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Abstract
Background: The functional annotation of most genes in newly sequenced genomes is inferred
from similarity to previously characterized sequences, an annotation strategy that often leads to
erroneous assignments. We have performed a reannotation of 245 genomes using an updated
version of EFICAz, a highly precise method for enzyme function prediction.

Results: Based on our three-field EC number predictions, we have obtained lower-bound
estimates for the average enzyme content in Archaea (29%), Bacteria (30%) and Eukarya (18%).
Most annotations added in KEGG from 2005 to 2006 agree with EFICAz predictions made in 2005.
The coverage of EFICAz predictions is significantly higher than that of KEGG, especially for
eukaryotes. Thousands of our novel predictions correspond to hypothetical proteins. We have
identified a subset of 64 hypothetical proteins with low sequence identity to EFICAz training
enzymes, whose biochemical functions have been recently characterized and find that in 96% (84%)
of the cases we correctly identified their three-field (four-field) EC numbers. For two of the 64
hypothetical proteins: PA1167 from Pseudomonas aeruginosa, an alginate lyase (EC 4.2.2.3) and
Rv1700 of Mycobacterium tuberculosis H37Rv, an ADP-ribose diphosphatase (EC 3.6.1.13), we have
detected annotation lag of more than two years in databases. Two examples are presented where
EFICAz predictions act as hypothesis generators for understanding the functional roles of
hypothetical proteins: FLJ11151, a human protein overexpressed in cancer that EFICAz identifies
as an endopolyphosphatase (EC 3.6.1.10), and MW0119, a protein of Staphylococcus aureus strain
MW2 that we propose as candidate virulence factor based on its EFICAz predicted activity,
sphingomyelin phosphodiesterase (EC 3.1.4.12).

Conclusion: Our results suggest that we have generated enzyme function annotations of high
precision and recall. These predictions can be mined and correlated with other information sources
to generate biologically significant hypotheses and can be useful for comparative genome analysis
and automated metabolic pathway reconstruction.

Background
Genome sequencing, gene identification and the func-
tional annotation of gene products are the basic first steps

towards understanding the wide spectrum of biological
processes taking place in a living organism. Although each
of these steps presents its own difficulties, the experimen-
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tal determination of protein function is probably the most
challenging [1]. It is practically impossible to perform
functional assays for all the uncharacterized proteins pro-
vided by the hundreds of genome sequencing projects
that are currently underway. Computational tools are
clearly necessary to assist in a task of such great magnitude
[2]. In fact, the functional descriptions associated with the
vast majority of genes in newly released genomes are not
experimentally determined but are simply inferred from
similarity to previously characterized sequences [3-5]. The
basic assumption of this strategy, often (and mislead-
ingly) referred to as "annotation transfer by homology"
[6], is that sequence similarity implies functional similar-
ity. However, the transfer of function based on sequence
similarity is complicated by a technical issue: the lack of
consistent annotation strategies, and by two other main
factors: functional divergence and the domain organiza-
tion of proteins.

Functional divergence of highly similar sequences has
been detected in many protein families [7,8]. In these
cases, the use of permissive criteria to assess the signifi-
cance of the similarity between proteins can easily lead to
wrong annotations. For example, detailed biochemical
function is not completely conserved between similar pro-
teins even at 60% [9] to 70% pairwise sequence identity
[10]; however, much lower thresholds have been used in
the functional annotation of some genomes [11]. On the
other hand, the modularity of proteins and the fact that
different domains of the same protein may have different
functions [12] can also lead to wrong functional assign-
ments, for example, when the domain structure of a best
database hit is overlooked [13]. These two factors associ-
ated with functional annotation based on sequence simi-
larity represent the most important sources of error in
genome annotation [13-15]. The consequences of these
misannotations are far reaching because they propagate in
public databases [15], leading to their systematic deterio-
ration, a process termed error percolation [16]. Genome
reannotation, i.e. the annotation of a previously anno-
tated genome using better bioinformatics algorithms and
more complete databases [3], provides more accurate and
up-to-date functional information and can mitigate the
effects of error percolation when the higher quality anno-
tations reach the databases [16]. Genome reannotation
projects can provide improved gene structure, refinement
of function annotation, benchmarking or comparison of
different annotation strategies, and evaluation of annota-
tion reproducibility [3]. In this spirit, we focus here on the
reannotation of biochemical function as a more quantifi-
able aspect of this general problem.

The biological function of a protein can be defined in a
physiological, developmental, cellular or biochemical
context, among others [5]. From a biochemical point of

view, the most important group of proteins is constituted
by enzymes. Enzymes are responsible for the majority of
biochemical functions, catalyzing the chemical reactions
involved in the metabolism of all living organisms and
represent a significant fraction of a proteome [17].
Enzymes are organized according to the Enzyme Commis-
sion (EC) system, a hierarchical classification that assigns
unique four-field numbers to different enzymatic activi-
ties [18]. The first field of an EC number indicates the gen-
eral class of catalyzed reaction: 1. oxidoreductases, 2.
transferases, 3. hydrolases, 4. lyases, 5. isomerases and 6.
ligases. The second and third fields depend on different
criteria related to the chemical features of the substrate
and the product of the reaction, and the fourth field is a
sequential number without any special meaning. An EC
number is assigned solely based on the global reaction
that is catalyzed and does not provide information about
a specific catalytic mechanism, evolutionary family or
structural fold associated to the classified enzyme [19].
New schemes that overcome these problems of the EC sys-
tem are under development [20,21]; however, their
impact on the biological community is very low com-
pared to the widespread recognition and the universal use
of the EC classification. For example, all the main data-
bases focused on enzymes (e.g. BRENDA [22] and
ENZYME [23]) or metabolic pathways (e.g. KEGG, the
Kyoto Encyclopedia of Genes and Genomes [24] and Met-
aCyc [25]) rely on the EC classification.

In our previous work [26], we presented EFICAz (Enzyme
Function Inference by a Combined Approach), an engine
for large-scale enzyme function inference that addresses
the limitations of annotation approaches based on
sequence similarity alone. EFICAz combines different
methods based on family-dependent sequence similarity
thresholds, the presence of patterns in functionally rele-
vant domains, and the identification of functionally dis-
criminating residues, all carefully optimized to generate
highly precise predictions (see Methods and our previous
article [26] for a detailed description of EFICAz). In this
work, we present the results of a multi-genome scale rean-
notation of enzyme function, using an updated version of
EFICAz.

Many genome reannotation efforts have been dedicated
to individual species [3,27-30]; here, we investigate 245
genomes, in a very consistent way, and obtain EC number
annotations for more than 200,000 coding sequences pre-
dicted to be enzymes by EFICAz; more than 14,000 of
these are novel functional predictions.

Freilich and collaborators have recently conducted a sur-
vey and analysis of enzymes in 85 genomes [17]; however,
they have inferred enzyme function using strategies based
on sequence similarity alone, which suffer from the prob-
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lems mentioned above. On the contrary, in this study, we
employ EFICAz, a method that we specifically designed
and optimized to generate high quality predictions [26].
The ultimate purpose of our multi-genome reannotation
project is to provide detailed enzyme function assign-
ments, i.e. four-field EC numbers when possible or at least
three-field EC numbers, that permit the reconstruction of
metabolic pathways. Accordingly, we have generated a
detailed, precise and standardized biochemical function
annotation of genome sequences that satisfy the strong
requirements of automated methods for metabolic path-
way reconstruction [31]. In fact, based on the results of the
present reannotation study, we have initiated our own
multi-genome scale metabolic pathway reconstruction
project, where we demonstrate that novel EFICAz assign-
ments permit the connection of a significant number of
disjointed subpathways that occur systematically in cer-
tain groups of bacterial species (manuscript in prepara-
tion). However, we believe that the up-to-date enzyme
function annotations obtained from this large-scale anal-
ysis, all available on our website [32], will also be of great
utility to researchers interested in comparative genome
analysis or the general understanding of biochemical
processes occurring in particular species.

This manuscript is organized as follows: in the Results and
Discussion section, we first present a reassessment of
enzymatic content in organisms from the three domains
of life. Second, we compare our predictions with enzyme
function annotations from two releases of KEGG. Third,
we estimate the precision of our novel assignments by
comparing EFICAz predicted and experimentally derived
biochemical functions of 64 previously hypothetical pro-
teins. Fourth, we provide examples that highlight the
potential of novel EFICAz predictions as a source of bio-
logically relevant hypotheses. In the Conclusions section,
we summarize the present work, stress its significance,
and discuss its limitations. Finally, in the Methods sec-
tion, we briefly describe EFICAz, introduce the data
sources of our analysis, present the results of an extensive
benchmark in a scenario of periodic updates, and describe
the procedure we followed to identify recently character-
ized hypothetical proteins.

Results and discussion
Enzyme content assessed by EFICAz
We applied our enzyme function prediction method (EFI-
CAz version 5.0) to the 245 genomes available in the
Genes database Release 33.0+/03–05 of KEGG [24]. In
Table 1, we show taxonomic information, scientific
names and KEGG genomes abbreviations for all the spe-
cies analyzed in this study, which include representatives
from the three domains of life [33]: 21 archaeal species,
204 bacterial species and 20 eukaryotic species. EFICAz
assigned four-field (three-field) EC numbers to 158,941

(221,999) of the 866,142 coding sequences found in the
set of analyzed genomes. All the EFICAz predictions are
available on our website [32], where they can be down-
loaded and browsed by various criteria (see next section).
The multi-genome scale application of EFICAz not only
provides a highly precise annotation of enzyme function,
it also gives us the opportunity of reassessing the enzyme
content throughout the different domains of life in a very
consistent way.

In Figure 1, we show the number of enzymes per genome
(estimated by the number of sequences annotated with
three-field EC numbers by EFICAz) as a function of pro-
teome size, for archaeal (Fig. 1A), bacterial (Fig. 1B) and
eukaryotic (Fig. 1C) species. As reported before based on
analyses of a smaller set of genomes [17,34], we observe a
linear relationship between the number of enzymes and
proteome size that is characteristic of genomes in each
domain of life; although we note that those of archaeal
and eukaryotic species are very similar (correlation coeffi-
cient R2 = 0.85, 0.95 and 0.93, regression coefficient or
slope b = 0.179, 0.242 and 0.178, standard error of regres-
sion coefficient seb = 0.017, 0.004 and 0.012, intercept a =
149.24, 118.56 and 42.04 for archaeal, bacterial and
eukaryotic genomes, respectively). Only two bacterial
organisms, Rhodopirellula baltica and Leptospira interrogans
serovar Lai, show a significant deviation from the linear
relationship, both having less enzymes than expected for
their proteome size (Fig. 1B). The main feature shared by
these two species is an elevated number of regulatory pro-
teins as a consequence of adaptation to changing environ-
ments. Rhodopirellula baltica, the only planctomycetes
among the analyzed genomes, has acquired a high pro-
portion of two-component systems and Extra Cytoplas-
mic Function sigma factors to adapt to the changing
conditions of free-living in marine, fresh water and terres-
trial environments [35,36]. Interestingly, the enzyme con-
tent of Rhodopirellula baltica agrees very well with the
linear relationship between the number of enzymes and
eukaryotic proteome size (Fig. 1C), yet another eukaryo-
tic-like feature of planctomycetes in addition to the lack of
peptidoglycan in their cell walls, unique cell compart-
mentalization, and presence of a condensed fibrillar
nucleoid [35].

The spirochaete Leptospira interrogans serovar Lai, a patho-
genic non-obligate parasitic bacterium that can survive as
a saprophyte or as a facultative parasite of mammals, has
developed a vast regulatory system to interpret the signals
from these distinct environment [37,38]. The other sero-
type of Leptospira interrogans analyzed in our set, serovar
Copenhageni [39], would also show less enzymes than
expected from a linear relationship if a minimum open
reading frame (ORF) size less restrictive than 50 amino
acids would have been used for ORF detection (less than
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Table 1: Species and taxonomic groups represented in the genome sequence dataset. The taxonomic information is from the NCBI 
Taxonomy database [85] and the three-letter code for the organisms is from KEGG [24]

ARCHAEA

Euryarchaeota: mja mmp mac mma mth mka afu hal hma tac tvo pto pho pab pfu tko
Crenarchaeota: ape sso sto pai
Nanoarchaeota: neq

BACTERIA

Proteobacteria, Alphaproteobacteria: rpr rty rco wol wbm ama eru erw erg mlo sme atu atc bme bms bja rpa bhe bqu ccr sil zmo gox
Proteobacteria, Betaproteobacteria: nme nma ngo cvi rso bma bps bpe bpa bbr neu eba
Proteobacteria, Gammaproteobacteria: eco ecj ece ecs ecc sty stt spt stm ype ypk ypm yps sfl sfx eca plu buc bas bab wbr bfl hin hdu pmu 
msu xfa xft xcc xac xoo vch vvu vvy vpa vfi ppr pae ppu pst aci son ilo cbu lpn lpf lpp mca ftu
Proteobacteria, delta/epsilon subdivision: hpy hpj hhe wsu cje cjr gsu dvu bba dps
Firmicutes, Bacilli: bsu bha ban bar baa bat bce bca bcz btk bli bld bcl oih gka sau sav sam sar sas sac sep ser lmo lmf lin lla spy spm spg sps spa 
spn spr sag san smu stc stl lpl ljo lac efa
Firmicutes, Clostridia: cac cpe ctc tte
Firmicutes, Mollicutes: mge mpn mpu mpe mga mmy mmo mhy uur poy mfl
Firmicutes, Actinobacteria: mtu mtc mbo mle mpa cgl cef nfa cdi sco sma twh tws lxx pac blo sth
Fusobacteria: fnu
Planctomycetes: rba
Chlamydiae/Verrucomicrobia group: ctr cmu cpn cpa cpj cpt cca pcu
Spirochaetes: bbu bga tpa tde lil lic
Bacteroidetes/Chlorobi group: cte bth bfr pgi
Cyanobacteria: syn syw syc tel gvi ana pma pmm pmt
Chloroflexi: det
Deinococcus-Thermus: dra tth ttj
Aquificae: aae
Thermotogae: tma

EUKARYA

Fungi/Metazoa group: hsa1 mmu1 rno1 dre1 dme cel
Viridiplantae: ath osa1

Rhodophyta: cme
Fungi/Metazoa group: sce ago cal spo ecu
Mycetozoa: ddi1

Alveolata: pfa cpv1 cho1

Euglenozoa: tbr1 lma1
4% of the analyzed genomes show a minimum ORF size
so high). The low enzyme content of Rhodopirellula baltica
and Leptospira interrogans compared with other bacterial
organisms of similar proteome size is thus consistent with
the correlation that has been reported between the low
fraction of enzymes and the massive recruitment of regu-
latory proteins [17,40]. Figure 1D shows the distribution
of the fraction of enzymes characteristic of each domain of
life, whose median and mean ± standard deviation values
are: 0.24 and 0.25 ± 0.04 for Archaea, 0.29 and 0.30 ±
0.05 for Bacteria, and 0.17 and 0.18 ± 0.05 for Eukarya.
Freilich and collaborators have recently reported higher
estimates for the fraction of enzymes in the three domains
of life [17]; however, the sets they analyzed included
enzymes and some non-enzymes, because their definition
of putative enzyme was much more permissive than the
one used in our analysis. Thus, we can consider theirs and
ours as upper-bound and lower-bound estimates of the
true values, respectively. See additional file 1:

Enzyme_content.xls for a list of the estimated fraction of
enzymes for each of the analyzed genomes.

Comparison of EFICAz predictions with KEGG annotations
To evaluate the level of agreement of EFICAz predictions
with other sources of annotation, we compared our
enzyme function assignments to those available in the
Genes database of KEGG. In general, the quality and com-
pleteness of the functional annotation of genomes tend to
continuously improve due to the incessant flow of new
experimental results and the correction of systematic
errors in annotation transfer [13]. To account for the
dynamic nature of the functional annotation process, we
compare our predictions with annotations from two dif-
ferent releases of the Genes database: (i) 33.0+/03–05 of
March 5, 2005, which is contemporary to the sources we
employed for training the version of EFICAz used for our
multi-genome scale enzyme annotation effort (Fig. 2A, B),
and (ii) 37.0+/03–07, released a year later (Fig. 2C, D).
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We compare the enzyme function annotations at the level
of four-field EC numbers (Fig. 2A, C) and three-field EC
numbers (Fig. 2B, D), in the latter case, we compare only
the first three fields of the annotated EC numbers,
whether the fourth field is known or unknown. Besides
our EFICAz predictions, we also have the set of KEGG
annotations as of 2006 available on our website [32],
where the assignments made by EFICAz and/or KEGG can
be browsed. The annotations can also be easily selected
and retrieved according to species name, level of detail of
the enzyme function prediction (four-field or three-field
EC numbers), consistency or inconsistency between EFI-

CAz and KEGG assignments, presence of the keywords
"hypothetical" or "unknown" in KEGG assignments as of
2005, EC number and gene name.

The functional annotations in the Genes database of
KEGG is obtained from various sources: descriptions of
gene functions in the GenBank [41] database, on-line
genome databases which are generally more up-to-date,
the Swiss-Prot [42] database, and additional annotations
by KEGG based on ortholog identification and pathway
reconstruction [43]. Since the algorithms for enzyme
function annotation employed by EFICAz and KEGG are

1Incomplete genome project. aae: Aquifex aeolicus, aci: Acinetobacter sp. ADP1, afu: Archaeoglobus fulgidus, ago: Ashbya gossypii, ama: Anaplasma 
marginale, ana: Anabaena sp. PCC7120, ape: Aeropyrum pernix, atc: Agrobacterium tumefaciens C58 (Cereon), ath: Arabidopsis thaliana, atu: 
Agrobacterium tumefaciens C58 (UWash/Dupont), baa: Bacillus anthracis A2012, bab: Buchnera aphidicola Bp, ban: Bacillus anthracis Ames, bar: Bacillus 
anthracis Ames 0581, bas: Buchnera aphidicola Sg, bat: Bacillus anthracis Sterne, bba: Bdellovibrio bacteriovorus, bbr: Bordetella bronchiseptica, bbu: Borrelia 
burgdorferi, bca: Bacillus cereus ATCC 10987, bce: Bacillus cereus ATCC 14579, bcl: Bacillus clausii, bcz: Bacillus cereus ZK, bfl: Blochmannia floridanus, 
bfr: Bacteroides fragilis, bga: Borrelia garinii, bha: Bacillus halodurans, bhe: Bartonella henselae, bja: Bradyrhizobium japonicum, bld: Bacillus licheniformis 
DSM13, bli: Bacillus licheniformis ATCC 14580, blo: Bifidobacterium longum, bma: Burkholderia mallei, bme: Brucella melitensis, bms: Brucella suis, bpa: 
Bordetella parapertussis, bpe: Bordetella pertussis, bps: Burkholderia pseudomallei, bqu: Bartonella quintana, bsu: Bacillus subtilis, bth: Bacteroides 
thetaiotaomicron, btk: Bacillus thuringiensis, buc: Buchnera aphidicola APS, cac: Clostridium acetobutylicum, cal: Candida albicans, cbu: Coxiella burnetii, cca: 
Chlamydophila caviae, ccr: Caulobacter crescentus, cdi: Corynebacterium diphtheriae, cef: Corynebacterium efficiens, cel: Caenorhabditis elegans, cgl: 
Corynebacterium glutamicum, cho: Cryptosporidium hominis, cje: Campylobacter jejuni NCTC11168, cjr: Campylobacter jejuni RM1221, cme: 
Cyanidioschyzon merolae, cmu: Chlamydia mu ridarum, cpa: Chlamydophila pneumoniae AR39, cpe: Clostridium perfringens, cpj: Chlamydophila pneumoniae 
J138, cpn: Chlamydophila pneumoniae CWL029, cpt: Chlamydophila pneumoniae TW183, cpv: Cryptosporidium parvum, ctc: Clostridium tetani E88, cte: 
Chlorobium tepidum, ctr: Chlamydia trachomatis, cvi: Chromobacterium violaceum, ddi: Dictyostelium discoideum, det: Dehalococcoides ethenogenes, dme: 
Drosophila melanogaster, dps: Desulfotalea psychrophila, dra: Deinococcus radiodurans, dre: Danio rerio, dvu: Desulfovibrio vulgaris Hildenborough, eba: 
Azoarcus sp. EbN1, eca: Erwinia carotovora, ecc: Escherichia coli CFT073, ece: Escherichia coli O157 EDL933, ecj: Escherichia coli K-12 W3110, eco: 
Escherichia coli K-12 MG1655, ecs: Escherichia coli O157 Sakai, ecu: Encephalitozoon cuniculi, efa: Enterococcus faecalis, erg: Ehrlichia ruminantium Gardel, 
eru: Ehrlichia ruminantium Welgevonden (South Africa), erw: Ehrlichia ruminantium Welgevonden (France), fnu: Fusobacterium nucleatum, ftu: 
Francisella tularensis, gka: Geobacillus kaustophilus, gox: Gluconobacter oxydans, gsu: Geobacter sulfurreducens, gvi: Gloeobacter violaceus, hal: Halobacterium 
sp. NRC-1, hdu: Haemophilus ducreyi, hhe: Helicobacter hepaticus, hin: Haemophilus influenzae, hma: Haloarcula marismortui, hpj: Helicobacter pylori J99, 
hpy: Helicobacter pylori 26695, hsa: Homo sapiens, ilo: Idiomarina loihiensis, lac: Lactobacillus acidophilus, lic: Leptospira interrogans serovar Copenhageni, 
lil: Leptospira interrogans serovar lai, lin: Listeria innocua, ljo: Lactobacillus johnsonii, lla: Lactococcus lactis, lma: Leishmania major, lmf: Listeria 
monocytogenes F2365, lmo: Listeria monocytogenes EGD-e, lpf: Legionella pneumophila Lens, lpl: Lactobacillus plantarum, lpn: Legionella pneumophila 
Philadelphia 1, lpp: Legionella pneumophila Paris, lxx: Leifsonia xyli xyli CTCB07, mac: Methanosarcina acetivorans, mbo: Mycobacterium bovis, mca: 
Methylococcus capsulatus, mfl: Mesoplasma florum, mga: Mycoplasma gallisepticum, mge: Mycoplasma genitalium, mhy: Mycoplasma hyopneumoniae, mja: 
Methanococcus jannaschii, mka: Methanopyrus kandleri, mle: Mycobacterium leprae, mlo: Mesorhizobium loti, mma: Methanosarcina mazei, mmo: 
Mycoplasma mobile, mmp: Methanococcus maripaludis, mmu: Mus musculus, mmy: Mycoplasma mycoides, mpa: Mycobacterium avium paratuberculosis, 
mpe: Mycoplasma penetrans, mpn: Mycoplasma pneumoniae, mpu: Mycoplasma pulmonis, msu: Mannheimia succiniciproducens, mtc: Mycobacterium 
tuberculosis CDC1551, mth: Methanobacterium thermoautotrophicum, mtu: Mycobacterium tuberculosis H37Rv, neq: Nanoarchaeum equitans, neu: 
Nitrosomonas europaea, nfa: Nocardia farcinica, ngo: Neisseria gonorrhoeae, nma: Neisseria meningitidis Z2491 (serogroup A), nme: Neisseria meningitidis 
MC58 (serogroup B), oih: Oceanobacillus iheyensis, osa: Oryza sativa, pab: Pyrococcus abyssi, pac: Propionibacterium acnes, pae: Pseudomonas aeruginosa, 
pai: Pyrobaculum aerophilum, pcu: Parachlamydia sp. UWE25, pfa: Plasmodium falciparum, pfu: Pyrococcus furiosus, pgi: Porphyromonas gingivalis, pho: 
Pyrococcus horikoshii, plu: Photorhabdus luminescens, pma: Prochlorococcus marinus SS120, pmm: Prochlorococcus marinus MED4, pmt: Prochlorococcus 
marinus MIT9313, pmu: Pasteurella multocida, poy: Phytoplasma sp. onion yellows, ppr: Photobacterium profundum, ppu: Pseudomonas putida, pst: 
Pseudomonas syringae, pto: Picrophilus torridus, rba: Rhodopirellula baltica, rco: Rickettsia conorii, rno: Rattus norvegicus, rpa: Rhodopseudomonas palustris 
CGA009, rpr: Rickettsia prowazekii, rso: Ralstonia solanacearum GMI1000, rty: Rickettsia typhi, sac: Staphylococcus aureus COL, sag: Streptococcus 
agalactiae 2603, sam: Staphylococcus aureus MW2, san: Streptococcus agalactiae NEM316, sar: Staphylococcus aureus MRSA252, sas: Staphylococcus 
aureus MSSA476, sau: Staphylococcus aureus N315, sav: Staphylococcus aureus Mu50, sce: Saccharomyces cerevisiae, sco: Streptomyces coelicolor, sep: 
Staphylococcus epidermidis ATCC 12228, ser: Staphylococcus epidermidis RP62A, sfl: Shigella flexneri 301, sfx: Shigella flexneri 2457T, sil: Silicibacter 
pomeroyi, sma: Streptomyces avermitilis, sme: Sinorhizobium meliloti, smu: Streptococcus mutans, son: Shewanella oneidensis, spa: Streptococcus pyogenes 
MGAS10394, spg: Streptococcus pyogenes MGAS315, spm: Streptococcus pyogenes MGAS8232, spn: Streptococcus pneumoniae TIGR4, spo: 
Schizosaccharomyces pombe, spr: Streptococcus pneumoniae R6, sps: Streptococcus pyogenes SSI-1, spt: Salmonella enterica serovar Paratyphi A, spy: 
Streptococcus pyogenes SF370, sso: Sulfolobus solfataricus, stc: Streptococcus thermophilus CNRZ1066, sth: Symbiobacterium thermophilum, stl: 
Streptococcus thermophilus LMG18311, stm: Salmonella typhimurium LT2, sto: Sulfolobus tokodaii, stt: Salmonella enterica serovar typhi Ty2, sty: 
Salmonella typhi CT18, syc: Synechococcus sp. PCC6301, syn: Synechocystis sp. PCC6803, syw: Synechococcus sp. WH8102, tac: Thermoplasma 
acidophilum, tbr: Trypanosoma brucei, tde: i, tel: Thermosynechococcus elongatus, tko: Thermococcus kodakaraensis, tma: Thermotoga maritima, tpa: 
Treponema pallidum, tte: Thermoanaerobacter tengcongensis, tth: Thermus thermophilus HB27, ttj: Thermus thermophilus HB8, tvo: Thermoplasma 
volcanium, twh: Tropheryma whipplei Twist, tws: Tropheryma whipplei TW08/27, uur: Ureaplasma urealyticum, vch: Vibrio cholerae, vfi: Vibrio fischeri, vpa: 
Vibrio parahaemolyticus, vvu: Vibrio vulnificus CMCP6, vvy: Vibrio vulnificus YJ016, wbm: Wolbachia endosymbiont strain TRS of Brugia malayi, wbr: 
Wigglesworthia brevipalpis, wol: Wolbachia wMel, wsu: Wolinella succinogenes, xac: Xanthomonas axonopodis, xcc: Xanthomonas campestris, xfa: Xylella 
fastidiosa 9a5c, xft: Xylella fastidiosa Temecula1, xoo: Xanthomonas oryzae, ype: Yersinia pestis CO92, ypk: Yersinia pestis KIM, ypm: Yersinia pestis 
Mediaevails, yps: Yersinia pseudotuberculosis, zmo: Zymomonas mobilis.

Table 1: Species and taxonomic groups represented in the genome sequence dataset. The taxonomic information is from the NCBI 
Taxonomy database [85] and the three-letter code for the organisms is from KEGG [24] (Continued)
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different, and their sources only partially overlap, it is
expected to find some sequences for which both methods
make functional assignments (which may agree or disa-
gree), and other sequences for which only one of the
methods is capable of making an EC number assignment.
In Figure 2, we plot the average percentage of sequences
per genome for which EFICAz enzyme function predic-
tions and KEGG annotations agree (green) or disagree
(red) at the four- or three-field EC number level, and the
average percentage of sequences per genome for which
only EFICAz (blue) or KEGG (yellow) provide enzyme
function information at the specified level of detail. The
statistical significance of the differences observed after one
year in the mean percentage of annotations correspond-

ing to each group of EC number assignments was evalu-
ated by correlated two-tailed t-tests at a critical alpha level
of 10-3.

Most newly added KEGG enzyme function annotations agree with 
earlier EFICAz predictions
We first analyze the degree of agreement of the enzyme
function assignments for sequences that both EFICAz and
KEGG annotate as enzymes. As of 2005, we observe that,
on average, EFICAz and KEGG assign the same four- and
three-field EC numbers to 14.2% (Fig. 2A) and 18.2%
(Fig. 2B) of the sequences in a proteome, respectively.
Only an average of 0.9% (Fig. 2A) and 1.0% (Fig. 2B) of
the sequences in a proteome show disagreement in their

Enzyme content in organisms from the three domains of lifeFigure 1
Enzyme content in organisms from the three domains of life. Number of enzymes as a function of the proteome size 
for archaeal (A), bacterial (B) and eukaryotic (C) genomes. The gray, magenta and green lines represent: regression line, 95% 
and 99% prediction intervals, respectively. (D) Distribution of the fraction of enzymes in archaeal, bacterial and eukaryotic 
genomes. The statistics represented in the box-and-whisker plots are: outliers below the 10th percentile (circles, bottom), 
10th percentile (whisker, bottom), 25th percentile (box, bottom), median (thick line), 75th percentile (box, top), 90th percen-
tile (whisker, top) and outliers above 90th percentile (circles, top).
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four-field and three-field EC number assignments, respec-
tively.

When KEGG annotations as of 2006 are considered, the
agreement increases from 14.2% (Fig. 2A) to 15.5% for
four-field EC number assignments (Fig. 2C) and from
18.2% (Fig. 2B) to 20.1% for three-field EC number
assignments (Fig. 2D). In contrast, there is no significant
change in the level of disagreement. After one year, the
average percentage of sequences in a proteome with four-
field (three-field) EC numbers assigned by KEGG, includ-
ing agreeing, disagreeing and unique annotations, grew
from 18.4% (21.6%) to 20.3% (23.8%), with 67% (80%)
of that growth corresponding to agreeing annotations and
only 2% (1%) corresponding to disagreeing annotations.
Thus, most of the newly added enzyme function annota-
tions in KEGG agree with predictions made by EFICAz a
year before. About 31% (19%) of the growth corresponds
to unique four-field (three-field) EC number annotations
made by KEGG, which are analyzed in the next section.

EFICAz predictions have higher coverage than KEGG annotations, 
especially for eukaryotes
Figure 2 shows that the average fraction of sequences per
proteome that is only annotated by KEGG with four-field
(three-field) EC numbers increased from 3.3% to 3.9%
(2.3% to 2.7%) after one year. Still, unique EFICAz pre-
dictions are more numerous than unique KEGG annota-
tions, even when KEGG annotations as of 2006 are
considered. The average fraction of sequences per pro-
teome with three-field (four-field) EC number assign-
ments made only by EFICAz is 4.0 (1.7) times higher than
the fraction corresponding to KEGG as of 2005, and 2.7
(1.1) times higher than the fraction corresponding to
KEGG as of 2006.

When we analyze the unique predictions in genomes
from different domains of life, the most extreme differ-
ence between the number of EFICAz-based and KEGG-
based unique assignments corresponds to Eukarya. For
eukaryotic genomes, the average fraction of unique EFI-
CAz predictions ranges from 4.0 (Fig. 2C) to 10.9 (Fig. 2B)
times higher than the average fraction of unique KEGG
annotations. Before suggesting an explanation for this dis-
crepancy, we should mention that one of the principles
used by KEGG curators for enzyme function annotation is
the transfer of annotation between orthologs, which are
identified by sequence similarity with consideration of
the positional coupling of genes on the chromosome [43].
Thus, a probable reason for the low number of KEGG-
based unique assignments in eukaryotes is that in these
organisms, with only a few exceptions [44], genes do not
appear to be organized in operons, preventing KEGG
annotators from making use of the conservation of local
genomic context (such as gene order or gene neighboring)

to validate orthology-based annotations of enzyme func-
tion. This observation raises the question as to how much
the recall of EFICAz would improve if we account for the
conservation of local genomic context. We would expect
an increased coverage for archaeal and bacterial genomes;
although, evidently, this component of the method
would not be relevant for enzyme function inference of
single sequences.

EFICAz predictions for recently characterized hypothetical 
proteins
In the previous section, we have shown that a considera-
ble fraction of an average proteome is annotated with at
least three-field EC numbers only by EFICAz. An average
of 36%, 25% and 12% of the three-field EC number anno-
tations uniquely provided by EFICAz in the archaeal, bac-
terial and eukaryotic proteomes, respectively, correspond
to proteins annotated as hypothetical in KEGG as of 2005.
In this section, we assess the EFICAz predictions for a sub-
set of hypothetical proteins for which experimentally-
derived enzyme function annotation has recently become
available. More precisely, we compare the EFICAz-pre-
dicted and the experimentally-derived EC numbers of 64
proteins annotated as hypothetical in KEGG whose
enzyme functions we could confidently retrieve from the
literature (see Methods for details). For this evaluation, we
assume that the true EC number associated to an enzyme
is the one derived from the referred experimental results.
To exclude cases in which the transfer of functional anno-
tation could be successfully achieved in most cases by sim-
ple sequence similarity based methods, we only consider
hypothetical proteins whose maximal sequence identity
to any of the enzymes we used to train EFICAz is less than
60%. We have previously shown that below this threshold
of sequence identity the conservation of enzyme function
is on average poor [9]. From the histogram shown in Fig-
ure 3, we can observe that the median value of the maxi-
mal sequence identity to training enzymes is only 25%.

EFICAz correctly predicts the enzyme function of most of the recently 
characterized hypothetical proteins
EFICAz could predict four-field EC numbers for 37 of the
64 previously hypothetical proteins analyzed. We further
divided these 37 proteins in two groups: one group of 25
proteins for which the number of matching first fields
between the EFICAz-predicted and the true EC numbers
can be univocally determined (Table 2), and another
group of 12 proteins for which the number of matching
fields could be either three or four (Table 3). We observe
that the four fields of the predicted and the true EC num-
bers agree for 21 of the 25 proteins listed in Table 2, indi-
cating a precision of 84% for EFICAz four-field EC
number prediction applied to this set of hypothetical pro-
teins. The three-field precision of EFICAz four-field EC
number predictions is 92%, since 34 out of 37 proteins
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listed in Tables 2 and 3 show agreement in at least the first
three fields of the predicted and true EC numbers. Table 4
lists 27 of the 64 previously hypothetical proteins ana-
lyzed, for which EFICAz could only predict three-field EC
numbers. In this case, 26 out of 27 proteins show agree-
ment in the first three fields of the predicted and the true
EC numbers, indicating a precision of 96% for EFICAz
three-field EC number prediction applied to these hypo-
thetical proteins.

In agreement with the results of the benchmark described
in Methods, there is no significant correlation between the

precision of the EFICAz predictions for this set of hypo-
thetical proteins and their sequence similarity to the
enzymes included in the EFICAz training set (Figure 3).
Also, the precision agrees reasonably well with the average
precision derived from the benchmark test, especially con-
sidering the small size of the analyzed sample (64 pro-
teins), and the fact that hypothetical proteins that are the
subject of recent publications often belong to novel fami-
lies. For example, three of our five wrong predictions cor-
respond to enzymes that are the first studied member of a
new family, with no significant sequence similarity to
other functionally equivalent proteins: (i) the product of

Comparison of EFICAz predictions with KEGG annotationsFigure 2
Comparison of EFICAz predictions with KEGG annotations. Comparison of EFICAz predictions with KEGG annota-
tions from the Genes database of March 5, 2005, Release 33.0+/03–5 (A-B) and of March 7, 2006, Release 37.0+/03–07 (C-D). 
We analyze two levels of enzyme function description: four-field EC numbers (A, C) and three-field EC numbers (B, D). For 
all, archaeal, bacterial and eukaryotic genomes we plot the average percentage of enzymatic proteins per genome whose EFI-
CAz-inferred and KEGG-provided annotations at the specified level of detail agree (green columns) or disagree (red columns), 
and whose enzyme function annotation at the specified level of detail is only provided by EFICAz (blue columns) or by KEGG 
(yellow columns). The numeric values inserted in each stacked column are the corresponding average percentage of enzymatic 
proteins per genome +/- the standard deviation.
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gene MJ0044 of Methanococcus jannaschii (Table 2), an
isopentenyl-phosphate kinase that still has not been
assigned an EC number by the Enzyme Commission [18],
(ii) the product of gene MJ0936 of Methanococcus jan-
naschii (Table 2), a new cAMP phosphodiesterase, and
(iii) the product of Ta1419 gene of Thermoplasma acido-
philum, a novel bifunctional phosphoglucose/phospho-
mannose isomerase (Table 3). It is well known that
Archaea have unique enzymes that are optimized for
extreme environments [45]; therefore, it is not surprising
that these three misclassified proteins belong to archaeal
organisms.

The annotation lag in databases can be longer than two years
Interestingly, for some of the 64 previously hypothetical
proteins analyzed, the experimental evidence to support a
specific enzyme function has been available for quite a
long time in the literature; however, the corresponding
functional annotation is not acknowledged in current
databases. One of the 21 successfully predicted enzymes
listed in Table 2, the product of the PA1167 gene from
Pseudomonas aeruginosa, constitutes an example of this
problem, known as annotation lag [46]. An article availa-

ble as early as May 10, 2004 describes the biochemical
characterization of PA1167 and demonstrates that it is a
new alginate lyase (EC 4.2.2.3), an alginate biofilm
degrading enzyme [47]. However, as of June 27, 2006,
PA1167 was still annotated as a hypothetical protein in all
the relevant databases we checked, from very general ones
such as Swiss-Prot (Accession number: Q9I4H0) [42] and
Entrez Gene (GeneID: 878215) [48], to those that are
genome-oriented such as KEGG (Entry: PA1167 of Pseu-
domonas aeruginosa) [24] and TIGR-CMR, The Institute for
Genomic Research Comprehensive Microbial Resource
(TIGR Locus: NT03PA1297) [49], and even a database
exclusively dedicated to Pseudomonas aeruginosa, Pseu-
domonas Genome Database v2 (Locus ID: PA1167) [50].
We think this specific example is worth mentioning, given
the direct involvement of alginate biofilm in the patho-
genicity of this bacterial species, and the recently sug-
gested therapeutic possibilities of alginate lyase in the
treatment of Pseudomonas aeruginosa infection of respira-
tory tract in cystic fibrosis patients [51]. Similarly, experi-
mental evidence supporting the ADP-ribose
diphosphatase activity (EC 3.6.1.13) of the product of
gene Rv1700 of Mycobacterium tuberculosis H37Rv (Table
2) has been available since August, 2003 [52,53]; how-
ever, it is currently annotated as a hypothetical protein in
all major databases. We believe that more elaborate
approaches for detecting these ignored but highly confi-
dent functional assignments (e.g. methods based on nat-
ural-language processing of full text journal articles [54])
would extract considerably more annotations than our
simple keyword-based PubMed search (see Methods for
details).

Utility of novel predictions made by EFICAz
The results of the thorough benchmark described in Meth-
ods, the agreement between newly added enzyme func-
tion annotations in KEGG and EFICAz predictions made
a year earlier, and the precision of EFICAz predictions for
recently characterized hypothetical proteins, suggest that
novel predictions made by EFICAz are of high confidence
and can provide interesting leads for investigation in
many biological fields. Below, we present two interesting
cases that exemplify the utility of EFICAz predictions for
hypothetical proteins. We believe that experts in different
fields of biology will be capable of formulating other
interesting hypothesis based on the mining of our numer-
ous novel predictions.

EFICAz predictions as hypothesis generators for understanding 
functional roles of hypothetical proteins
Although not biochemically characterized even in the
most recent literature, some of the hypothetical proteins
that EFICAz predicts to be enzymes are known to be
directly or indirectly involved in specific biological proc-
esses. In these cases, the enzyme function predicted by

Similarity of 64 previously hypothetical proteins to EFICAz training enzymesFigure 3
Similarity of 64 previously hypothetical proteins to 
EFICAz training enzymes. Number of previously hypo-
thetical proteins predicted to be enzymes by EFICAz at dif-
ferent intervals of maximal sequence identity to enzymes 
included in the EFICAz version 5.0 training set. The true 
enzyme function of these 64 previously hypothetical proteins 
has been recently determined; therefore, we could assess the 
precision of our predictions. Dark green, light green and red 
bars represent four field EC number predictions with four, 
three or less than three correct EC fields, respectively. Yel-
low and orange bars represent three field EC number predic-
tions with three or less than three correct EC fields, 
respectively. The median of the distribution (24.8%) is indi-
cated by the broken line.
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EFICAz can help to form new hypotheses about the func-
tional role of a hypothetical protein in the particular bio-
logical process with which it has been associated. To
illustrate this situation, we selected the product of the
human gene FLJ11151. As of June 27, 2006, FLJ11151 was
annotated as a hypothetical protein in Swiss-Prot (Acces-
sion number: Q9BRF8) [42], Entrez Gene (GeneID:
55313) [41] and KEGG (Entry: 55313 of Homo sapiens
genome) [24], and lacked any kind of functional descrip-
tion in the Ensembl v39 database (Vega Gene ID:
OTTHUMG00000073008) [55].

The enzyme function of FLJ11151 predicted by EFICAz is
endopolyphosphatase (EC 3.6.1.10). Endopolyphos-
phatases catalyze the non-processive internal cleavage of
polyphosphate (chain of tens to hundreds of phosphate
residues linked by phosphoanhydride bonds [56]) to
release polyphosphate chains of shorter size [57].
Endopolyphosphatase activity has been detected in all
eukaryotes tested to date, from unicellular organisms like
Saccharomyces cerevisiae to mammals [57]; however, no
human gene has been shown to be associated to this enzy-

matic activity or proposed as a putative endopolyphos-
phatase before this work. Although it was recently shown
that the terminal cleavage products of the Saccharomyces
cerevisiae endopolyphosphatase Ppn1 are inorganic phos-
phate and triphosphate, the Km value of Ppn1 for
polyphosphate chains of 45 to 20 phosphate residues is
much higher than its Km for long chains [58]. Therefore,
under physiological conditions, Ppn1 probably degrades
the long-chain polymer to short-chain polyphosphate of
more than 20 phosphate residues, which is known to be
required for the growth of yeast in minimal medium [59].

The physiological role of short-chain polyphosphate in
mammals is unclear; however, in vitro experiments have
demonstrated that polyphosphate chains of 15 to 750 res-
idues strongly activate the serine/threonine kinase mTOR
(mammalian Target Of Rapamycin) [60]. Activation of
mTOR kinase, a central regulator that integrates growth
factor and nutrient signals, enhances tumor growth and
neoplastic proliferation [61]. Consequently, its inhibition
is a cancer therapeutic strategy that is being vigorously
investigated [62]. In vivo experiments have shown that the

Table 2: Four-field EC number validation of EFICAz-predicted enzyme functions for 25 previously hypothetical proteins

Domain Org.1 Gene name2 PMID3 True EC number4 Predicted EC 
number5

EC field 
Agreement6

Eukarya hsa 54995 16261191 2.3.1.41 2.3.1.41 4
Eukarya hsa 84779 16638120 2.3.1.88 2.3.1.88 4
Bacteria ana alr3351 15695431 6.3.2.2 6.3.2.2 4
Archaea ape APE0768 14551194 5.3.1.9 5.3.1.9 4
Bacteria eco b0581 15211520 6.3.2.2 6.3.2.2 4
Bacteria ecc c0667 15211520 6.3.2.2 6.3.2.2 4
Bacteria mle ML1399 15500449 4.6.1.1 4.6.1.1 4
Bacteria pae PA1167 15136569 4.2.2.3 4.2.2.3 4
Eukarya cel R07B7.11 15676072 3.2.1.49/3.2.1.22 3.2.1.22 4
Bacteria mtu Rv1647 15500449 4.6.1.1 4.6.1.1 4
Bacteria mtu Rv1700 12906832 3.6.1.13 3.6.1.13 4
Bacteria mtu Rv1885c 15654876 5.4.99.5 5.4.99.5 4
Bacteria mtu Rv2747 15838030 2.3.1.1 2.3.1.1 4
Bacteria sfx S0496 15211520 6.3.2.2 6.3.2.2 4
Bacteria sfl SF0488 15211520 6.3.2.2 6.3.2.2 4
Bacteria spt SPA0821 15547259 2.5.1.17 2.5.1.17 4
Bacteria spt SPA2151 15211520 6.3.2.2 6.3.2.2 4
Bacteria sty STY2255 15547259 2.5.1.17 2.5.1.17 4
Bacteria stt t0824 15547259 2.5.1.17 2.5.1.17 4
Archaea tac Ta1434 15044458 2.5.1.17 2.5.1.17 4
Bacteria ece Z0720 15211520 6.3.2.2 6.3.2.2 4
Bacteria ecc c0735 16411753 3.2.2.8 3.2.2.1 3
Archaea mja MJ0044 16621811 2.7.4.- 2.7.2.8 2
Archaea mja MJ0936 15128743 3.1.4.- 3.6.1.10 1
Bacteria mtu Rv0805 16313172 3.1.4.17 3.6.1.10 1

1 The species names corresponding to the KEGG three letter codes are listed in the footnote of Table 1.
2 Gene name from the Genes database of KEGG.
3 PMID: PubMed Unique Identifier, the journal citation accession number for the most relevant record in PubMed supporting the experimentally-
derived annotation [65].
4 Experimentally-derived EC numbers.
5 EFICAz-predicted EC numbers.
6 Number of matching first n fields of the experimentally-derived and EFICAz-predicted EC numbers, with n = 1 to 4.
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activation of mTOR by polyphosphate can be suppressed
in human carcinoma cell lines by the expression of a
highly processive exopolyphosphatase of yeast (EC
3.6.1.11) that degrades the polymer to inorganic phos-
phate [63], resulting in a dramatic reduction of cell prolif-
eration [60].

Interestingly, the FLJ11151 transcript has been found to
be expressed at high tag count in four Serial Analysis of
Gene Expression (SAGE) libraries of primary melanomas
in the vertical or metastatic growth phase, indicating that
the hypothetical protein FLJ11151 may play an important
role in advanced stages of cancer [64]. The predicted
endopolyphosphatase activity of FLJ11151 suggests that
the product of this gene may be involved in tumorigenesis
via an activation of mTOR. We propose that the activation
is due to an increased level of short-chain polyphosphate
produced by the cleavage of longer molecules of the poly-
mer. It is important to emphasize that we have arrived at
this hypothesis in a semi-automatic way, by correlating
the results of a PubMed [65] search for a given gene with
its EFICAz-predicted enzyme function.

Candidate virulence factors predicted by EFICAz
Most of the virulence factors detected in pathogenic
organisms exhibit some kind of enzymatic activity, e.g.
many exotoxins are pentosyltransferases (EC 2.4.2.-), ser-
ine endopeptidases (EC 3.4.21.-) or metalloendopepti-
dases (EC 3.4.24.-) [66]. Furthermore, some carboxylic
ester hydrolases (EC 3.1.1.-) and phosphoric diester
hydrolases (EC 3.1.4.-) are involved in invasion or host
cell penetration [67], and several peptidases (EC 3.4.-.-)
are implicated in anti-immune strategies to evade the host
defenses [68]. Even some housekeeping enzymes that per-
form essential metabolic functions can also play a role in
enhancing virulence in many pathogens [69]. Thus, hypo-
thetical proteins whose EFICAz-predicted enzyme func-
tions are known to be associated with pathogenicity can
be considered as putative virulence factors. The product of
the gene MW0119 of Staphylococcus aureus strain MW2
and its ortholog SA0140 in strain N315, both annotated
as sphingomyelin phosphodiesterases by EFICAz, consti-
tute a good example of this type of novel prediction. N315
and MW2 are meticillin resistant S. aureus (MRSA) strains,
that were isolated from hospital-acquired [70] and com-
munity-acquired infections [71], respectively. The treat-
ment of patients infected by MRSA has become
increasingly difficult because MRSA strains are beginning
to develop resistance to vancomycin, the antibiotic tradi-
tionally used to treat MRSA infections [72].

S. aureus is the human pathogen that displays the widest
assortment of virulence factors [73]. Beta-hemolysin,
beta-toxin or sphingomyelinase C, one of the many exo-
toxins secreted by S. aureus, is a sphingomyelin phos-

phodiesterase (EC 3.1.4.12) that disrupts the membranes
of erythrocytes and other mammalian cells [74]. In
humans, beta- hemolysin has been shown to selectively
kill monocytes, which then release cytokines that are
important for the initiation and progression of S. aureus
infection [75]. As of June 27, 2006, only truncated beta-
hemolysins were annotated in the S. aureus MW2 genome:
the product of the genes MW1881 (TIGR Locus:
NT03SA2038, Swiss-Prot accession number: Q99QS0,
Entrez GeneID: 1003995, KEGG entry: MW1881 of S.
aureus MW2 genome) and MW1940 (TIGR Locus:
NT03SA2101, Swiss-Prot accession number: Q8NVM0,
Entrez GeneID: 1004054, KEGG entry: MW1940 of S.
aureus MW2 genome). Similarly, the only beta-hemo-
lysins annotated in the genome of strain N315 were trun-
cated: the product of the genes SA1752 and SA1811,
orthologs of MW1881 and MW1940, respectively. The
inactivation of the beta-hemolysin genes in MW2 and
N315 strains is caused by the insertion of bacteriophages
[76].

The apparent absence of active beta-hemolysins in the
MW2 and N315 strains opens the possibility that other
genes with sphingomyelinase activity could serve as their
functional substitutes. MW0119, one of our predicted
sphingomyelin phosphodiesterases, was annotated as a
"hypothetical protein, similar to lactococcal phosphatase
homologue" in TIGR-CMR (TIGR Locus: NT03SA0129)
[49], lacked a functional annotation in Swiss-Prot (Acces-
sion number: Q8NYQ6) [42] and Entrez Gene (GeneID:
1004871) [41], and was annotated as a hypothetical pro-
tein in KEGG (Entry: MW0119 of S. aureus MW2 genome)
[24]. In all these databases, the annotations for SA0140,
the ortholog of MW0119 in strain N315, were identical to
those of MW0119. Based on the enzymatic activity
assigned by EFICAz to these gene products, we suggest
that the hypothetical proteins MW0119 and SA0140 may
act as beta-hemolysins in the MW2 and N315 strains of S.
aureus. We believe that the EFICAz-based strategy of
detecting putative virulence factors described here can
generate leads for the developing of new antibacterial
agents, which are urgently needed given the increasing
magnitude of the public health problem that multiresist-
ance to antibiotics constitute.

Conclusion
The reannotation effort presented in this work provides
up-to-date enzyme function information corresponding
to 245 genomes. Based on the fact that more than double
the number of genomes considered in previous analyses
are now available [17,34], and using EFICAz, our highly
precise approach for enzyme function prediction, we have
confirmed the existence of a linear relationship between
the number of enzymes and proteome size and provided
Page 11 of 18
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up to date estimations of the fraction of enzymes in
genomes from each domain of life (Figure 1).

Precision was the highest priority of our analysis; accord-
ingly, our results suggest that by using EFICAz [26], we
have generated annotations of good quality. First, the
comprehensive series of benchmarks of EFICAz show that
we can expect a mean precision of 94% regardless of the
sequence similarity between testing and training enzymes
(Figure 4A–C). Second, by comparing our predictions
with KEGG annotations available a year later (which can
take advantage of updated databases and new experimen-
tal results available in the literature), we find that most of
the newly added KEGG enzyme function annotations
agreed with our earlier EFICAz predictions (Figure 2).
Third, by way of illustration, we identified a set of 64 pre-
viously hypothetical proteins whose biochemical func-
tions have been recently characterized and found that in
96% of the cases, we correctly identified their three-field
EC numbers, and in 84% of the cases, we could provide
their fully detailed enzymatic activities (Tables 1, 2, 3).
Achieving this level of precision is not trivial, considering
that: (i) hypothetical proteins are the most difficult targets
for automated function prediction [77], and (ii) the max-
imal sequence identity between the 64 hypothetical pro-
teins and the EFICAz training enzymes has a median value
of 25% (Figure 3). We were surprised to find a few cases
among this set of 64 hypothetical proteins, where the
annotation lag in databases was more than two years. It is
difficult to estimate the full dimension of this problem;
nevertheless, a systematic rescue of those annotations lost

in the literature is very much needed, given the low
number of experimentally verified functional assignments
in the current databases [78].

There always exists a trade-off between precision and
recall in the implementation of a predictive method. A
consequence of our priorization of precision over recall is
that the enzyme contents calculated based on our EFICAz
predictions are lower-bound estimates (Figure 1D). How-
ever, EFICAz is still sensitive enough as to generate thou-
sands of novel annotations. We believe that our novel
predictions can be mined and correlated with other infor-
mation sources to generate biologically significant
hypotheses. As a proof of principle of this strategy, we
have presented two examples, selected because of their
potential impact on human health. Using the EFICAz
based database on our website [32], we are confident that
experts in different fields of biology will be able to dis-
cover many more such cases. To facilitate this task, the
enzyme function assignments can be browsed on our
website [32] according to species name, gene name, level
of detail of the enzyme function prediction and EC
number. Agreeing, disagreeing, or unique KEGG and EFI-
CAz annotations, as well as EFICAz assignments for hypo-
thetical proteins can also be selected and retrieved.

The main drawback of our analysis is the fact that we can
only predict biochemical functions that are represented in
our set of training enzymes by at least one sequence.
Because of this requirement, the prediction of orphan
enzymes is beyond the capabilities of both our approach

Table 3: Three-field EC number validation of enzyme functions predicted by EFICAz with four-field EC numbers for 12 previously 
hypothetical proteins

Domain Org.1 Gene name2 PMID3 True EC number4 Predicted EC 
number5

EC field 
Agreement6

Bacteria ecc c2186 16077126 1.1.1.- 1.1.1.2 ≤ 3
Bacteria ecc c5454 15489502 3.1.3.- 3.1.3.48 ≤ 3
Bacteria lla L124252 15901700 2.1.1.- 2.1.1.14 ≤ 3
Bacteria pae PA1032 16461666 3.5.1.- 3.5.1.11 ≤ 3
Bacteria sfx S0029 11027694 3.2.2.- 3.2.2.1 ≤ 3
Bacteria sfl SF0027 11027694 3.2.2.- 3.2.2.1 ≤ 3
Bacteria spt SPA2330 15157072 2.7.1.- 2.7.1.2 ≤ 3
Bacteria spt SPA4373 15489502 3.1.3.- 3.1.3.48 ≤ 3
Bacteria sty STY0426 15157072 2.7.1.- 2.7.1.2 ≤ 3
Bacteria stt t2471 15157072 2.7.1.- 2.7.1.2 ≤ 3
Bacteria ece Z0035 11027694 3.2.2.- 3.2.2.1 ≤ 3
Bacteria ece Z0493 15157072 2.7.1.- 2.7.1.2 ≤ 3

1 The species names corresponding to the KEGG three letter codes are listed in the footnote of Table 1.
2 Gene name from the Genes database of KEGG.
3 PMID: PubMed Unique Identifier, the journal citation accession number for the most relevant record in PubMed supporting the experimentally-
derived annotation [65].
4 Experimentally-derived EC numbers.
5 EFICAz-predicted EC numbers.
6 Number of matching first n fields of the experimentally-derived and EFICAz-predicted EC numbers, with n = 1 to 4.
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and of all the current computational approaches for
enzyme function inference. Orphan enzymes are defined
as enzymatic activities that have been experimental meas-
ured, but not yet mapped to a gene product, i.e., EC num-
bers without known associated sequences [79,80].
According to a recent survey, the number of different
orphan enzymes exceeds fifteen hundred, i.e. more than
39% of the known enzymatic activities [81].

We plan to periodically repeat the reannotation of all
available genomes using updated versions of EFICAz and
maintain all the annotations in a web-accessible database.
By using the same version of EFICAz to reannotate all the
available genomes simultaneously, rather than only the
newly released genomes, we will keep the consistency of
the annotations between genomes. This feature together
with the full standardization of our annotations (EFICAz
always reports EC numbers rather than enzyme names;
although the latter are also provided) will be very useful

for comparative genome analysis and automated meta-
bolic pathway reconstruction, and will also facilitate the
incorporation of EFICAz predictions to other functional
databases.

Methods
EFICAz: Enzyme Function Inference by a Combined 
Approach
EFICAz is a combined approach designed specifically for
high precision enzyme function inference [26]. It inte-
grates the predictions of four independent methods: (i)
CHIEFc family based FDR recognition: detection of Func-
tionally Discriminating Residues (FDRs) in enzyme fami-
lies obtained by a Conservation-controlled HMM Iterative
procedure for Enzyme Family classification (CHIEFc), (ii)
CHIEFc family specific SIT evaluation: pairwise sequence
comparison using a CHIEFc family specific Sequence
Identity Threshold (SIT), (iii) High specificity multiple
Prosite pattern recognition: detection of multiple Prosite

Table 4: Three-field EC number validation of enzyme functions predicted by EFICAz with three-field EC numbers for 27 previously 
hypothetical proteins

Domain Org.1 Gene name2 PMID3 True EC number4 Predicted EC 
number5

EC field 
Agreement6

Archaea afu AF1938 11790732 6.2.1.1 6.2.1.- 3
Bacteria bsu BG11467 14635137 2.3.1.- 2.3.1.- 3
Bacteria bsu BG11761 16242712 1.1.1.- 1.1.1.- 3
Bacteria bth BT4131 15952775 3.1.3.- 3.1.3.- 3
Bacteria ecc c1394 15157072 2.7.1.- 2.7.1.- 3
Bacteria ecc c2089 16253988 2.8.3.- 2.8.3.- 3
Bacteria eco b2873 11092864 3.5.2.- 3.5.2.- 3
Bacteria cef CE0356 15225990 2.3.1.- 2.3.1.- 3
Bacteria lpf lpl2377 16390437 2.7.3.- 2.7.3.- 3
Bacteria lpp lpp2524 16390437 2.7.3.- 2.7.3.- 3
Bacteria lpp lpp2599 11053398 2.1.1.- 2.1.1.- 3
Archaea mja MJ0883 15165845 2.1.1.31 2.1.1.- 3
Archaea pho PH1035 15737605 2.4.1.- 2.4.1.- 3
Archaea pho PH1915 16260766 2.1.1.- 2.1.1.- 3
Archaea pho PH1948 16245322 2.1.1.- 2.1.1.- 3
Bacteria rpr RP028 16364512 2.1.1.43 2.1.1.- 3
Bacteria mtu Rv0891c 15500449 4.6.1.1 4.6.1.- 3
Bacteria mtu Rv1500 16257960 2.4.1.- 2.4.1.- 3
Bacteria mtu Rv3225c 12715873 2.7.1.- 2.7.1.- 3
Bacteria sco SCO2599 12951512 3.1.4.- 3.1.4.- 3
Bacteria spn SP1051 12571357 2.7.1.- 2.7.1.- 3
Archaea sto ST0071 15212797 3.1.1.- 3.1.1.- 3
Archaea sto ST0723 16618099 1.5.1.30 1.5.1.- 3
Bacteria ttj TTHA1280 16511182 2.1.1.- 2.1.1.- 3
Bacteria ypk y0368 12923112 2.3.1.- 2.3.1.- 3
Bacteria ype YPO3632 16452420 2.3.1.- 2.3.1.- 3
Archaea tac Ta1419 14551194 5.3.1.8 5.3.1.9 6.1.1.- 0

1 The species names corresponding to the KEGG three letter codes are listed in the footnote of Table 1.
2 Gene name from the Genes database of KEGG.
3 PMID: PubMed Unique Identifier, the journal citation accession number for the most relevant record in PubMed supporting the experimentally-
derived annotation [65].
4 Experimentally-derived EC numbers.
5 EFICAz-predicted EC numbers.
6 Number of matching first n fields of the experimentally-derived and EFICAz-predicted EC numbers, with n = 1 to 4.
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Benchmark test of updated versions of EFICAzFigure 4
Benchmark test of updated versions of EFICAz. Precision (A-C), recall (D-F) and number of enzyme types described by 
four-field EC numbers (G-I) for different versions of EFICAz, at different levels of maximal testing to training sequence identity, 
averaged per enzyme type. Curves in red correspond to enzyme types for which at least 10 training sequences were available; 
curves in blue correspond to all enzyme types. The training of versions 2.0, 3.0 and 4.0 of EFICAz is based on the Releases 2.0, 
3.0 and 4.0 of UniProt, respectively. The new Swiss-Prot sequences added to UniProt 5.0 since the release of UniProt 2.0, 3.0 
and 4.0 constitute the test sequences for versions 2.0, 3.0 and 4.0 of EFICAz. See Methods for a full description of the bench-
mark procedure.

Blue: all enzyme typesRed: enzyme types with 10 or more training sequences
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[82] patterns of high specificity, and (iv) Multiple Pfam
family based FDR recognition: detection of FDRs in Multiple
Pfam [83] enzyme families. In EFICAz, an enzyme family
is defined as a group of proteins that are evolutionarily
related and share the full four or the first three fields of
their EC numbers. Each of the four methods is highly pre-
cise and able to generate unique assignments that are not
detected by the other three components. Therefore, EFI-
CAz makes an inference when one or more of the four
component methods predict a particular enzyme func-
tion. The primary goal of EFICAz is predicting four-field
EC numbers; however, when the highest level of detail for
the enzyme function description cannot be confidently
determined, EFICAz can provide three-field EC numbers.
EFICAz and its components are fully described in our pre-
vious article [26].

Training of different EFICAz versions
The source of annotated protein sequences for EFICAz is
the UniProt Knowledgebase database (or UniProt for
short) [42]. The UniProtKB/Swiss-Prot (or Swiss-Prot for
short) component of UniProt is the source of the training
enzyme sequences, that we require to be fully annotated
with four-field EC numbers. A combination of the Swiss-
Prot and the TrEMBL components of UniProt provides the
source of sequences to prepare the heterofunctional mul-
tiple sequence alignments that are required for FDR selec-
tion by the Evolutionary Footprinting method [26]. For
training of the Multiple Pfam family based FDR recognition
component of EFICAz, we use the Pfam database [83].

We prepared three versions of EFICAz (2.0, 3.0 and 4.0) to
benchmark the performance of our enzyme function pre-
diction method in a situation mimicking periodic
updates, and one version (5.0) to carry out enzyme func-
tion prediction on a multi-genome scale. The only differ-
ences among the various EFICAz versions are the releases
of the different databases used for the training process.
The sources of annotated protein sequences for versions
2.0, 3.0, 4.0 and 5.0 of EFICAz are the Releases 2.0, 3.0,
4.0 and 5.0 of UniProt, respectively. Table 5 shows the rel-
evant statistics of the sequence data sources for the differ-
ent versions of EFICAz. For training of the Multiple Pfam
family based FDR recognition component of EFICAz ver-
sions 2.0, 3.0 and 4.0, we use the following Pfam database

Releases: 15.0 of August, 2004 (based on UniProt 2.0),
16.0 of October, 2004 (based on UniProt 3.0) and 17.0 of
March, 2005 (based on UniProt 4.0), respectively. For EFI-
CAz version 5.0 we also use the Release 17.0 of Pfam. A
detailed description of EFICAz training procedures can be
found in our previous work [26]. See additional file 2:
EFICAz_v5_enzymes.xls for a list of 2,061 enzyme types
with four-field EC numbers and 203 enzymes types with
three-field EC numbers recognized by EFICAz version 5.0.

Benchmarking of EFICAz using annotated Swiss-Prot 
sequences
The results of the jackknife test presented in our previous
work [26], showed that the original version of EFICAz
generates highly precise enzyme function predictions. To
corroborate that the precision of newer versions of EFICAz
is comparable to that of the rigorously tested original ver-
sion, we performed a benchmark in a scenario of periodic
updates. Briefly, we select all the newly added Swiss-Prot
sequences in the Release 5.0 of UniProt, i.e. not included
in a given previous release of this database, and compare
their functional annotations in UniProt 5.0 with our func-
tional predictions using a version of EFICAz trained with
the given previous release of UniProt. We tested the new
sequences added to UniProt 5.0 since the release of Uni-
Prot 2.0 (33,475 sequences), UniProt 3.0 (18,325
sequences) and UniProt 4.0 (10,495 sequences), using the
versions 2.0, 3.0 and 4.0 of EFICAz, respectively.

For a given enzyme function described by a four-field EC
number, we calculate: precision = (true positives)/(true
positives + false positives), and recall = (true positives)/
(true positives + false negatives), where (i) true positives
is the number of new sequences predicted by EFICAz as
having the given enzyme function and annotated in Uni-
Prot 5.0 with that same function, (ii) false positives is the
number of new sequences predicted by EFICAz as having
the given enzyme function, but annotated in UniProt 5.0
with a different function, and (iii) false negatives is the
number of new sequences annotated in UniProt 5.0 with
the given function, but predicted by EFICAz as having a
different enzymatic function or no enzymatic function at
all. The enzyme sequences in UniProt are not evenly dis-
tributed over the different EC classes, i.e., some enzyme
functions might be overrepresented. To reduce the bias

Table 5: Source of Sequence Data for EFICAz training. The fifth column shows the number of enzymes annotated in Swiss-Prot with 
four-field EC numbers, which constitute the primary source for the training of EFICAz.

EFICAz version/UniProt 
Release

UniProt Release Date Number of Sequences in 
UniProt

Number of Sequences in 
Swiss-Prot

Number of Enzymes in 
Swiss-Prot

2.0 Jul. 5, 2004 1,487,788 153,871 44,508
3.0 Oct. 25, 2004 1,612,609 163,235 47,144
4.0 Feb. 1, 2005 1,757,967 168,297 48,788
5.0 May 10, 2005 1,896,046 181,571 53,314
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towards the most populated enzyme functions, we first
evaluate precision and recall for each individual enzyme
type, and then average them across all types. On the other
hand, because some newly added sequences are very sim-
ilar to training enzymes (e.g., more than 90% sequence
identity), they are much easier to predict than others. To
reduce this second source of bias, we evaluate the per-
formance of EFICAz according to different levels of maxi-
mal sequence identity of the test sequences to the training
enzymes. Thus, for each enzyme type, we first select the
test sequences whose sequence identities to any member
of their corresponding training sets are not higher than a
given value. Then, based on the selected testing sequences,
we calculate the precision and recall of EFICAz for each of
those enzyme types. Finally, for each version of EFICAz,
we report the average precision and recall at different lev-
els of maximal testing to training sequence identity.

Figure 4 shows the average precision (Fig. 4A–C), average
recall (Fig. 4D–F) and number of predicted enzyme types
(Fig. 4G–I), when EFICAz versions 2.0, 3.0 and 4.0 are
applied to the sequences in UniProt 5.0 that were added
since the release of UniProt 2.0, 3.0 and 4.0, respectively.
Besides the results corresponding to all the observed
enzyme types (blue curves in Figure 4), we also show
those corresponding to enzyme types for which 10 or
more training sequences were available (red curves in Fig-
ure 4). The average precision of any version of EFICAz is
never below 94% (with standard deviations that never
exceed 20%), irrespective of whether all enzyme types or
only those with at least 10 or more training sequences are
considered, and regardless of the sequence identity inter-
val analyzed (Fig. 4A–C).

The average recall of EFICAz depends of the specific max-
imal testing to training sequence identity interval. Thus,
when all enzyme types are considered, the recall ranges
from 95% to 97% if no testing to training sequence iden-
tity restrictions are applied (100% sequence identity inter-
val), but decreases to 69–74% at 40% sequence identity
(Fig. 4D–F, blue curves). When only enzyme types with 10
or more training sequences are considered, the recall sig-
nificantly improves, e.g. it ranges from 82% to 85% at
40% sequence identity (Fig. 4D–F, red curves). All the
shown results correspond to four-field EC number predic-
tions; the three-field EC number predictions follow the
same trends, with slightly higher precision and recall (not
shown). In general, these benchmark results clearly show
that updated versions of our enzyme function inference
method are very likely to perform as well as the original
version of EFICAz.

Genome sequence dataset
Using EFICAz version 5.0, we analyzed the protein
sequences of all the genomes available in the Genes data-

base Release 33.0+/03–05 (of March 5, 2005), a compo-
nent of KEGG. The dataset comprises 866,142 coding
sequences corresponding to 245 genomes. The whole
dataset was processed in approximately 19.5 days, using
50 of the 1,000 nodes in our IBM e1350 cluster, powered
by two 2.0 GHz dual core AMD Opteron 270 processors
per node, i.e. the average running time of EFICAz in a sin-
gle 2.0 GHz core was 3.24 minutes per genomic sequence.
With the purpose of comparison, we collected the enzyme
function annotation available for these sequences in the
Genes database. We extracted the EC numbers (described
at least at the level of the first three-fields) from the DEFI-
NITION line in the corresponding gene entries of the
Release 33.0+/03–05 and the Release 37.0+/03–07 (of
March 7, 2006) of Genes. Table 1 includes the scientific
names and taxonomic classification of all the organisms
analyzed in this study.

Search of hypothetical proteins annotated by EFICAz and 
recently characterized by experiments
To estimate the validity of our novel predictions, we first
collected all the protein products predicted to be enzymes
by EFICAz version 5.0 and defined as hypothetical or
unknown in the Release 33.0+/03–05 of the Genes data-
base (14,177 coding sequences). Predicting the function
of unannotated proteins with high sequence similarity to
enzymes that we used to train EFICAz can be considered a
trivial exercise; e.g. EFICAz training enzymes may include
homologs with very high sequence identity to a given pro-
tein labeled as hypothetical in databases due to the anno-
tation lag problem [46]. Therefore, to make our test more
demanding, we excluded from our list 254 hypothetical or
unknown proteins exhibiting more than 60% sequence
identity to any enzyme in the EFICAz version 5.0 training
set. Then, for the remaining 13,921 proteins, we searched
the PubMed database of May 26, 2006 [65] using their
corresponding gene entry ids and names as a set of syno-
nym query terms, resulting in 544 sequences linked to at
least one article published in the last five years. To carry
out the PubMed search, we used the Entrez Programming
Utilities (eUtils) [84] from the National Center for Bio-
technology Information (NCBI). After manual inspection
to eliminate irrelevant abstracts, we obtained a set of 64
proteins whose biochemical functions have been experi-
mentally determined and described with at least three-
field EC numbers. Finally, we compared the experimen-
tally-derived annotations of the 64 proteins with their EFI-
CAz-predicted enzyme functions.
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