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Abstract
Background: Lowered sensitivity to the effects of ethanol increases the risk of developing
alcoholism. Inbred mouse strains have been useful for the study of the genetic basis of
various drug addiction-related phenotypes. Inbred Long-Sleep (ILS) and Inbred Short-Sleep
(ISS) mice differentially express a number of genes thought to be implicated in sensitivity to
the effects of ethanol. Concomitantly, there is evidence for a mediating role of cAMP/PKA/
CREB signalling in aspects of  alcoholism modelled in animals. In this report, the extent to
which CREB signalling impacts the differential expression of genes in ILS and ISS mouse
cerebella is examined.

Results: A training dataset for Machine Learning (ML) and Exploratory Data Analyses
(EDA) was generated from promoter region sequences of a set of genes known to be
targets of CREB transcription regulation and a set of genes whose transcription regulations
are potentially CREB-independent. For each promoter sequence, a vector of size 132, with
elements characterizing nucleotide composition features was generated. Genes whose
expressions have been previously determined to be increased in ILS or ISS cerebella were
identified, and their CREB regulation status predicted using the ML scheme C4.5. The C4.5
learning scheme was used because, of four ML schemes evaluated, it had the lowest
predicted error rate. On an independent evaluation set of 21 genes of known CREB
regulation status, C4.5 correctly classified 81% of instances with F-measures of 0.87 and 0.67
respectively for the CREB-regulated and CREB-independent classes. Additionally, six out of
eight genes previously determined by two independent microarray platforms to be up-
regulated in the ILS or ISS cerebellum were predicted by C4.5 to be transcriptionally
regulated by CREB. Furthermore, 64% and 52% of a cross-section of other up-regulated
cerebellar genes in ILS and ISS mice, respectively, were deemed to be CREB-regulated.

Conclusion: These observations collectively suggest that ethanol sensitivity, as it relates to
the cerebellum, may be associated with CREB transcription activity.
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Background
Animal models have facilitated the investigation of the
mechanisms of several diseases. For drug addiction in par-
ticular, inbred mouse strains have proved to be invaluable
[1,2], and have facilitated the mapping of aspects of addic-
tion-related behaviour to specific genetic loci. Inbred
Long Sleep (ILS) and Inbred Short Sleep (ISS) mice, for
instance, present many contrasts with respect to a number
of alcoholism related phenotypes [3-6]. They have been
widely used to model ethanol sensitivity [7,8]. Ethanol
sensitivity has a genetic basis [9], the comprehensive
workings of which remain elusive. Consequently, a com-
parison of relevant brain region transcriptomes of ILS and
ISS mice has the potential of revealing unique patterns of
gene expression [10] that could be relevant to the mecha-
nisms of alcoholism.

The cerebellum has long been almost exclusively associ-
ated with balance and motor co-ordination. It has rela-
tively recently been found to be more involved with
cognition than previously thought [11]. During neurode-
velopment, the cerebellum is especially susceptible to eth-
anol toxicity [12]. Studies indicate a role for activation of
the cerebellum in alcoholism. A Functional Magnetic Res-
onance Imaging study has indicated that ethanol odour-
induced craving in untreated recently abstinent male alco-
holics involves activation of the cerebellum along with
the subcortical-limbic region of the right amygdala/hip-
pocampal area [13]. Positron Emission Tomography stud-
ies in drug addiction similarly indicate a role for cerebellar
activation [14,15]. The identification of specific pathways
contributing to alcoholism-related events in the cerebel-
lum would, therefore, be important.

The phosphoinositide (PI) and cyclic adenosine 3',5'-
monophosphate (cAMP) signalling pathways have long
been thought to be important in the development of eth-
anol dependence and tolerance [16]. There are several
pieces of evidence suggesting a role for the cAMP/protein
kinase A (PKA)/cAMP-response-element-binding protein
(CREB) signalling pathway in addiction, even though they
do not necessarily involve the cerebellum: Alcohol prefer-
ring (P) rats have lower levels of CREB and the transcrip-
tionally-active phospho-CREB in the medial amygdala
and central amygdala (CeA) than non-preferring (NP) rats
[17]. Ethanol administration (or PKA activator [Sp-cAMP]
administration into the CeA) increases CREB function in
the CeA of P (but not NP) rats. Also, 24 hours following a
single intra-peritoneal 2 mg/kg ethanol dose to C57BL/6J
mice, there is long-term potentiation of GABA synaptic
transmission at Ventral Tegmental Area dopaminergic
neurons, via a cAMP-PKA-dependent mechanism [18].
One mechanism by which ethanol increases CREB levels
involves inhibition of adenosine reuptake which results in
increases in extracellular adenosine and activation of the

adenosine A2 receptor, leading to increases in cAMP levels
[19]. The ethanol-induced increase in CRE-mediated gene
transcription requires PKA and involves an adenosine
receptor-dependent phase and a later adenosine receptor-
independent phase [20].

The emergence of high throughput data has facilitated the
study of patterns of transcription. Machine Learning (ML)
is one such avenue for mining such data [21]. It concen-
trates on methods for computer programs to improve
their performance (i.e. modifying behaviour) by learning
from previous data examples. ML is useful for the purpose
of class prediction. During the learning process, structural
patterns in the "training set" are established; these then
constitute the basis upon which predictions are made
when presented with data of unknown classification ("test
set").

In the current studies, genes found to be differentially
expressed in the cerebella of ILS and ISS mice [22] were
examined to identify the extent to which CREB transcrip-
tion regulates addiction mechanisms in the cerebellum.
Nucleotide sequences of the promoter regions of various
genes were analyzed to generate the data used for ML. The
Composition, Transitions, and Distributions [23] of indi-
vidual nucleotide bases as well as groups of nucleotide
bases (Table 1), along with the presence and relative posi-
tions of specific cis elements were the basis on which
genes were classified as being either transcriptionally
CREB regulated or otherwise. The results reveal a strong
pattern, in the cerebellum, of CREB regulation among
genes differentially expressed between ILS and ISS mice.

Results
Four ML schemes were evaluated: a Decision Tree (J48, an
implementation of the C4.5 algorithm), a Support Vector
Machine (SVM), a Naïve Bayes classifier (NN) and a
Multi-layer Perceptron (MLP). Two alternate models for
ML were tested in this study, using a dataset of 46
instances and two classes. These were:

• -a two-class model with classifications: "CREB-regu-
lated" and "NOT CREB-regulated", and

Table 1: Nucleotide base groupings used

GROUP MEMBERS

Purine A, G
Pyrimidine C, T
Strong Hydrogen Bonding C, G
Weak Hydrogen Bonding A, T
Keto T, G
Amino A, C
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• -a three-class model with a third classification "Nrf2-reg-
ulated" [24]

Nrf2 (NF-E2-related factor 2), the primary transcription
factor that binds the Antioxidant Response Element
(ARE), was selected because, like CREB, Nrf2 is a ubiqui-
tous transcription factor. Secondly, it has a requirement
for CREB Binding Protein for enhanced transcription
activity [25]. Using the leave-one-out cross-validation
technique, the two-class model had lower Mean Absolute
Error rates for all learning schemes explored than the
three-class model (Figure 1A). Also, of the four schemes
and two models evaluated, the area under the Receiver
Operating Characteristic (ROC) curve, a measure of test
accuracy, was highest for the C4.5 scheme under the two-
class model (Figure 1A).

Of the four ML schemes, using the leave-one-out cross-
validation technique and the two-class model, the C4.5
Decision Tree algorithm had the lowest overall predicted
error rate (Figure 1B; Table 2). Its ROC curve was closest
to the left-hand border and the top border of the ROC
space (Figure 2 and Additional File 1), indicating that it
had the most optimal trade-off between sensitivity and
specificity among the four schemes evaluated. It also had
the highest area under the ROC curve (Table 3). The C4.5
Decision Tree algorithm [26] works top-down, seeking at
each stage an attribute that best separates the classes. The
attribute with the greatest information gain is chosen. It
then recursively processes the sub-problems resulting

from the split until the information either reaches a maxi-
mum or is zero. The information measure (entropy) is cal-
culated thus:

Entropy (p1, p2, .... pn) = -p1log2p1-p2log2p2....-
pnlog2pn

where p1, p2, .... pn are fractions representing the data dis-
tribution at a node (attribute) and sum up to 1.

The two-class model was also used to test an independent
dataset generated from 21 genes of known CREB regula-
tion status. C4.5 correctly classified 81% of instances
(Table 4) with F-measures of 0.87 and 0.67 respectively
for the classes "CREB-regulated" and "NOT CREB-regu-
lated" respectively. The F-measure is the harmonic mean
of Precision and Sensitivity and can be used as a single
measure of a test's performance:

F-measure = (2 * Precision * Sensitivity)/(Precision + Sen-
sitivity)

where Precision = True Positives/(True Positives + False
Positives)

Sensitivity (or Recall) is a measure of the probability that
the test would reject a false null hypothesis:

Sensitivity = True Positives/(True Positives + False Nega-
tives)

Learning Scheme Accuracy and Error RatesFigure 1
Learning Scheme Accuracy and Error Rates. Accuracy and error rates for learning on a two-class and a three-class 
model (defined in the Methods section), using the Leave-one-out Cross Validation technique. A) A comparison of accuracy and 
error rates for learning on the two-class model versus the three-class model. The two-class model yields the higher area under 
the ROC curve and the lower Mean Absolute Errors for the C4.5 and the Naïve Bayes classifiers. B) A depiction of the error 
rates determined using the two-class model. The C4.5 scheme has the lowest Mean Absolute Error and Relative Absolute 
Error.
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Additionally, using the two-class model, three out of four
genes determined by two independent microarray plat-
forms to be up-regulated in the ILS cerebellum [22] were
determined by C4.5 to be transcriptionally CREB-regu-
lated (Table 5). The platforms were the Affymetrix (Santa
Clara, CA) platform Mouse Expression Set 430 (MOE430)
and the cDNA arrays NIA15K manufactured at the Univer-
sity of Colorado's School of Medicine. Similarly, three out
of four genes up-regulated by both platforms in the ISS
cerebellum were deemed CREB-regulated (Table 6). Fur-
thermore, 64% and 52% of a cross-section of other up-
regulated cerebellar genes in ILS and ISS mice, respectively
(as per the MOE430 platform), were deemed CREB-regu-
lated.

Discussion
Lowered sensitivity to the effects of ethanol increases the
risk of developing alcoholism. Differing sensitivities to
ethanol is, at least in part, attributable to heredity [9], and
inbred mouse strains have facilitated the investigation of
this complex behavioral phenomenon. In studying
CREB's gene regulating activity in ethanol sensitivity, a set
of differentially expressed genes in the ILS/ISS mouse
model of ethanol sensitivity were examined. The two-class
model had lower error rates than the three-class model
(Figure 1A). This is probably due to the inherent difficulty
of distinguishing between the classifications "CREB-regu-
lated" and "Nrf2-regulated". Indeed the case can be made
that Nrf2 genes are dependent on CREB for enhanced
transcription activity [25]. The complexity of the machin-
ery for transcription makes the two-class model the pre-
ferred model for this study.

Properties of stretches of nucleotides can impact their
affinity for specific transcription factors; this principle can
be exploited for its therapeutic promise [27]. A central
premise of this observation is the fact that the characteris-
tics of individual nucleotide bases in any such oligonucle-
otide contribute to its structure and function [28]. As an
example, hydrogen-bonded base pairs help determine the
structure and function of nucleic acids. Strength of hydro-
gen bonding and other nucleotide base classifications
used in generating the characteristics of each gene's pro-
moter sequence for this ML study have been outlined in
Table 1.

Of the four learning schemes evaluated using the two-
class model, C4.5 was the most consistent performer, hav-
ing the lowest overall error rates (Figure 1B), and the high-
est accuracy (Figure 2; Table 3), area under the ROC curves
being measures of test accuracy. Because of variability
between independent evaluation sets, performance evalu-
ations based on evaluation sets are only instructive when
such evaluation sets are large in size. Since the evaluation
set used consisted of only 21 instances, the cross-valida-
tion techniques are better indicators of each learning
scheme's performance. The Ten-fold Cross Validation
technique is a standard way for predicting the error rate of
a learning scheme [29,30]. When applying this technique,
an average value is obtained for ten different sets of the re-
organized data such that in each case, 90% of the data is
used for training and 10% used for testing. The leave-one-
out technique is, in essence, an n-fold cross-validation
technique (n being the number of instances in the dataset)
and, for a small dataset, a good predictor of a scheme's

Table 2: Performance of learning schemes following 460 runs**

C4.5 SVM NN MLP

PERCENT CORRECT 69.57 (46.06) 50.00 (50.05) * 58.70 (49.29) 55.00 (49.80)
MEAN ABSOLUTE ERROR 0.18 (0.28) 0.33 (0.11) * 0.28 (0.33) 0.30 (0.30) *
RELATIVE ABSOLUTE ERROR 52.51 (80.99) 96.00 (32.03) * 79.30 (94.63) 85.53 (86.77) *
ROOT MEAN SQUARED ERROR 0.22 (0.34) 0.41 (0.14) * 0.34 (0.40) 0.36 (0.37) *
ROOT RELATIVE SQUARED ERROR 53.54 (82.59) 97.90 (32.67) * 80.86 (96.50) 87.11 (88.44) *

The standard deviation of each attribute evaluated is located in brackets
**Leave-one-out technique, i.e. 46-fold cross-validation, performed with ten iterations each
*Use of Corrected Resampled T-test [44]; difference from corresponding C4.5 value is statistically significant (p = 0.05, two tailed)

Table 3: Area under ROC curves, two-class model.

INDEPENDENT EVALUATION SET TEN-FOLD CROSS VALIDATION LEAVE-ONE-OUT

C4.5 0.8563 0.7722 0.7883
NN 0.7875 0.5936 0.6352
SVM 0.9063 0.5217 0.5
MLP 0.85 0.6711 0.5577
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performance on an independent dataset. In this study,
81% of genes of known classification used as an evalua-
tion set were correctly classified by C4.5 (Table 4), with F-
measures of 0.87 and 0.67 respectively for the classes
"CREB-regulated" and "NOT CREB-regulated" respec-
tively.

The stretch of nucleotides between the cAMP Response
Element (CRE) and the Transcription Start Site (TSS) and
the stretch between the CRE and the Transcription Factor
II D (TFIID) bind site were identified as important deter-
minants of a gene's CREB regulation status (Figure 3).
Two types of CRE with different affinities for the transcrip-
tion factor CREB have been reported. One class contain-
ing the symmetrical TGACGTCA site shows a high
binding affinity for CREB; the other type has asymmetric

and weak binding sites ("CGTCA") [31]. The TATA-bind-
ing protein (TBP) and TBP-associated factors (TAFs) con-
stitute the TFIID complex. The TFIID complex is a major
component of the general RNA polymerase II (RNAP II)
transcription machinery with intrinsic sequence-specific
DNA-binding activity [32]. The binding of TFIID to a
gene's core promoter region is an important rate-limiting
step in the assembly of the transcription initiation com-
plex. With the notable exception of the stretch between
the CRE and the TFIID bind site, CREB target promoter
regions have relatively high levels of nucleotide bases with
strong Hydrogen Bonding (data not shown).

The transcription factor, CREB, is ubiquitously expressed
in brain cells and is involved, among others, in learning
and memory, anxiety, depression, and addiction [33]. A

Learning Scheme ROC CurvesFigure 2
Learning Scheme ROC Curves. Receiver Operating Characteristic (ROC) curve for learning schemes using the two-class 
model and the Leave-one-out Cross Validation technique. The C4.5 test is closest to the left-hand border and the top-border 
of the ROC space, and therefore the most accurate of the schemes.
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Table 4: Evaluation of two-class model: C4.5 predictions on an independent set of genes of known CREB regulation status**
number of different signalling pathways culminate in the
activation of CREB. These include pathways involving
PKA, MAPK-activated ribosomal S6 kinases (RSKs), and
calcium/calmodulin-dependent kinase IV (CaMKIV) [34].
Others such as CaMKII reduce CREB transcriptional activ-
ity [35]. Four genes have previously been found, by two
independent microarray platforms, to be up-regulated in
the ILS mouse cerebellum relative to the ISS cerebellum
[22]. Of these, three were predicted by C4.5 as being
CREB-dependent (Table 5). Similarly, three out of four
genes up-regulated in the ISS cerebellum relative to the ILS
cerebellum were predicted by the C4.5 scheme to be tran-
scriptionally CREB-dependent (Table 6). Of a cross-sec-
tion of genes up-regulated in the ILS cerebellum relative to
ISS per the Affymetrix MOE430 platform [22], 64% were
predicted by the C4.5 scheme to be transcriptionally
CREB-dependent. Out of a similar cross-section up-regu-
lated in the ISS cerebellum relative to the ILS cerebellum,
52% were predicted to be CREB-dependent. These indi-
cate that CREB may be playing a central transcription-reg-
ulating role in the cerebellum in this ethanol sensitivity
model.

Conclusion
Taken together, the observations made suggest that, in the
cerebellum, CREB plays a key role in ethanol sensitivity
and presents the field with a central hypothesis that needs
to be further tested. CREB's role in mediating a number of
complex behaviours has been documented [33]. Events in
the extended amygdala have long been associated with
the reinforcing effects of addicting drugs [36]. It is evident
that the cerebellum, though less well studied in this
regard, is involved in addiction [13-15]. Since CREB's
transcription regulating activity differs from cell type to
cell type [37], pursuit of the implications of a key role for
CREB in this addiction model's cerebellar molecular
milieu would be both promising and instructive.

Methods
A training dataset for ML was created out of twenty-three
known targets of CREB transcriptional regulation [38,39],
and twenty-three genes out of a set of twenty-eight (Table
7) whose transcription regulations are potentially CREB-
independent. An independent set of twenty-one genes
served as an evaluation set.

GENE SYMBOL C4.5 PREDICTION CONFIDENCE LEVEL ACTUAL STATUS

Pcna CREB-REGULATED 1 CREB-REGULATED
Pdyn CREB-REGULATED 1 CREB-REGULATED
Penk1 CREB-REGULATED 1 CREB-REGULATED
Ptgs2 CREB-REGULATED 1 CREB-REGULATED
Pck1 NOT-CREB-REGULATED* 0.8 CREB-REGULATED
Ppargc1a CREB-REGULATED 1 CREB-REGULATED
Muc5b CREB-REGULATED 1 CREB-REGULATED
Rb1 CREB-REGULATED 1 CREB-REGULATED
Sst NOT-CREB-REGULATED* 0.8 CREB-REGULATED
Aanat CREB-REGULATED 1 CREB-REGULATED
Sod2 CREB-REGULATED 1 CREB-REGULATED
Sms CREB-REGULATED 1 CREB-REGULATED
Tnp1 CREB-REGULATED 1 CREB-REGULATED
Th NOT-CREB-REGULATED* 1 CREB-REGULATED
Vip CREB-REGULATED 1 CREB-REGULATED
Slc18a2 CREB-REGULATED 1 CREB-REGULATED
Kif1b CREB-REGULATED 1 NOT-CREB-REGULATED*
Tcf21 NOT-CREB-REGULATED* 1 NOT-CREB-REGULATED*
Wisp2 NOT-CREB-REGULATED* 1 NOT-CREB-REGULATED*
Ms4a4c NOT-CREB-REGULATED* 1 NOT-CREB-REGULATED*
Lrat NOT-CREB-REGULATED* 1 NOT-CREB-REGULATED*

*"Potentially CREB-independent" genes as defined under the Methods section.
**This follows training with a set of 46 genes of known status: twenty-three "CREB regulated" and twenty-three "Not CREB regulated" instances

Table 5: C4.5 two-class model predictions for up-regulated genes (cross-validated between MOE430 and NIA15k platforms) in ILS 
mouse cerebellum

GENE SYMBOL C4.5 PREDICTION CONFIDENCE LEVEL

Chchd4 CREB-REGULATED 1
Sca1 CREB-REGULATED 1
Myo1d NOT-CREB-REGULATED* 1
6430706D22Rik CREB-REGULATED 1

*"Potentially CREB-independent" genes as defined under the Methods section.
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Table 6: C4.5 two-class model predictions for up-regulated genes (cross-validated between MOE430 and NIA15k platforms) in ISS 
mouse cerebellum

GENE SYMBOL C4.5 PREDICTION CONFIDENCE LEVEL

Cap1 CREB-REGULATED 1
D7Rp2e NOT-CREB-REGULATED* 1
Ftl1 CREB-REGULATED 1
Gnb1 CREB-REGULATED 1

*"Potentially CREB-independent" genes as defined under the Methods section.

Promoter Region Distance MetricsFigure 3
Promoter Region Distance Metrics. Boxplots depicting the relative positions of the CREB Response Element (CRE), the 
Transcription Start Site (TSS), and the Transcription Factor IID binding site. Promoter regions of genes regulated by CREB 
were more likely to have CREs. In the absence of the CRE ("TGACGTCA", "CGTCA" or "TGCGTCA") in a gene's promoter, 
the entire promoter sequence was characterized, resulting in longer "distances" for those transcriptionally CREB-independent 
genes.
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"Potentially CREB-independent genes"
Nrf2 binds to CREB Binding Protein for enhanced tran-
scription activating activity [25]. Cigarette Smoke (CS)-
induced oxidative stress has been associated with the
expression of Nrf2 transcription-dependent antioxidant
and cytoprotective genes [40]. In experiments conducted
by authors V.M and S.B., Nrf2 knockout and Wild-type
mice were exposed to CS and Air. The genes listed in Table
7 were up-regulated in both groups, suggesting that their
transcriptional regulation is Nrf2-independent (see "Oli-
gonucleotide Microarray" below for further details on
what constitutes "Nrf2-independent" genes). Further-
more, none of these genes is known specifically to be a tar-
get of CREB transcription regulation. Additionally, as
depicted in Figure 3, these genes are distinguishable from
those that are known targets for CREB transcription regu-
lation.

CS Exposure
Mice of both genotypes were subjected to cigarette smoke
exposure using a machine similar to the one used by [41].
The control groups were kept in a filtered air environment,
and the experimental groups were subjected to CS for 5
hours by burning 2R4F reference cigarettes (2.45 mg nic-
otine per cigarette; Tobacco Research Institute, University

of Kentucky), using a smoking machine (Model TE-10,
Teague Enterprises). Details of the smoking protocol have
been described previously [40]. Mice were fed AIN-76A
diet (Harlan Teklad) and had access to water ad libitum;
they were housed under controlled conditions (23 ± 2°C;
12-hour light/dark cycles). All experimental protocols
conducted on the mice were performed in accordance
with the standards established by the US Animal Welfare
Acts, as set forth in NIH guidelines and in the Policy and
Procedures Manual of the Johns Hopkins University Ani-
mal Care and Use Committee.

Oligonucleotide Microarray
Lungs were isolated after 5 hours of CS exposure. Total
RNA from the lungs was extracted, using TRIZOL reagent
(Invitrogen Corp.). The isolated RNA was hybridized to
Murine Genome MOE 430 2.0 GeneChip arrays (Affyme-
trix, Santa Clara, CA) according to procedures described
previously [40]. This array contains probes for detecting
approximately 14,500 well-characterized genes and 4371
expressed sequence tags. Scanned output files were ana-
lyzed using Affymetrix GeneChip Operating Software ver-
sion 1.3, and were independently normalized to an
average intensity of 500. The data was further analyzed as
described previously [42], by performing 9 pairwise com-

Table 7: List of "potentially CREB-independent" genes

Gene Title Gene Symbol

FK 506 binding protein 5 Fkbp5
cyclin-dependent kinase inhibitor 1A (P21) Cdkn1a
growth arrest and DNA-damage-inducible 45 gamma Gadd45g
angiopoietin-like 4 Angptl4
adrenomedullin Adm
DNA-damage-inducible transcript 4 Ddit4
chromodomain helicase DNA binding protein 1 Chd1
sema domain, immunoglobulin domain (Ig), and GPI membrane anchor, Sema7a
chloride channel calcium activated 1 Clca1
quiescin Q6 Qscn6
sestrin 1 Sesn1
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- Galntl2
breast carcinoma amplified sequence 3 Bcas3
membrane-associated protein 17 Map17
discs, large homolog-associated protein 4 (Drosophila) Dlgap4
glucosidase 1 Gcs1
protein related to DAN and cerberus Prdc
thymidylate kinase family LPS-inducible member Tyki
histidine decarboxylase Hdc
sorting nexin 16 Snx16
androgen-induced proliferation inhibitor Aprin
acylphosphatase 1, erythrocyte (common) type Acyp1
intersectin (SH3 domain protein 1A) Itsn
kinesin family member 1B Kif1b
transcription factor 21 Tcf21
WNT1 inducible signaling pathway protein 2 Wisp2
membrane-spanning 4-domains, subfamily A, member 4C Ms4a4c
lecithin-retinol acyltransferase (phosphatidylcholine-retinol-O-acyltransferase) Lrat
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parisons for each group (Nrf2+/+, CS, n = 3, versus Nrf2+/
+, air, n = 3, and Nrf2-/-, CS, n = 3, versus Nrf2-/-, air, n =
3). To limit the number of false positives, only those
altered genes that showed more than a 1.5-fold change
(FC) in magnitude and appeared in, at least, 6 of the 9
comparisons were selected. In addition, the Mann-Whit-
ney pairwise comparison test was performed to rank the
results by the significance (P ≤ 0.05) of each identified
change in gene expression. In identifying transcriptionally
Nrf2-independent genes, only those genes which passed
all of these criteria were selected. Further, only those genes
that were differentially induced (or repressed) by CS to a
similar extent in both genotypes, and having a FC ≥ 2.0
magnitude were considered to be independent of Nrf2's
transcription regulating activity. This last dataset was com-
bined with data from previously published work [40]
(Genechip used was Murine U74A version 2) to arrive at
a comprehensive "Nrf2-independent" gene set.

Promoter Sequence Characteristics
Promoter sequences (1000 nucleotides upstream to 100
nucleotides downstream) corresponding to each gene was
obtained from the cited database source [43]. For each
promoter sequence, a vector of size 132, with elements
characterizing features of the sequence (Figure 4) was gen-
erated using a Common Lisp [44] algorithm. The ele-
ments of the vector included a Boolean indicating
whether or not the cAMP Response Element (CRE) was
present, the number of nucleotide base pairs ("distance")
between the CRE ("TGACGTCA", "CGTCA" or
"TGCGTCA") and the Transcription Start Site (TSS), and

the "distance" between the CRE and the TFIID bind site
("TATAGAA", "TATAAAA," "TATAG", or "TATA").

In addition to these, the three kinds of features of nucle-
otide sequences used were Composition, Transition and Dis-
tribution [23]. Composition is a reference to the proportions
of nucleotide base types contributing to the promoter
sequence make-up. Transitions represent the frequency
with which specific nucleotide base types are followed or
preceded, within the sequence, by other nucleotide base
types. Distribution is a statement concerning the dissemi-
nation of specific nucleotide base types within portions of
the sequence (or the entire sequence).

Nucleotide Base Types
For the purpose of the sequence characterizations just
described nucleotide bases were grouped based on
whether they were purine or pyrimidine, the strength with
which they form hydrogen bonds, and whether or not
they were "keto" or "amino" (Table 1).

The breakdown of the elements of each vector (Figure 4)
is as follows: percent Compositions for the individual
nucleotide bases (positions 1 to 4); percent Composi-
tions, Transitions, and Distributions for the Purine versus
Pyrimidine base types (positions 5 – 17, consisting of two
positions for Compositions, one for Transitions, and ten
for Distributions); percent Compositions, Transitions,
and Distributions for Strong versus Weak Hydrogen
Bonding base types (positions 18 – 30, consisting of two
positions for Compositions, one for Transitions, and ten
for Distributions), percent Compositions, Transitions,

Promoter Region VectorsFigure 4
Promoter Region Vectors. Breakdown of the elements of the vector generated for each gene. For each gene, 132 numbers 
were generated from the promoter sequence. Blocks A through O are itemizations of the elements of the vector obtained for 
each gene.

A CB GD IH LJ NM

E

O

KF

A-1 to 4; C for individual bases I- 63 to 75;CRE to TSS*; C,T, D for strong/ weak H-bond bases
B- 5 to 17; C, T, D  for purine/ pyrimydine bases  J- 76 to 88;CRE to TSS*; C, T, D for keto/ amino bases
C- 18 to 30; C, T, D for strong/ weak H-bond bases K-89; CRE to TFIID*;length
D- 31 to 43; C,T, D for keto/ amino bases  L-90 to 93; CRE to TFIID*, C for individual bases
E- 44; boolean indicating presence/absence of CRE  M-94 to 106; CRE to TFIID*, C,T, D for purine/ pyrimidine bases
F- 45; CRE to TSS*; length  N-107 to 119; CRE to TFIID*; C,T, D for strong/ weak H-bond bases
G- 46 to 49; CRE to TSS*; C for individual bases  O-120 to 132; CRE to TFIID*; C,T, D for keto/ amino bases
H- 50 to 62; CRE to TSS*; C, T, D for purine/ pyrimidine bases

*in the absence of a "TGACGTCA”, "CGTCA" or "TGCGTCA”, the entire promoter sequence was characterized

C: Percent Composition; T: Transition; D: Distribution, as defined in the text
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and Distributions for "Keto" versus "Amino" base types
(positions 31 – 43, consisting of two positions for Com-
positions, one for Transitions, and ten for Distributions).
The presence or absence of a CRE was indicated by a "1"
or a "0" respectively at position 44. The sub-sequence
made up of the stretch of bases between the CRE and the
TSS was characterized at positions 45 through 88. At posi-
tion 45, the "distance" was stated. In the absence of a CRE,
the entire promoter sequence was characterized in lieu of
the sought sub-sequence. In other words, in the absence
of a CRE as defined above, the "distance" was longer.
Details for positions 46 through 48 were as follows: indi-
vidual nucleotide base percent Compositions were indi-
cated at positions 46 – 49; Purine versus Pyrimidine base
type data were at positions 50 – 62; Strong versus Weak
Hydrogen Bonding base type data were at positions 63 –
75; "Keto" versus "Amino" base type data were at posi-
tions 76 – 88. Correspondingly, the sub-sequence made
up of the stretch of bases between the CRE and the TFIID
bind site was similarly characterized at positions 89
through 132.

Four ML schemes were evaluated for their learning per-
formance on the models created: a Decision Tree (J48, an
implementation of the C4.5 algorithm), a Support Vector
Machine (SVM), a Naïve Bayes classifier (NN) and a
Multi-layered Perceptron (MLP), all available through the
Weka ML workbench [45]. The C4.5 algorithm emerged as
having the lowest predicted error rate (Figure 1). The deci-
sion tree (Additional File 2) used in evaluating the inde-
pendent dataset is based on all the training data. After
applying the Corrected Resampled t-test [46] to data gen-
erated following use of the leave-one-out technique with
ten iterations for each fold, error rates for C4.5 were signif-
icantly (p = 0.05) lower than those of SVM and MLP
(Table 2). The rates were lower relative to NN though not
statistically significant (Table 2). The ROC curves (Figure
2) used as indicators of performance were also generated
using the "CREB-regulated" class and the default Weka ML
workbench. The threshold modifications that constituted
the basis of the ROC curves have been detailed in Addi-
tional File 1.

Subsequently a set of genes whose expressions have been
previously determined [22] to be increased in ILS or ISS
cerebella was identified and the CREB regulation status of
each member predicted using the ML scheme C4.5.

Exploratory Data Analysis (EDA) techniques [47] were
also used to characterize the vector set. Specifically, box-
plots [48] were used to capture the distribution's central
tendency (median), spread (fourth-spread), skewness
(based on the relative positions of the median, lower
fourth and upper fourth), tail length as well as outliers

(Figure 3). The statistical environment used to implement
the EDA aspects of the study was R [49].
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