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Abstract

Background: Prostate cancer (CaP) is a disease with multifactorial etiology that includes both genetic and
environmental components. The knowledge of the genetic basis of CaP has increased over the past years, mainly
in the pathways that underlie tumourigenesis, progression and drug resistance. The vast majority of cases of CaP
are adenocarcinomas that likely develop through a pre-malignant lesion and high-grade prostatic intraepithelial
neoplasia (HPIN). Histologically, CaP is a heterogeneous disease consisting of multiple, discrete foci of invasive
carcinoma and HPIN that are commonly interspersed with benign glands and stroma. This admixture with benign
tissue can complicate genomic analyses in CaP. Specifically, when DNA is bulk-extracted the genetic information
obtained represents an average for all of the cells within the sample.

Results: To minimize this problem, we obtained DNA from individual foci of HPIN and CaP by laser capture
microdissection (LCM). The small quantities of DNA thus obtained were then amplified by means of multiple-
displacement amplification (MDA), for use in genomic DNA array comparative genomic hybridisation (gaCGH).
Recurrent chromosome copy number abnormalities (CNAs) were observed in both HPIN and CaP. In HPIN,
chromosomal imbalances involving chromosome 8 where common, whilst in CaP additional chromosomal
changes involving chromosomes 6, 10, 13 and |6 where also frequently observed.

Conclusion: An overall increase in chromosomal changes was seen in CaP compared to HPIN, suggesting a
universal breakdown in chromosomal stability. The accumulation of CNAs, which occurs during this process is
non-random and may indicate chromosomal regions important in tumourigenesis. It is therefore likely that the
alterations in copy number are part of a programmed cycle of events that promote tumour development,
progression and survival. The combination of LCM, MDA and gaCGH is ideally suited for the identification of
CNAs from small cell clusters and may assist in the discovery of potential genomic markers for early diagnosis,
or identify the location of tumour suppressor genes (TSG) or oncogenes previously unreported in HPIN and CaP.
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Background

The worldwide occurrence CaP is increasing and it has
now overtaken lung cancer as the most commonly diag-
nosed malignancy in men in the Western World. In spite
of significant progress in its clinical management, com-
paratively little is known about the aetiology of the dis-
ease and predicting outcome is still a challenge for most
clinicians. Histopathologically, CaP displays considerable
heterogeneity and can contain a substantial admixture of
pre-malignant HPIN glands within cancerous foci. HPIN
is currently considered to be the most likely precursor to
invasive CaP [1]. However, most of these foci are latent
and rarely develop into clinically detectable cancer.
Unfortunately, a significant number (3%) do progress
and can become aggressive and lethal [2]. The major diffi-
culty facing clinicians is the identification of patients pre-
senting with early stage CaP, who are likely to develop
life-threatening disease. As a result, intensive research is
currently underway to identify the key alterations that
may prove to be important for both classification and
prognosis prediction.

The advent and development of CGH, which started in the
early 1990's [3], has revolutionised cytogenetics and
allowed for genome-wide screening of numerous cancer
types and the identification of genomic CNA, which may
contribute to cancer development and progression. The
accumulation of genetic changes that occurs during the
stepwise evolution from normal tissue to metastasis,
although likely due to increased genetic instability, may
indicate the chromosomal locations of TSG or oncogenes
that are important in tumourigenesis. When first intro-
duced, CGH used metaphase chromosomes targets to
identify CNAs. However, recent advances have substituted
these with arrayed DNA sequences that provide higher res-
olution, 1 Mb versus 10 Mb, and greater ease of analysis.

Whole genome scans of CaP patients and cell lines have
identified consistent, chromosomal alterations, which
include recurrent loss of chromosomal regions from 5p,
64q, 8p, 10q, 13, 16q and 17p, in addition to gain on 1q,
3q 7p, 7q, 8q 11p, 17q and Xpq [4-6]. Nonetheless, one
potential limitation with current CGH methodology is its
requirement for microgram quantities of genomic DNA.
When studying cell lines this is not necessarily a matter for
concern, as it is relatively straightforward to produce a suf-
ficient quantity of clonal cells to obtain many micrograms
of DNA. However, when studying patient tissue if DNA is
"bulk extracted" from a heterogeneous non-clonal
tumour mass the data obtained will represent an average
value for all cells within the specimen and any clinically
informative genetic changes, restricted to small cell clus-
ters, may be masked. As a result, when studying a hetero-
geneous tissue, such as prostate, it is essential to obtain
pure cell populations via methods such as macrodissec-
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tion or LCM. The DNA extracted from the dissected mate-
rial can then be amplified using a whole genome
amplification (WGA) technique [7], such as MDA [8-11].
The combination of LCM and WGA can generate suffi-
cient amounts of DNA for extensive genome analyses.
Several large studies have demonstrated the ability of
MDA to accurately amplify human genomic DNA. When
used in SNP genotyping [12,13] an estimated 99.82% of
the genome is covered with a reported concordance, to
non-amplified DNA, of greater than 99% [14]. In addi-
tion, the sequence error rate is only 7.6 x 10¢[13] and pre-
vious results obtained from gaCGH, using amplified
DNA, are almost indistinguishable from those obtained
from non-amplified DNA [10,15].

An understanding of the molecular mechanisms behind
cancer development will enable identification of molecu-
lar and cytogenetic biomarker(s) that may be useful in
predicting early transformation into an aggressive pheno-
type, as well as, providing fundamental insights into the
regulatory pathways of genome integrity that may lead to
multistep field cancerization and HPIN and CaP. In the
present study, we describe the use of LCM, MDA and
gaCGH, using a 1 Mb array (Spectral Genomics, USA) to
investigate copy number changes occurring in prostate
cancer by the analysis of 7 prostatic samples containing
HPIN and 8 CaP specimens.

Results

To determine whether whole genomic amplification
exhibited bias or a distortion of imbalance assignments,
control CGH experiments comparing the results obtained
before and after amplification (normal male versus nor-
mal male, normal male versus normal female and DNA
from a cancer cell line versus normal control DNA) from
the same original DNA samples were performed. These
are presented in Additional Files 1, 2, 3 and it is evident
that no major distortion of imbalance was introduced by
amplification of genomic DNA.

A summary of the chromosomal CNAs detected by CGH
for the 7 HPIN and 8 CaP samples is shown in Table 1 and
2 and displayed graphically in Figure 1 (for HPIN blue =
loss, yellow = gain; for CaP red = loss, green = gain). Figure
2 shows the frequency of CNAs detected at the level of
each chromosomes arm for HPIN and CaP. The general
pattern of loss or gain was very similar in the HPIN and
CaP samples, however CaP samples possessed signifi-
cantly more aberrations (90 CNAs) than HPIN samples
(41 CNAs) (P<0.001, chi square test). The average
number of CNAs for the 7 HPIN samples was 5.8 (range 3
to 8, median 6). For the 8 CaP samples an average of
11.25 (range 5 to 18, median 11.5) amplifications or dele-
tions were observed. When studied at the 850 cytoband
level (minus X and Y chromosome cytobands), HPIN
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Chromosomal alterations observed for HPIN and CaP DNA samples. Blue bars indicate loss in HPIN and yellow bars indicate
gain in HPIN. Red bars indicate loss in CaP and green bars indicate gain in CaP.

samples had the total of 65 affected bands (average 9,
range 4 to 14) and CaP samples 143 affected breakpoints
bands (average 18, range 8 to 27). This difference is statis-
tically significant (P<0.001, chi square test). In addition,
for both the HPIN and CaP samples there were a signifi-
cantly greater number of cytobands lost than gained
(P<0.01, chi squared test) (Table 1).

In the 7 HPIN samples recurrent chromosomal changes,
detected in greater than 25% of cases, were losses found
on 8p (7 out of 7 cases, 100%), 6q, 13q, 16q (2 out of 7
cases, 28.5%, each), whereas gains were found on 8q and
16p (3 out of 7 cases, 43%, each), 1p, 7p and 20q (2 out
of 7 cases, 28.5%, each). For the 8 CaP samples recurrent

chromosomal changes, detected in greater than 25% of
tumours, were losses on 8p (8 out of 8 cases, 100%), 10q
(6 out of 8 cases, 75%), 13q (5 out of 8 cases, 62.5%), 6q
(4 out of 8 cases, 50%), 1p, 16q (3 our of 8 cases, 37.5%),
5q, 12p, 18q (2 out of 8 cases, 25%, each) and gains on
7q (6 out of 8 cases, 75%), 7p, 8q (5 out of 8 cases,
62.5%, each), 4p, 16p, 19p (2 out of 8 cases, 25%).

Small consensus regions of consistent CNA were observed
for both HPIN and CaP samples (Table 3), in >25% of
samples. For example, 8p region was consistently lost in
HPIN (100%), but within the cytoband 8p11.23-p23.2
that was commonly lost in >50% of the HPIN samples.
Similarly, 8p was consistently lost in CaP (100%), but

Table I: Frequency of chromosome copy number abnormalities and affected cytoband breakpoints in CaP and HPIN.

Type Breakpoints CNAs
Loss Gain Total Loss Gain Total
CaP 84 59 143 52 38 90
HPIN 32 33 65 21 20 41
CaP+HPIN 116 92 208 73 58 131
Page 3 of 10
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Table 2: Chromosomal changes in microdissected HPIN and CaP DNA samples.

Tumour Type Loss Gain
CaP2-02 HPIN  3ql3.33-q21.1; 6p24.1-pter; 8pl1.1-p23.2; 13q14.3-q31.2 I1p21.3-p31.1; 2q24.3-q31.1; 8q23.3-qter; | 1p14.3-pl5.1
CaP5-02 HPIN  6ql4.1-q16.3; 8p23.1-pter; 16q21-qter 1p22.3-p31.1; 7p15.1-p15.3; 8ql3.3-qter
CaP 24-01 HPIN  2p23.1-p25.2; 4q22.1-q34.1; 8pl1.23-pter 3q21.2-q24; 12q14.3-q21.33
CaP 37-02 HPIN 8p23.1-pter; 7p22.1-pter; 20q11.22-ql3.11
CaP 70-01 HPIN  6ql6.3-q22.1; 8pl1.21-pter; 13ql3.1-q14.3 7p21.3-p22.1; 8q21.1I-gter; 16p12.3-pter; 20q11.23-q13.2
CaP 74-01 HPIN  8p2l.l1-pter; 10q21.3-q23.1; 18q21.32-q22.2; 21q21.3-qter 7q32.3-q36.1; 16p12.3-p13.13; 20p11.23-pl2.1
CaP 36-02 HPIN  8pll.23-pter; 10q23.31-q25.1; 16q22.1-qter I6pl2.2-pter; 17q24.2-qter
CaP 7-99 Cancer 2ql4.2-q21.2; 5ql4.1-q22.1; 6ql6.1-q21; 8p21.3-p23.1; 4q21.21-q21.23; 7p15.3-p21.3; 7q1 1.23
10922.1-q23.33; 13ql4.11-q22.2
CaP7-01  Cancer 1p2l1.1-p32.3; 2q33.1-q33.3; 5ql4.1-q21.3; 6ql6.1-q22.1; 4p13-p15.1; 4922.2-q24; 7q31.1-qter; 8q21.1 I-qter; 9p22.3-
8pl1.23-pter; 10q23.31-qter; 13q12.13-ql14.11 p24.1; 14q13.1-q21.3
CaP 7-02  Cancer 2q24.2-q31.1; 7q22.3-qter; 8p| 1.22-pter; 10q22.2-q23.33;
18qll.1-q22.3
CaP 11-01 Cancer 8pll.21-pter; 10q22.2-q23.33; 12p13.2; 13q13.3-q32.2; 1932.1; 5q14.2-q14.3; 8q13.3-q21.2
16q24.1-qter; 22ql .2 1-qter
CaP 11-02 Cancer Ipl3.1-pl13.2; 1p22.3; 2p16.3; 6ql2-ql6.1; 8p21.1-pter; 7p22.1-pter; 7q11.23; 8q22.3-qter; 16p12.2-pter; 19p;
10g25.3-q26.11 19q13.33-gter
CaP 14-00 Cancer 6p24.1-pter; 8pll.21-pter; 10q23.31-q23.32; 15q22.33-q24.1  1p21.3-p32.1; 3q25.33-q27.3; 4pI3-p15.1; 4ql3.1-q13.3;
7p15.3-p22.1; 7q21.11-q21.3; 7q31.1-q31.33; 8ql |.22-qter;
I1ql4.1-14.3
CaP 14-02 Cancer Ipl3.1-p13.2; 1p22.3; 6q16.1-q16.3;8p21.2-p23.1;8ql2-qter; 7p22.1-pter; 7ql 1.23; 8p23.2-pter; 18q21.1;20q11.21-q13.12
10q21.1-q21.2; 10q23.1-923.32; 10925.2-q26.11; 11922.3-
qter; 12p13.2; 13q12.3-q21.33; 15q13.1-q21.3; 16q12.2-gter
CaP 32-02 Cancer 3q26.33-q27.3; 8p|1.22-p23.2; 13ql3.3-qter; 16q23.1-qter; 1p35.2-p36.11; 7p22.1-p22.2; 7q11.23; 15ql 1.2-q22.32;

18921.33-q22.1

16p12.2-13.11; 19p13.11-pter

within the cytoband 8p11.22-p23.2 that was commonly
lost in >60% of the CaP samples. A list of the genes
present within these consensus or commonly lost regions
is displayed in Table 3.

Discussion

Chromosome copy number abnormalities (CNAs) are
common in most cancers, with specific regions of ampli-
fication or deletion being associated with specific tumour
types, stages or outcomes [16-18]. The introduction of
metaphase CGH [3] to study these CNAs has eliminated
the requirement to obtain metaphase spreads from the
tumour samples, which was often challenging due to tech-
nical difficulties in culturing certain tissues. Though met-
aphase CGH allows for more samples to be examined, it
provides a relatively limited resolution and still requires
substantial cytogenetic experience to analyse the results.
The recent development of array CGH has opened up the
field of CGH research and permitted more laboratories to
study an ever-increasing number of tumour types and
stages. The application of BAC microarrays to analyse
human samples is straightforward and their high-
throughput nature makes them the method of choice for
rapid detection of genetic alterations.

When analysing heterogeneous tumour samples, the
gaCGH results obtained from "bulk extracted" DNA are
likely to be inaccurate. However, with the use of LCM and

MDA we have been to able obtain highly purified HPIN
and CaP DNA and thus identify the particular chromo-
somal changes associated with the two disease stages.

In this study, we have used a 2,400-element BAC microar-
ray with a resolution of ~1 Mb to study CNAs in a set of
15 patient samples comprised of 7 HPIN cases and 8 CaP
cases. For the 7 HPIN cases, 41 genomic alterations (20
gains, 21 losses) were identified, in contrast to the 90
genomic alterations (38 gains, 52 losses) seen for the 8
CaP cases. As with other cancers, CaP development and
progression is likely to be the outcome of a series of step-
wise genetic changes. The accumulation of CNAs, which
occurs during this process, although likely due to
increased genetic instability, is non-random and may
indicate chromosomal regions important in tumourigen-
esis. It is suggested that failure in the fidelity of homolo-
gous recombination within the repetitive sequences, that
comprise the kinetochore complex, could lead to recur-
rent loss of 8p and gain of 8q by rearrangement of chro-
mosome 8-specific alphoid centromeric sequences. Thus,
the high fidelity process of homologous recombination
can be the major DNA repair pathway, which is indispen-
sable for the maintenance of genetic stability.

Examination of our array results indicates that aberrations
involving parts or all of 1p, 6q, 7p, 7q, 8p, 8q, 10q, 13q
16p and 16q are most common, which is concordant with
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Figure 2

Summary of chromosomal losses and gains in a) HPIN (n = 7) and b) CaP (n = 8). Number of samples of each type with gain or
loss of the chromosome arm is shown by black and grey bars, respectively.

previous metaphase [19,20] and array CGH [4,21] results.
It is therefore likely that the alterations in copy number
are part of a programmed cycle of events that promote
tumour development and progression as well having an
impact on disease-specific survival.

A comparison of the CNAs present in the HPIN and CaP
samples identified a significant increase in copy number
for 7q (P<0.01, chi square test) and a significantly
increased frequency of loss for 10q (P<0.01, chi square
test) and 13q (P<0.0001, chi square test). In genotype/
phenotype correlations, gain of chromosome 7q [22] and
loss of 13q [23] have been associated with advancing
tumour stage and aggressiveness, which is in agreement
with the results presented here. However, gain of 8q [24]

and loss of 16q [25] have also been linked to tumour pro-
gression, but our data do not show any significant differ-
ence for these CNAs in our HPIN and CaP samples. This
would suggest that 8q and 16q CNA's are likely to be early
events in tumourigenesis. In addition, they may also iden-
tify HPIN and CaP samples that are likely to progress.

Apart from the commonly reported CNAs, additional
alterations that have been less frequently reported in ear-
lier CGH studies have also been identified. These include
gains on 12q (HPIN) and loss of 4q and 10q (HPIN and
CaP). Whether the identification of 12q and 4q regions
will provide additional insight into CaP progression is not
yet clear. Further analysis using a platform such as tissue
microarrays, which permits the screening of different dis-
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Table 3: Consensus regions of copy number gain. Names in bold indicate those genes that have been implicated in prostate cancer.

The * symbol indicates the same candidate genes from HPIN.

Chromosome Region Frequency Candidate genes
HPIN Gain
Ip 1p22.3 — p31.1 37.5% IGFBP10
2q 2q24.3 — q31.1 25% TLKI, ITGA6
7p 7p22.1 37.5% NUDTI, PDGFA
7pl5.1 —pl5.3 25% GPNMB, AHR
8q 8q2l.11 — qter >37.5% PTK2, RAD21, MLZE, WISPI, NOV, ENPP2, MYC, PSCA, PTP4A3, KCNK9, TPD52, MMP| 6,
NBS|, FABPS, E2F5, BAALC, EBAGY
12q 12q14.3 — q21.33 25% MDM2
16p 16p12.3 -pl3.13 37.5% BFAR
20q 20ql1.23 -ql3.11 25% MMP9, C200RF I, SRC, GHRH, E2Fl, DNLC2A, BASE, CDC9ILI, WFDC2, SLPI,
CYP24, BMP7, CSEIL
HPIN Loss
4q 4q34.1 25% FAT, MORF4, CASP3
6q 6ql6.3 37.5%
8p 8pl1.23 —p23.3 >50% SFRPI, NKX3A, TRIM35, REAM, RBICCI, PDGFRL, FGLI, TNFRSFI0B, LZTSI, DLCI, MTSGI,
TUSC3, FLJ32642, MTSSI, PINXI, DEFBI, CSMDI
10q 10q23.1 25%
10g23.2 — q25.1 25% PTEN, MXI1, LGI1, PDCD4, LAPSERI, RNF27, SUFU, CASP7, LIMABI, NEURL
13q 13q13.1 —ql4.13 RFP2, TSC22, DBM, DDX26, KCNRG
13q14.3 25% DLEU2, DLEUI, CHCIL, FAMI0A4, FKHR
lé6q 16q22.1 — qter 37.5% TERF2, CDHI, DERPC, WWOX, OKL38, CBFA2T3, CDH13, WFDCI, MAF, FOXFI, MVD
18q 18q21.32 — q22.2 25% PMAIP|
CaP Gain
4p 4p13 —pl5.1 25% UCHLI, CD38
7p 7p22.1 50% *
7q 7ql11.23 50% LIMKI, CLDN4, HSPBI
7q31.1 —q31.33 25% NRCAM, PTPRZI, POTI
8q 8q2l.11 — qter >50% *
16p 16pl2.2 —pl3.13 25% *
19p 19p13.11 — pter 25% VAVI, RAB3D, ELAVLI, JUN-B, JUN-D,EPOR, DRILI, BSG, ANGPTL4
CaP Loss
Ip 1p22.3 37.5%
Ip13.1 —pl3.2 25% ST7L
5q 5ql4.2-ql4.3 25%
6q 6qlé6.1 50%
8p 8pl1.22-p233 >50% *
10q 10q22.2 — q23.33 >37.5% UNC5B, BMPRIA, BLNK, PTEN
10g25.3 — q26.11 37.5% DMBTI, TACC2, WDRI |, FGFR2, DEC, BCCIP
12p 12p13.2 25% cDb9
13q 13q13.3 — q26.11 >50% BRCA3, KLF5 *
l6q 16q24.1 — qter 37.5% *
18q 18q21.33 — q22.1 25% *

* indicates the same candidate genes from HPIN. Names in bold indicate those genes that have been implicated in prostate cancer.

ease stages from large patient cohorts, will help better
identify their frequency and also the potential use of
genomic imbalance in diagnosis of CaP. The value of
genomic analysis in CaP was recently demonstrated by the
discovery of a high frequency of chromosomal transloca-
tions leading to rearrangement of the fusion oncoproteins
ERG or ETV1 with TMPRSS2 [26].

A common problem when analysing archival tissue is the
availability of a suitable quality and quantity of RNA to
study expression changes. Though RNA amplification tech-
niques [27] can generate a sufficient quantity, obtaining
RNA of the required quality is often challenging. Previous
reports have demonstrated a relationship between altera-
tions in chromosomal copy number and alterations in
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gene expression [28,29]. The ability to distinguish these
regions will point to genes, which may either directly
(tumour suppressor gene loss or oncogene gain) or indi-
rectly contribute to tumour development and progression.
As aresult, CGH can be used as a surrogate for gene identi-
fication. Candidate genes, which have previously been
implicated in CaP have been highlighted in bold in Table
3. The roles of MYC [30-32], PSCA [33-35], and MDM?2
[36-38] have all been well reported and alterations in gene
dosage correlate well with their change in expression.
However, other candidate genes have been less well stud-
ied. For example, EBAGY, whose increased expression in
CaP is a negative prognostic indicator, has a potential role
in progression by enabling cancer cells to evade the
immune response [39]. NBS1, which has been identified as
a founder mutation causing an increased susceptibility to
prostate cancer [40], is involved in processing/repair of
DNA double strand breaks and in cell cycle checkpoints,
thus its deregulation will likely contribute to chromosomal
instability. FKHR, which is a member of the FOXO fork-
head transcription factor family, is thought to play a regu-
latory role in several cellular functions including cell
proliferation and survival [41]. Loss of FKHR expression, as
observed in CaP cell lines, is likely to abrogate this control
leading to tumour cell growth. Though these genes have
previously been implicated in CaP there are additional
genes, including both oncogenes and tumour suppressor
genes, which reside within all of the affected regions that
may play an important role in the aetiology of the disease.
Further analysis of these other candidates may identify
their potential as molecular targets for diagnosis and treat-
ment.

Several of the genes present within altered regions of the
genome are associated with genetic pathways, indicating
that these pathways are likely to be important in prostate
tumourigenesis.

Conclusion

The combination of techniques used in this study has
allowed for the identification of consistent regions of
copy number change, ranging from specific cytobands to
whole chromosomes, starting with as little as 5-10 ng of
DNA. Through our use of LCM, we have also identified
several lower frequency CNAs which may not have been
detected when using bulk extracted DNA due to the heter-
ogeneous nature of prostate tissue. In addition, several
interesting candidate genes have been observed within the
altered chromosomal regions. Although some have
already been extensively studied others, which have not,
may prove to be of clinical importance. Genetic screening
strategies that combine FISH and immunohistochemistry
for the detection of various combinations of chromo-
somal gains and/or losses and altered gene expression are

http://www.biomedcentral.com/1471-2164/7/65

likely to be of great use in diagnosis and prognosis predic-
tion.

Methods

Tissue accrual

Fresh prostate tissue was obtained from radical prostatec-
tomies performed at The University Health Network
(UHN), Toronto, with the informed patient consent and
approval of the institutional research ethics board. The tis-
sue was embedded in OCT frozen section medium
(Stephens Scientific, Riverdale NJ, USA) and stored at -
80°C until required. For all samples, the presence of
HPIN and CaP was verified by histologic assessment of
frozen sections by a urological pathologist (A.E.).

Cohort selection

Patient samples for gaCGH analysis were selected based
on two criteria; first, the presence of clearly identifiable
regions of HPIN and/or CaP and second, the availability
of good quality high molecular weight DNA. DNA quality
was assessed by DNA extraction from a single tissue sec-
tion and visualisation by agarose gel electrophoresis. A
cohort consisting of 15 cases (7 HPIN and 8 CaP derived
from different patients) were selected based on these cri-
teria.

Laser capture microdissection

The selected fresh-frozen prostate tissue samples were cut
onto microscope slides (8 um thickness) and stained
using the HistoGene LCM frozen section staining kit (Arc-
turus, USA). Foci of HPIN and CaP were identified from
stained prostate tissue sections and a minimum of 1000
cells were removed from these regions by LCM using the
Cell Robotics LaserScissors system (Cell Robotics Inc.,
USA).

DNA extraction

DNA was extracted using the QlAamp DNA Micro Kit
(Qiagen, USA) and the DNA concentration was deter-
mined using the PicoGreen dsDNA Quantitation kit
(Molecular Probes Inc., USA). Both procedures were per-
formed following manufacturers instructions.

Strand displacement amplification

DNA was amplified using the GenomiPhi Amplification
Kit (Amersham Biosciences, USA) according to manufac-
turer's instructions. Briefly, amplification was carried out
in two individual steps. The step 1 reaction mixture con-
tained 5-10 ng (1000 to 2000 cell equivalents) of DNA
(from diluted reference or test DNA) in 1 pl of sterile
water and 9 pl of Sample Buffer. This mixture was heated
at 95°C for 3 minutes and then chilled on ice. The step 2
reaction (amplification) mixture contained 9 pl of Reac-
tion Buffer, 1 pl of Enzyme Mix and the 10 pl from Step
1. The amplification reaction was incubated at 30°C for
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16-18 hours. The enzyme was inactivated by heating at
65°C for 10 minutes, followed by cooling to 4°C. This
method of WGA consistently produced in excess of 5 ug
of DNA from a starting concentration of 5-10 ng.

Assessment of DNA quality and strand displacement
amplification

Five microlitres of each amplification reaction was electro-
phoresed through a 1% agarose gel and stained with
ethidium bromide in order to assess product yield and
product length. All amplification products were purified
by phenol-chloroform extraction and DNA concentration
and purity were determined by measuring absorbance at
A260 and A280.

Spectral genomic BAC arrays

The genomic DNA arrays used in these experiments were
obtained from Spectral Genomics Inc. and consist of
approximately 2400 unique BAC and PAC clones, which
provide an average genomic resolution of 1 Mb. CGH
experiments were performed using the amplified patient
DNA as the "test" and amplified female placental DNA as
the "normal". In addition, control experiments were per-
formed, corresponding to DNA before and after amplifi-
cation (normal non-neoplastic prostate epithelial DNA
versus normal non-neoplastic prostate epithelial DNA,
normal non-neoplastic prostate epithelial DNA versus
normal female placental DNA and DNA from a cancer cell
line versus normal control DNA).

Reference DNA and test DNA were first digested overnight
at 37°C using 10 units of Rsal (Invitrogen) in a 10 pl reac-
tion. The digested DNA was labeled using the protocol
optimized by Spectral Genomics, with separate labeling
reactions for Cy3 and Cy5 being set up for both reference
and test DNA. Briefly, labeling reaction were set up con-
taining 2 pg of DNA, 20 pl of 2.5x random primer/reac-
tion buffer mix (Invitrogen) and sterile water up to a final
volume of 45 pl. The reaction mix was boiled for 5 min-
utes prior to cooling on ice and the addition of 2.5 pl of
Spectral labeling buffer (Spectral Genomics, Houston,
U.S.A), 1.5 pl of either Cy3-dCTP (1mM, Applied Biosys-
tems, Foster City, U.S.A) or Cy5-dCTP (1 mM, Applied
Biosystems) and 1 pl of Klenow Fragment (BioPrime labe-
ling kit, Invitrogen). The reaction was mixed gently and
then incubated for 2 hours at 37 °C. Following incubation
the reaction was stopped by the addition of 5 ul 0.5 M
EDTA (pH8) and heating at 72°C for 10 minutes.

The Cy3 labeled test DNA was combined with the Cy5
labeled normal reference DNA and vice versa. Each com-
bined probe was mixed with 45 pl of Spectral Hybridisa-
tion Buffer (Spectral Genomics), 11.3 pl of 5 M NaCl and
110 pl of room temperature isopropanol. The samples
were incubated in the dark at room temperature for 10-15

http://www.biomedcentral.com/1471-2164/7/65

minutes and centrifuged at 16,000 x g for 10 minutes and
the supernatant discarded. The pellets were then washed
with 500 pl of 70% ethanol. The supernatant was carefully
removed and the pellets air-dried at room temperature in
the dark. For hybridisation, the pellets were first resus-
pended in 10 pul of sterile water prior to being mixed with
30 pl of Spectral Hybridisation Buffer II (Spectral Genom-
ics) by pipetting. The reconstituted probes were then incu-
bated at 72°C for 10 minutes, placed on ice for 5 minutes
and then incubate for 30 minutes at 37°C. The probes
were hybridised to BAC arrays, covered with a 22 x 60 mm
coverslip and incubated for 12-16 hours at 37°C in a
humidified chamber.

The wash buffers, with the exception of Wash I, were pre-
warmed to 50°C. The slides were gently dipped into and
out of Wash 1 (2x SSC, 0.5% SDS) until the coverslip
detached from the slide. The slides were then washed once
in Wash II (2 x SSC, 50% deionized Formamide, pH 7.5)
for 20 minutes, followed by successive washes in Wash III
(2x SSC, 0.1% NP-40, pH 7.5) for 20 minutes and Wash
IV (0.2x SSC, pH 7.5) for 10 minutes. All washes were per-
formed at 50°C, with the exception of Wash I. The slides
were briefly submerged in distilled deionized water for 5-
10 seconds and centrifuged for 5 minutes at 750 rpm to

dry.

Data collection and analysis

The slides were scanned using an Axon GenePix 4000 A
confocal scanner, each fluorescence signal was collected
separately and quantified with the GenePix Pro 3.0 soft-
ware (Axon Instruments, U.S.A). The data was normalised
and analysed using Normalise Suite v2.4 [42], all regions
of loss or gain were determined as those that were 2 stand-
ard deviations above the mean baseline for each separate
sample.
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Additional material

Additional File 1

Genomic comparison of gaCGH results obtained from non-amplified male
DNA versus non-amplified male DNA hybridisation and amplified male
DNA versus amplified male DNA hybridisation. Blue line indicates the
chromosome position plotting of amplified DNA data. Black line indicates
the chromosome position plotting of non-amplified DNA data.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-65-S1.png|

Page 8 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-7-65-S1.png

BMC Genomics 2006, 7:65

Additional File 2

Genomic comparison of gaCGH results obtained from non-amplified male
versus non-amplified female DNA hybridisation and amplified male
DNA versus female DNA hybridisation. Blue line indicates the chromo-
some position plotting of amplified DNA data. Black line indicates the
chromosome position plotting of non-amplified DNA data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-65-S2.png]

Additional File 3

Genomic comparison of §aCGH results obtained from non-amplified
DNA from the colorectal cell line DLD1 versus non-amplified control
DNA male hybridisation and amplified DNA from the colorectal cell line
DLD1 versus amplified control DNA hybridisation. Blue line indicates the
chromosome position plotting of amplified DNA data. Black line indicates
the chromosome position plotting of non-amplified DNA data. Detection
of gain and loss is shown by cyan and pink bars, corresponding to ampli-
fied and non-amplified DNA, respectively.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-65-S3.png]

Additional File 4

H&E sections show an example of LCM. Dissection of HPIN. Top picture
represents the tissue before dissection, middle picture is after dissection,
and bottom picture is the cap tissue.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-65-S4.tiff]
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