is available in the Sup-
plementary Information.

Matching approach
We performed statistical analysis on sets of gene probes
common to all platforms examined in our study, matched
according to Entrez Gene (EG) entries. Table 4 shows the
distribution of EG entries in each platform (total number
of EG entries, number of singleton EG and number of
probes not matching any EG entry) and the redundancy
measure (RD) value. Furthermore, EG entries common to
2, 3, 4 and 5 datasets respectively, are shown in Table 5.
Additional file 2 reports the pairwise number of overlap-
ping EG entries in the five platforms.

All the expression datasets derived from microarray plat-
forms show a similar level of RD (see the Methods for
details) while, as expected, the SAGE dataset (composed
by some 46,000 tags) has a significantly higher RD value.
On the other hand, Figure 3 shows the distribution of the
platform reproducibility index (RP), defined as the mean
correlation of pairwise expression profiles of probes
assigned to the same EG entry for each platform (see the

Methods for details). We found that cDNA platforms
show a distribution centered on RP value of 0.3–0.4,
while Affymetrix platforms of 0.0–0.1. Probes in the
Affimetrix platform are synthesized as pairs of short oligo-
nucleotides: each couple consists of an oligonucleotide
perfectly matched to the target sequence and a twin oligo-
nucleotide mismatched at a single position. This probe
configuration should give a higher specificity of probes for
the identification of transcript variants and alternative
splicing isoforms. On the other hand, cDNA platforms
contain probes with long sequences and, even if designed
on the 3' or 5' portions of transcripts, could result in less
specific hybridizations with targets. Our results are in
agreement with those obtained by Lee et al. where Uni-
Gene clusters were used to match the probes of platforms
[19]. The variability in the expression profiles of genes
belonging to the same EG entry introduces a degree of
complexity in the comparison of probes across different
array platforms. In this context, the introduction of meta-
profiles (see the Methods section) allows us the compari-
son of EG entries across different studies. Then, a meta-
profile is defined as the trimmed median profile of the
probes annotated with the same EG and is virtually repre-
sentative of that gene. After identifying EG entries com-
mon to all the six studies, statistical tests (permutational
t-test for microarray data and Audic and Claverie test for
SAGE data) have been performed on meta-profiles.

Meta-profiles of differentially expressed genes
Figure 4 shows the meta-profiles of the genes that were
established as under- (88) and overexpressed (65) in at
least five RMS expression datasets. Several of these genes
have already been found deregulated in RMS and are
mostly defined as anti-apoptosis or are involved in tumor
progression and growth as well as in muscle differentia-
tion and sarcomere morphogenesis [see Additional file 3
for the complete list of the 153 differentially expressed
genes].

Of these 153 genes on 5,500 identified as differentially
expressed (FDR< 0.1), 52 (34%, p = 0.003, 41 down and
11 up regulated) are confirmed in Davicioni et al. work if

Table 4: Entrez Gene entries and redundancy measure (RD) for each platform.

Authors Entrez Gene entries represented only 
once in the platform

RD Total number of gene with 
Entrez Gene entry

Total number of gene without 
Entrez Gene entry

Actual number Percentage Actual number Percentage Actual number Percentage

Wachtel et al. 8,362 37.5 2.7 21,200 95.1 1,077 4.8
Baer et al. 7,378 58.4 2.4 11,998 95.0 627 5.0
De Pittà et al. 2,850 57.1 2.4 4,080 81.7 912 18.3
Khan et al. 2,029 88.1 2.0 2,035 88.4 268 11.6
Schaaf et al. 4,801 10.3 3.4 26,512 57.1 19,933 42.9
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considering all the 121 RMS tumors. On the other hand,
taking into account only genes differentially expressed on
the 102 ARMS and ERMS Davicioni's samples (eliminat-
ing all the other RMS subtypes) the number of confirmed
genes increases to 73 (48%, p = 0.01, 55 down and 23 up
regulated) [Additional files 1 and 3]. The statistical signif-
icance reported above was calculated considering the
probability of selecting by chance in the list of differen-
tially expressed genes exactly 52 and 73 genes in common
with the 153 previously identified (hypergeometric distri-
bution).

In particular we would like to discuss some of the most
interesting of these deregulated genes.

IGF2 seems to be an important regulator of cell growth,
differentiation, and survival through endocrine and para-
crine/autocrine signaling [20,21]. The widely accepted
hypothesis is that IGF2 is maternally imprinted and that
disomy at 11p15 may lead to increased expression of IGF2
from two active paternal alleles [22]. It is interesting to
note that IGF2 is validated by the study of Davicioni et al.
only taking into account ARMS and ERMS samples.
STIM1 (stromal interaction molecule) is a candidate
tumor suppressor gene mapping to human chromosome
11p15.5, a region that has been associated to a variety of
cancers, including the ERMS. The transfection of STIM1
cDNA into either rhabdoid tumor or RMS cell lines, where
the endogenous transcript is not detectable, results in the
inhibition of cell growth and the stimulation of cell death
[23]. In rodent myoblast cell lines, the expression of
cloned STIMI gene causes withdrawal from cell cycle inde-
pendent from differentiation. These data suggest STIM1 as
a candidate tumor suppressor gene. Our results are con-
sistent with the hypothesis that this gene has a crucial role
in the pathogenesis of rhabdomyosarcoma. STIM1 is val-
idated by Davicioni's work only for ARMS and ERMS sam-
ples. The skeletal muscle Lim protein 1 (SLIM1, alias
FHL1) is highly expressed in skeletal muscle [24] and con-
tains four- and- a- half LIM domains that play a critical
role in tissue differentiation and cytoskeletal integrity
[25]. In the model myogenic cell line C2C12, in fact, it has
been demonstrated that the overexpression of FHL1 pro-

tein promotes differentiation [26]. Furthermore, a recent
study suggests a role for FHL1 in sarcomere assembly [27].
Davicioni et al. data confirm FHL1 as significantly down-
regulated using both ARMS and ERMS samples or the
complete set of samples.

The products of most of the underexpressed genes in RMS
resulting from meta-analysis, are localized in the mito-
chondrion [see Additional file 3] and are mainly involved
in aerobic energy metabolism. These results seem to com-
plete and better delineate the disease picture obtained
with the previous approach ("single dataset") especially
with regards to metabolic pathways of cell response to
hypoxia. Among these genes, the mitochondrial adenine
nucleotide translocator (ANT) appears to act as a bi-func-
tional protein catalyzing ADP/ATP exchanges across the
mitochondrial inner membrane and playing an essential
role in aerobic energy metabolism from one side, and
from another side, being converted into pro-apoptotic
pore under the control of onco- and anti-oncoproteins of
the Bax/Bcl2 family [28-30]. In humans there are three
closely related isoforms of ANT and their expression
depends on cell type, differentiation stage, and metabolic
state. SCL25A4 (alias ANT1) is mainly expressed in the
heart, skeletal muscle and to a lesser extent in brain [31].
SCL25A5 (alias ANT2) is growth-dependent and marker
of cell proliferation [32], while SCL25A6 (alias ANT3) is
ubiquitously expressed. The induction of ANT2 expres-
sion in cancer cells is directly related to their glycolytic
metabolism that is activated when occurs an interruption
of aerobic energy metabolism or an oxidative stress [33].
ANT2 has been suggested to act in a reverse manner
importing ATP into mitochondria and exporting ADP in
order to preserve the mitochondrial ∆ψ preventing apop-
tosis [34]. Previous studies have shown that over-expres-
sion of ANT1 and ANT3 in some cell lines produce a rapid
cell death, with a concomitant decrease in mitochondrial
∆ψ and an increase in nucleosomal DNA degradation
[35], while in other cell types the over-expression of these
isoforms do not induce apoptosis. This may suggest that
ANT isoforms can induce apoptosis when expressed in the
wrong place or at the wrong time. In a recent work, Chev-
rollier and colleagues [34] demonstrated that the ANT2
and ANT3 genes are co-expressed in tumor cells as well as
in non transformed cells. Our indication of a general
under expression of aerobic energy metabolism is in
agreement with the functions and the behavior of ANT
isoforms. In fact, ANT2 and ANT3 are found to be both
overexpressed while ANT1, the skeletal muscle specific
isoform, underexpressed. Then, our results, are in agree-
ment with the hypothesis of the bi-functional role of ANT
isoforms that promote glycolytic metabolism and at the
same time prevent apoptosis increasing cell proliferation.
The differential expression of ANT1, ANT2 and ANT3 is
confirmed by the work of Davicioni and Collaborators.

Table 5: Number of Entrez Gene entries shared by increasing 
number of expression studies (noted by x).

x # Entrez Genes entries shared by x studies

1 4,876
2 4,617
3 4,087
4 2,125
5 594
Page 9 of 16
(page number not for citation purposes)



BMC Genomics 2006, 7:287 http://www.biomedcentral.com/1471-2164/7/287

Page 10 of 16
(page number not for citation purposes)

Frequency distribution of the mean pairwise Spearman correlation coefficient obtained from the comparison (with a jackknives procedure) of the expression profiles of probes belonging to the same Entrez GeneFigure 3
Frequency distribution of the mean pairwise Spearman correlation coefficient obtained from the comparison (with a jackknives 
procedure) of the expression profiles of probes belonging to the same Entrez Gene.
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Genes differentially expressed in at least five datasets using meta-profilesFigure 4
Genes differentially expressed in at least five datasets using meta-profiles.
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Very recently it has been shown that low oxygen tension
in tumors was associated with increased metastasis and
poor survival in patients suffering from head, neck, cervi-
cal or breast cancer [36]. Hypoxia-inducible factor-1-α
(HIF-1α) is the key transcription factor that is induced by
hypoxia and regulated by a proline hydroxylase. HIF-1
activates the transcription of a series of genes that are
involved in crucial aspects of cancer biology including
angiogenesis, cell survival, glucose metabolism and inva-
sion. Although our results seem to suggest a general
hypoxic state in RMS cells, neither HIF-1 nor other genes
directly regulated by HIF-1 have been found consistently
deregulated. There are no evidences for the interactions
between HIF-1 and ANT gene, and therefore what we see
in RMS could only be related to a specific pathway of the
cellular response in case of low level of oxygen: the proc-
ess of anti-apoptosis.

Other differentially expressed genes appear to be involved
in cell growth and/or maintenance, and therefore could
play an important role in RMS biology. In this context two
interesting genes, involved in cell proliferation and apop-
tosis, CD151 antigen (CD151) and ADP-ribosylation fac-
tor-like 6 interacting protein (ARL6IP alias ARMER) were
found overexpressed. CD151, identified as differentially
expressed also in Davicioni's data, mediates signal trans-
duction events that play a role in the regulation of cell
development, activation, growth and motility [37].
CD151 is the first member of the tetraspanin family that
has been suggested as a promoter of human tumor metas-
tasis [38]. For a number of malignant diseases the level of
expression of members of the tetraspanin family was
found to correlate with tumor cell invasiveness, ability to
form metastases, and poor clinical outcome [39,40].
ARL6IP (alias ARMER) is an apoptotic regulator located in
the membrane of the endoplasmic reticulum [41] that
protects cells by inhibiting caspase-9 activity. In fact cells
in which ARMER was overexpressed exhibited protection
from multiple apoptotic inducers including serum starva-
tion, UV irradiation and tumor necrosis factor alpha [42].

According to Segal et al. [2] work on conditional activity
of expression modules in cancer, liver, CNS and prostate
tumors share regulatory modules implicated in energy
metabolism. This may suggest the possibility of common
biological processes among these solid tumors and RMS
specifically involved in tumor growth and aggressiveness.

Conclusion
In this work we have identified common altered biologi-
cal pathways consistent with a hypoxic physiology of
RMS. Hypoxic physiology has recently been associated to
poor patient outcome in several types of tumors [36]. This
result is coherent with the high malignancy of RMS and
with its resistance to several kinds of therapeutic treat-

ments, however none of the expression studies used in
our meta-analysis, when analyzed separately, has the
power to capture this aspect of the pathology. Further-
more, new genes involved in the anti-apoptotic process
like the ANT family genes have been identified for the first
time in RMS by this meta-analysis. Different isoforms of
ANT gene, in fact, seem to play an important role in the
process of cellular proliferation and tumor growth.

A further support to our findings has been obtained by
analyzing the new study of Davicioni and colleagues pub-
lished during the reviewing process of our manuscript.
Most of the meta-profiles found differentially expressed
and all the enriched Gene Ontology and KEGG classes dis-
cussed here appear to be confirmed by this new work.

Our results have also confirmed the great potential of a
combined and integrated statistical/bioinformatic analy-
sis of expression datasets for the investigation of complex
transcriptomes, such as those of highly malignant tumors.
In the last few years we have witnessed discordant opin-
ions with regards to microarray data. Intrinsic technolog-
ical differences and biological variability will always lead
to the problem of results variability and low reproducibil-
ity. Nevertheless, the availability of gene expression data
compliant to the common standard guidelines as those
proposed by MGED society [43], and the possibility to
perform comparative/integrative analysis will help
researchers to have a more comprehensive and robust
insight into the biological problem investigated.

Methods
Data collection
Data used in this study are either publicly available or
have been generously provided by the Authors. Wachtel et
al. [6] dataset is based on Affymetrix chips (HG-U133A)
and is available at EBI ArrayExpress database (identifica-
tion number: E-MEXP-121). This dataset consists of 29
experiments, 14 expression profiles of alveolar rhab-
domyosarcoma (ARMS) and 15 of embrional rhabdomy-
osarcoma (ERMS). The dataset produced by Baer et al. [5]
is based on Affymetrix technology (U95Av2) and is avail-
able on GEO database (GSE967 series identification
number). The Authors produced expression profiles of 12
RMS samples. Khan et al [4] dataset has been obtained on
custom cDNA microarray platform of 6,567 probes [44]
and consists of 26 RMS samples from cell lines and biop-
sies. De Pittà et al. [7] used a custom cDNA muscle array
([45], GEO database, GPL2011 platforms and GSE2787
series identification number) of 4,992 transcripts and
compared expression profiles of 14 ARMS (7 transloca-
tion positive and 7 negative). Finally, Schaaf et al. [8]
dataset, kindly provided by the authors, includes 3 RMS
samples (2 ARMS and 1 ERMS) and 3 healthy skeletal
muscle samples (fetal, young and old muscles). The SAGE
Page 12 of 16
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libraries considered in our study consist of 46,445 tags. To
take advantage of these multiple references we have con-
sidered the results of Schaaf et al. data as two distinct data-
sets: one with fetal and one with adult (young and old)
skeletal muscle profiles as control reference called respec-
tively "Schaaf et al. Fetal" and "Schaaf et al. Adult". In this
way we have obtained two lists of differentially expressed
genes that are reported in Table 2 as Schaaf et al. (Fetal)
and Schaaf et al. (Adult) obtained by the comparison of
all the three libraries of RMS vs fetal and vs adult.

Davicioni et al. [9] used Affymetrix chips (HG-U133A) on
121 RMS primary tumor samples (102 ARMS and ERMS
plus 19 other RMS subtypes) and 30 tumor cell lines and
their data are available at the National Cancer Institute
Cancer Array Database [46].

Expression datasets obtained with Affymerix chips have
been normalized with the invariant method [47] using
dChip software [48]. After normalization, 6 RMS microar-
ray experiments (RMS01, RMS02, RMS03, RMS04,
RMS05, RMS09) in Wachtel et al. dataset and 12 in Davi-
cioni et al. dataset (A377, A343, A355, A403, A412, A423,
A425, A467, A860, B638, B648, B655) have been elimi-
nated from the analysis because not of the best quality.
cDNA microarrays datasets were normalized firstly with
with global and then with LOWESS statistical procedures
[49] using MIDAW web tool [50,51], while SAGE libraries
have been normalized through the total number of tag per
library.

Affymetrix platforms measure the absolute expression for
each probe, while cDNA microarrays provide a relative
measure of each transcript in two compared conditions.
To compare the expression values of all the studies, we
have used as common reference four gene expression
dataset produced with healthy skeletal muscle. They are
deposited in GEO database with the following accession
numbers: GSM19013 and GSM19014 produced with HG-
U133A Affimetrix chip platform [52], GSM12674 and
GSM12693 produced with U95Av2 platform [53].

On the other hand, Khan et al. study used in the compet-
itive hybridization mRNA from RMS biopsy and mRNA
from a tissue pool of skin and muscle from a 13-week
male fetus, while De Pittà et al. used as common reference
a commercial RNA (Stratagene, Europe) prepared from
male fetal skeletal muscle.

Meta-analysis
As proposed by Rhodes et al. [10], for each individual
study log2 transformation of gene expression ratio has
been considered and a permutational t-test has been per-
formed. P-values and Q-values (false discovery rate, FDR)
[16] have been used as ranking. Q-values for each gene

has been defined as: Q = (p*n)/i, where p is the p-value of
the gene, n the total number of genes and i is the number
of genes at or better than p.

For SAGE data (tag counts) specific statistical tests have
been proposed for the identification of differentially
expressed genes. Audic and Claverie test and the chi-
squared test [54] have been performed with IDEG6 web
tool [55,56].

In the individual analysis of each single dataset FDR
threshold for the identification of differentially expressed
genes has been set to 0.01.

On the other hand, when considering matched dataset
according to Entrez Gene (see Probe Matching paragraph
for matching details) a summary statistic, called S,
(Fisher's inverse chi-squared method, [57]) was computed
using the p-values of the statistical tests of that gene in
each study:

S = - 2 * log(p1) - 2 * log(p2) - 2 * log(p3) - ... - 2 * log(pn),

where n is the total number of studies.

As proposed by Moreau et al. [58] we used a parametric
approach that compares the statistic S with a chi-square
distribution with 2n degrees of freedom. Then, genes
where ranked according to S. This procedure has been
applied not only on those genes common to all studies,
but also separately on genes common to 2, 3, 4 and 5
studies (but absent in the others).

All the statistical analyses have been performed with cus-
tom Perl functions and R/Bioconductor packages [59].

Annotation
Differentially expressed gene has been associated to one
or more Gene Ontology (GO) categories and KEGG met-
abolic pathways [60] using DAVID tool [61,62]. Class
enrichment (with respect to the entire platform) has been
calculated with the hypergeometric distribution (Fisher
exact test) [63]. The hypergeometric distribution is used to
obtain the chance probability of observing the number of
genes from a particular GO/KEGG category among the
selected differentially expressed genes. The probability P
of observing at least k genes of a functional category
within a group of n genes is given by:
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where f is the total number of genes with the same GO
class (in the microarray platform) and g is the total
number of genes within our platform.

Then, the lists of the significantly enriched GO categories
and KEGG pathways (FDR = 0.05) for each study have
been compared, and only those common to at least 4
studies has been considered as relevant for RMS.

Metabolic map
Dedicated Perl and PHP scripts have been implemented
(i) to identify on KEGG maps differentially expressed
genes product coordinates and (ii) to paint gene products
boxes with different colors representing the five different
studies.

Probe matching
The identification of the common probe set shared by the
platforms used in the different studies has been obtained
through the Entrez Gene accession number.

Platform redundancy (RD) is defined as the mean number
(after the elimination of singleton Entrez Gene) of multi-
ple probes representative of the same gene. RD measures
for each platform are reported in Table 4.

On the other hand, platform reproducibility (RP) is
defined as the mean Spearman correlation among expres-
sion profiles of probes representative of the same gene.
Probes that identify the same gene can have different
expression profiles. This phenomenon, given either by the
presence of alternative splicings and by the intrinsic errors
associated to each measures, can be tricky when compar-
ing expression values across different studies.

To work out this problem, we have generated for each Ent-
rez Gene a "meta-profile" obtained as described in the fol-
lowing. Given a specific Entrez Gene, the average of all the
pair-wise Spearman correlations between the expression
profile of one probe in this Entrez Gene class and the
median profile of the corresponding ID without the first
gene (jackknife procedure) was calculated. Those probes
with a Spearman correlation less than 0.5 are eliminated
and the median expression profile recalculated. At the end
of the procedure, a meta-profile is the median profile of the
remaining probes. Then for each Entrez Gene we have a
trimmed expression profile – called meta-profile – that is
virtually representative of that gene. Then, meta-profiles
that generate matched dataset have been used for the com-
parison of the expression profiles among studies using the
"matching" approach.
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