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Abstract

Background: Histone modification regulates chromatin structure and influences gene expression
associated with diverse biological functions including cellular differentiation, cancer, maintenance
of genome architecture, and pathogen virulence. In Entamoeba, a deep-branching eukaryote, short
chain fatty acids (SCFA) affect histone acetylation and parasite development. Additionally, a number
of active histone modifying enzymes have been identified in the parasite genome. However, the
overall extent of gene regulation tied to histone acetylation is not known.

Results: In order to identify the genome-wide effects of histone acetylation in regulating E.
histolytica gene expression, we used whole-genome expression profiling of parasites treated with
SCFA and Trichostatin A (TSA). Despite significant changes in histone acetylation patterns,
exposure of parasites to SCFA resulted in minimal transcriptional changes (I | out of 9,435 genes
transcriptionally regulated). In contrast, exposure to TSA, a more specific inhibitor of histone
deacetylases, significantly affected transcription of 163 genes (122 genes upregulated and 41 genes
downregulated). Genes modulated by TSA were not regulated by treatment with 5-Azacytidine, an
inhibitor of DNA-methyltransferase, indicating that in E. histolytica the crosstalk between DNA
methylation and histone modification is not substantial. However, the set of genes regulated by TSA
overlapped substantially with genes regulated during parasite development: 73/122 genes
upregulated by TSA exposure were upregulated in E. histolytica cysts (p-value = 6 % 10-53) and 15/
41 genes downregulated by TSA exposure were downregulated in E. histolytica cysts (p-value = 3 x
10-7).

Conclusion: This work represents the first genome-wide analysis of histone acetylation and its
effects on gene expression in E. histolytica. The data indicate that SCFAs, despite their ability to
influence histone acetylation, have minimal effects on gene transcription in cultured parasites. In
contrast, the effect of TSA on E. histolytica gene expression is more substantial and includes genes
involved in the encystation pathway. These observations will allow further dissection of the effects
of histone acetylation and the genetic pathways regulating stage conversion in this pathogenic
parasite.
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Background

Regulation of gene expression is a complex process con-
trolled by sequence-specific DNA binding proteins, mod-
ulation of chromatin structure, and post-transcriptional
modifications. In recent years, increased attention has
been given to the role of epigenetic mechanisms, such as
the modification of histone proteins, in gene regulation
[1]. These modifications, including methylation, phos-
phorylation and acetylation, occur at specific amino acids
on the N-terminal tails of histone core proteins, particu-
larly H3 and H4, and regulate chromatin structure and
gene expression [2,3]. Methylation of histones at lysine
residues has typically been associated with transcription-
ally silent heterochromatin [4]. In contrast, lysine acetyla-
tion is generally thought to trigger the opening of
chromatin structure and transcriptional activation [5,6].
However, this is an oversimplified model and does not
represent the true complexity of these processes, which
can also differ between lower and higher eukaryotes [7].
Individual modifications of histones may be interdepend-
ent, with methylation of certain lysine residues blocking
or enhancing the addition of acetyl groups nearby [8,9].
In addition, methylation of arginine residues may actually
activate the transcription of some genes. A number of pro-
teins have been identified which regulate these modifica-
tions, including histone acetyltransferases (HATS),
histone deacetylases (HDACs), histone methyltrans-
ferases (HMT), and a recently discovered class of histone
demethylases [10].

The protozoan parasite Entamoeba histolytica has two mor-
phologically distinct life cycle forms, the infectious cyst
form that transmits disease from person to person, and
the trophozoite form that multiplies in the colon and
eventually differentiates back into the cyst form. While in
the colon, the trophozoite form causes invasive disease
(colitis and liver abscess) in 50 million people per year
making amebiasis a leading parasitic cause of death
worldwide [11]. Despite its importance for human health,
little is known about how this parasite modulates its gene
expression during host invasion or conversion from one
life cycle form to the other. Changes in transcript abun-
dance in E. histolytica are associated with host invasion
[12], with exposure to oxidative stress [13], and with con-
version between the cyst and trophozoite forms [14], but
the mechanisms regulating transcript levels are poorly
understood. A number of amebic promoter elements and
transcription factors have been described [15] and DNA
methylation has been identified as playing a role in con-
trolling a limited amount of amebic gene expression
[16,17]. Functional histone-modifying enzymes, such as
HATs of the MYST and GNAT families, and a Class I
HDAC, and acetylated histones have been described in E.
histolytica 18], but their activities have not yet been tied to
gene expression changes.

http://www.biomedcentral.com/1471-2164/8/216

In Entamoeba invadens, a parasite of reptiles, a role for his-
tone modifications in the regulation of stage conversion
has been proposed. Histones of in wvitro cultured E.
invadens trophozoites are constitutively acetylated, with
the levels of acetylation increasing in the presence of Tri-
chostatin A (TSA), but decreasing in the presence short
chain fatty acids (SCFA) such as butyrate [19]. The
decreased histone acetylation resulting from butyrate
exposure was unexpected, as this compound induces
increased histone acetylation in all other eukaryotic cells
in which it has been examined [20-22]. Treatment of E.
invadens trophozoites with TSA or SCFAs blocks their in
vitro development to the cyst stage, suggesting a biological
role for histone modification in Entamoeba development
[23]. The link between cyst development and histone
acetylation observed in E. invadens has not been recapitu-
lated in E. histolytica due to lack of an in vitro system for
encystation. Complicating the studies of E. histolytica is
the fact that individual laboratory strains of the parasite
have different baseline histone acetylation patterns [19].
For example, E. histolytica HM-1:IMSS under standard cul-
ture conditions does not have any detectable acetylated
H4, whereas two other strains, E. histolytica Rahman and
E. histolytica 200:NIH, have multiply-acetylated H4 popu-
lations under the same growth conditions. Additionally,
both of these strains shift to a hyperacetylated H4 pattern
when treated with TSA. Furthermore, when grown with
SCFAs, E. histolytica Rahman and E. histolytica 200:NIH H4
histones become hypoacetylated, similar to the response
of E. invadens. The unusual hypoacetylation response to
butyrate of Entamoeba suggests that SCFAs regulate his-
tone acetylation and gene expression in a unique way, one
that most likely reflects parasite adaptation to growth in
the presence of the large amounts of the short chain fatty
acids found in the colon.

In other protozoan parasites histone modification plays
important roles in life cycle progression and antigenic var-
iation. In Toxoplasma gondii, chromatin immunoprecipita-
tion analysis has demonstrated differential acetylation
and methylation in the promoters of stage-specific genes
during stage conversion [24]. In addition, treatment with
drugs that affect histone acetylation or arginine methyla-
tion affected both stage-conversion and overall gene
expression [24,25]. In Plasmodium falciparum histone H4
acetylation states and promoter occupation by the Sir2
transcriptional regulator have been linked to changes in
the expression of var genes [26].

To gain insights into the role of histone acetylation in reg-
ulating gene expression in E. histolytica we treated E. histo-
Iytica trophozoites with SCFA or TSA and performed
whole genome transcriptional profiling. The data revealed
that in E. histolytica there was minimal transcriptional
response to SCFAs, with ~0.1% of genes modulated + 2-
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fold. In contrast, the transcriptional response to TSA was
greater (~2% of genes modulated + 2-fold), and the gene
expression changes overlapped significantly with the tran-
scriptional signature of the developmental pathway to
cysts [14]. This work represents the first genome wide
analysis of transcriptional changes associated with his-
tone modifications in E. histolytica and reveals a subset of
developmentally regulated genes whose expression corre-
lates with changes in the level of histone acetylation.

Results

E. histolytica strains HM-1:IMSS, Rahman, and 200:NIH

have similar but not identical expression profiles of genes
encoding histone-modifying enzymes

To account for differences in levels of histone acetylation
between E. histolytica strains, we analyzed previously pub-
lished data from a whole genome microarray to compare
the gene expression profiles of three strains of E. histolytica
(HM-1:IMSS, Rahman and 200:NIH) [14]. Overall, the
expression profiles of the three E. histolytica strains were
highly similar although some genes whose transcript lev-
els were significantly different between strains (+ 2-fold
and p-value <0.05) were identified. Overall, 127 genes
had higher expression in E. histolytica HM-1:IMSS, 261
genes had higher expression in E. histolytica 200:NIH, and
71 genes had higher expression in E. histolytica Rahman
compared to the other two E. histolytica strains (Addi-
tional File 1). For our purposes, we focused on the expres-
sion levels of genes involved in the regulation of histone
acetylation and chromatin structure. Surprisingly, given
the absence of multiply acetylated histones in E. histolytica
HM-1:IMSS, several HAT genes (2.m00560 and
67.m00100) were expressed at relatively high levels in
HM-1:IMSS trophozoites (Additional File 2). Some differ-
ences in expression levels of histone modification genes
between the strains were identified. One HAT
(100.m00145) had significantly higher expression E. his-
tolytica 200:NIH. Two Sir2 family HDAC genes were
expressed differentially between strains: 251.m00088 was
expressed at significantly higher levels in E. histolytica HM-
1:IMSS and 2.m00521 was more highly expressed in E.
histolytica 200:NIH. The overexpression of particular Sir2
genes in yeast leads to global histone deacetylation [6].
The increased expression of a HAT gene in E. histolytica
200:NIH trophozoites and high expression of a Sir2
HDAC gene in E. histolytica HM1:IMSS is consistent with
the histone acetylation patterns in these strains. However,
the actual levels histone proteins and their relative
enzyme activities in these parasite strains will need to be
established before conclusions can be made about the
causes of the differences in levels of multiply-acetylated
histones in the isolates.

http://www.biomedcentral.com/1471-2164/8/216

Growth of E. histolytica in the presence of SCFA has
minimal effects on parasite gene expression

SCFA have substantial effects on histone acetylation and
development in Entamoeba [19,23]. To determine the
effect of SCFA on amebic growth, we tested the ability of
E. histolytica to grow in TYI-S-33 LG medium + SCFA. In
media with SCFA, there were no significant alterations in
growth of E. histolytica HM-1:IMSS and 200:NIH parasites
at 16 hours, the time points at which the microarray
experiments were performed (data not shown). To deter-
mine if growth with SCFA altered parasite gene expres-
sion, we compared the transcriptional profile of E.
histolytica 200:NIH trophozoites grown in TYI-S-33 LG
medium + SCFA. The E. histolytica 200:NIH strain was
used for this and subsequent microarray analyses because
it has an histone acetylation pattern similar to encysta-
tion-competent E. invadens and hence was the most likely
to provide insights into developmental pathways regu-
lated by histone acetylation [19]. For each strain and cul-
ture condition the number of arrays and the correlations
between array data sets are outlined in Tables 1 and 2.
Genes were considered differentially expressed if they had
a > 2-fold change and were significant with an FDR of <
0.05. Overall, few changes in gene expression were
observed when we compared E. histolytica 200:NIH grown
in TYI-S-33 or LG medium to those grown in LG medium
with SCFA. Only 11 genes were differentially regulated by
addition of SCFA, and there were no changes in genes
associated with histone modifications (Table 3; Addi-
tional File 3). Thus, although growth of E. histolytica
200:NIH trophozoites with SCFAs results in hypoacetyla-
tion of H4 histones [19], these changes are apparently not
associated with significant alterations in the gene expres-
sion profile of axenically grown trophozoites.

Growth of E. histolytica 200:NIH in the presence of TSA
changes the amebic transcriptional profile

To determine the effect of TSA on amebic growth, E. histo-
Iytica strains HM-1:IMSS and 200:NIH were grown in TYI-
S-33 LG medium # TSA. E. histolytica HM-1:IMSS tropho-
zoites died within 2-3 days in medium with 150 nM TSA,
whereas E. histolytica 200:NIH survived and grew but at a
much slower rate than in TYI-S-33 LG medium alone (Fig-
ure 1). As treatment with TSA has been shown to cause
histone H4 hyperacetylation [19], the effects of TSA on
parasite gene expression were determined by comparing
the transcriptional profile of E. histolytica 200:NIH tro-
phozoites grown in TYI-S-33 LG medium * TSA. Four
microarrays were hybridized with RNA from E. histolytica
200:NIH parasites grown in TYI-S-33 or LG medium and
compared to three microarrays hybridized with RNA from
E. histolytica 200:NIH parasites grown in LG medium plus
TSA for 16-72 hours. In contrast to the minimal transcrip-
tional changes seen in the SCFA treatment, TSA exposure
resulted in significant changes in gene expression. Overall,
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Table I: An overview of the microarrays generated and used in the analysis.

E. histolytica E. histolytica E. histolytica
200:NIH 200:NIH 200:NIH
Number of arrays 4 3 3
Minimum correlation of the arrays in condition 0.96 0.96 0.98
Culture medium TYI-S-33 or LG LG+SCFA LG+TSA

Summary of the culture conditions and number of arrays performed for each condition with E. histolytica 200:NIH.

163 genes, ~2% of the genes tested, showed altered tran-
script abundance, with 122 genes upregulated and 41
genes downregulated by TSA exposure (Tables 4 and 5;
Additional File 4). Of the 122 genes whose expression
increased with TSA treatment, 46 (38%) had normalized
expression < 0.2 in 200:NIH trophozoites grown in TYI-S-
33 or LG, indicating that they may be silenced under nor-
mal in vitro growth conditions.

Semi-quantitative RT-PCR confirmation of array results
To confirm the expression patterns observed by microar-
ray analysis, we performed semi-quantitative RT-PCR on 5
genes upregulated by exposure to TSA (135.m00113,
14.m00310, 337.m00049, 340.m00050 and
146.m00117), and 4 genes downregulated by exposure to
TSA (1.m00712, 223.m00071, 223.m00075, and
77.m00173) (Figure 2). The gene for ssRNA,
247.m00075, 13.m00291 and 7.m00480 were used as
loading controls. Serial dilutions of cDNA were per-
formed for each sample. In all cases, RT-PCR results con-
firmed the array data.

A substantial number genes regulated by TSA are also
developmentally regulated in E. histolytica

We compared the lists of genes regulated by TSA to a
number of transcriptional profiles previously generated
with E. histolytica parasites. There was no significant over-
lap of genes modulated by TSA with parasite genes modu-
lated in a mouse model of colitis [27] or after exposure to
5-Azacytidine [16]. However, the profile of genes regu-
lated by TSA was found to overlap substantially with the
profiles of genes differentially expressed in the two devel-
opmental stages (trophozoites and cysts) of E. histolytica
[14] (Figure 3 and Tables 4 and 5). There was significant

Table 2: Correlations of arrays used in analysis.

overlap between genes upregulated by TSA treatment and
cyst-specific genes, with 73 of the 122 genes upregulated
by TSA also upregulated in cysts (p-value = 6 x 10-33).
Genes downregulated by TSA treatment overlapped signif-
icantly with trophozoite-specific genes, with 15 of the 41
genes downregulated by TSA also downregulated in cysts
(p-value = 3 x 10°7). There was no significant overlap in
the opposite direction (4 genes downregulated by TSA
were upregulated in cysts and 4 genes upregulated by TSA
were downregulated in cysts). Genes that were upregu-
lated in both TSA-treated trophozoites and in cysts
include some of the most highly induced genes under
both conditions. An example is the hypothetical protein
(489.m00024), which shows a ~40-fold increase in
expression in TSA treated parasites and >500-fold increase
in cysts [14]. Also included in this group are several genes
encoding heat shock proteins (418.m00028 and
136.m00105) and putative signaling molecules (acid
sphingomyelinase, 18.m00321 and a protein kinase,
395.m00030).

Genes regulated in E. histolytica 200:NIH by exposure to
Trichostatin A

Heat shock proteins

A number of heat shock proteins, including Hsp70 iso-
forms (64.m00148, 584.m00019, 65.m00150 and
418.m00028) were induced by TSA treatment. Whether
these genes are regulated by histone acetylation, or
whether their induction is due to a stress response of the
parasites to growth in TSA is unclear at this point. A gene
expression response to heat shock was previously reported
to be linked to encystation in E. invadens [28], thus high
expression of these genes indeed appears to be character-
istic of the transcriptional profile of stage conversion.

E. histolytica

E. histolytica E. histolytica

200:NIH 200:NIH 200:NIH
(TYI-S-33 or LG) (LG+SCFA) (LG+TSA)
200:NIH (TYI-S-33 or LG) X 0.99 0.98
200:NIH (LG+SCFA) X X 0.98
200:NIH (LG+TSA) X X X

The average normalized microarray data of a given condition was compared to another condition and the correlations are shown.
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Table 3: E. histolytica genes regulated by exposure short-chain fatty acids.

Probe ID GenBank ID Description Fold-change FDR
Up-regulated

122.m00139_at XM 647238 ADP-ribosylation factor, putative 2.11 1.97E-02
14.m00310_at XM _651236 hypothetical protein 6.70 2.09E-03
205.m00100_s_at XM_645582 hypothetical protein 257 2.86E-02
22.m00285_at XM_650728 hypothetical protein 19.36 1.19E-11
295.m00030_at XM_644416 conserved hypothetical protein 20.75 3.12E-14
418.m00028_at XM_643537 70 kDa heat shock protein, putative 6.03 1.97E-02
522.m00017_at XM_643097 hypothetical protein 3.41 6.42E-03
522.m00018_x_at XM 643100 hypothetical protein 2.78 1.19E-03
585.m00015_s_at XM_642978 conserved hypothetical protein 3.16 1.82E-03
72.m00179_at XM_648717 hypothetical protein 6.25 5.69E-04
Down-regulated

5.m00482_at XM_651923 protein kinase, putative -2.82 2.86E-02

The mean trophozoite expression value for E. histolytica 200:NIH strain under standard culture conditions, the fold-change in SCFA treated
parasites, FDR, GenBank ID number, and gene annotations are shown. Ten genes are upregulated and one is downregulated. 205.m00100_s_at also

represents 105.m00129.

Signaling molecules

Genes regulated by treatment with TSA include several
that are likely to have functions in signal transduction.
These include protein kinases (14.m00339 and
395.m00030) and a Rho family GTPase (110.m00118),
all with increased expression in TSA-treated parasites. A
protein kinase (223.m00070) and a protein phosphatase
(131.m00139) are both downregulated during TSA treat-
ment. The regulation of these putative signaling mole-
cules by TSA may suggest a role for histone acetylation in
modulating signal transduction and responses to environ-
mental factors in E. histolytica. Also upregulated by TSA are
several genes, which could play a role in transcriptional
regulation such as a Myb family protein (175.m00117
and zinc finger domain containing proteins (211.m00072
and 68.m00203).

Virulence

Several genes with roles in E. histolytica virulence were
downregulated by TSA treatment. This includes two genes
encoding cysteine proteases: CP1 (242.m00078) and a
putative CP (10.m00362), lysozyme (52.m00148) and a
gene encoding the 35 kDa subunit of the amebic Gal/Gal-
NAc lectin (17.m00351). Several of these genes have pre-
viously been identified as being trophozoite-specific, thus
their down regulation is a further indication of the tran-
scriptional activation of the encystation pathway in TSA-
treated parasites [14].

Genomic regions controlled by histone acetylation

We investigated whether there were genomic regions con-
taining multiple genes that were regulated by TSA. Such
regions may be indicative of regions where gene expres-
sion is regulated by chromatin structure. We identified a
cluster of three genes on scaffold 123 (123.m00113,
123.m00122, and 123.m00123) that were all upregulated

by TSA. Additionally, a large cluster of genes strongly
down regulated by TSA was observed on scaffold 223
(223.m00067, 223.m00068, 223.m00069, 223.m00070,
223.m00071, 223.m00074, 223.m00075, 223.m00076,
223.m00077, 223.m00078 and 223.m00079). The 223
chromosomal region had also been identified as being
enriched for trophozoite-specific genes [14]. Whether
expression from these genomic regions is repressed by his-
tone acetylation, or whether the effect is indirect, needs to
be determined experimentally.

Discussion

Gene expression can be transcriptionally controlled by
epigenetic mechanisms including DNA methylation and
histone modification. In order to define the genome-wide
extent of regulation of gene expression by histone modifi-
cation in Entamoeba histolytica, we performed expression
profiling of E. histolytica trophozoites with short chain
fatty acids and Trichostatin A (both histone deacetylase
inhibitors). Our results identified that in contrast to
effects seen in other eukaryotic systems, and despite
inducing changes in histone acetylation, SCFA induce
minimal transcriptional changes in E. histolytica tropho-
zoites. However, the parasites do modulate gene expres-
sion significantly in response to TSA. The TSA induced
transcriptional signature was distinct from changes
induced by inhibition of DNA methylation but strongly
overlapped with the gene expression profile of encystation
in E. histolytica.

E. histolytica trophozoites normally grow and differentiate
in the presence of SCFA while they reside in the lumen of
the colon. SCFA are known to regulate gene expression in
colonic epithelial cells which are normally exposed to
SCFA [29-32]. When Entamoeba parasite isolates are ini-
tially collected from infected individuals, the trophozoites
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Table 4: Subset of E. histolytica genes upregulated by exposure to Trichostatin A.

Probe ID GenBank ID Description Fold-change FDR

489.m00024_at XM_643195 hypothetical protein 39.96 7.60E-16
14.m00310_at XM 651236 hypothetical protein 39.67 2.32E-20
295.m00030_at XM_644416 conserved hypothetical protein 38.77 2.29E-20
522.m00017_at XM_643097 hypothetical protein 20.45 4.53E-15
418.m00028_at XM_643537 70 kDa heat shock protein, putative 17.45 6.71E-10
36.m00204_s_at XM_650008 hypothetical protein 14.84 1.22E-08
451.m00037_s_at XM_643383 hypothetical protein 14.68 3.96E-04
556.m00022_x_at XM_643031 hypothetical protein 14.37 5.75E-07
12.m00306_at XM 651386 hypothetical protein 13.25 1.64E-05
376.m00054_s_at XM_643784 hypothetical protein 13.02 1.62E-10
564.m00020_x_at XM_643013 hypothetical protein 12.93 8.19E-10
82.m00164_s_at XM_648353 hypothetical protein 12.88 8.00E-12
28.m00298_s_at XM_650406 hypothetical protein 11.79 5.97E-09
110.m001 18_at XM_647568 Rho family GTPase 11.60 2.26E-14
50.m00195_s_at XM 649449 hypothetical protein 11.36 3.02E-05
135.m00094_at XM 646923 hypothetical protein 10.98 2.38E-08
493.m00030_x_at XM_643175 hypothetical protein 10.25 1.40E-24
337.m00049_at XM_644075 hypothetical protein 9.93 5.43E-07
164.m00105_x_at XM 646368 hypothetical protein 9.92 4.32E-05
847.m0001 | _x_at XM_642805 hypothetical protein 9.63 9.76E-05
205.m00100_s_at XM_645582 hypothetical protein 9.48 3.01E-08
373.m00052_at XM 643804 hypothetical protein 871 1.14E-06
395.m00030_x_at XM_643673 protein kinase, putative 8.68 6.64E-04
749.m00013_s_at XM_642848 hypothetical protein 8.6l 1.85E-03
227.m00077_at XM_645230 hypothetical protein 8.40 |.70E-08
728.m00012_x_at XM_642855 hypothetical protein 837 5.83E-06
460.m00025_x_at XM_643328 hypothetical protein 8.00 3.05E-02
167.m00116_x_at XM_646306 hypothetical protein 7.98 3.77E-03
621.m00019_at XM 642928 hypothetical protein 7.84 8.57E-06
584.m00019_at XM_642979 heat shock protein 70, putative 7.82 5.54E-06
477.m00021 _at XM_643239 hypothetical protein 7.60 1.27E-03
123.m00123_x_at XM_647209 conserved hypothetical protein 7.48 3.84E-05
76.m00146_at XM 648554 hypothetical protein 7.34 1.75E-04
89.m00125_s_at XM_648139 hypothetical protein 7.32 2.51E-05
220.m00068_x_at XM 645332 hypothetical protein 7.14 2.48E-03
263.m00053_at XM_644795 hypothetical protein 6.95 2.56E-04
804.m00006_x_at XM_642821 hypothetical protein 6.94 2.44E-04
72.m00179_at XM_648717 hypothetical protein 6.85 1.17E-04
211.m00072_at XM_645468 zinc finger protein, putative 6.80 5.04E-03
102.m00082_at XM 647784 hypothetical protein 6.74 6.19E-03
411.m00025_x_at XM_643570 hypothetical protein 6.68 8.26E-03
162.m00085_at XM_646412 predicted protein 6.61 3.81E-06
157.m00087_x_at XM_646502 conserved hypothetical protein 6.50 8.44E-04
12.m00326_at XM_651342 hypothetical protein 6.42 4.10E-04
52.m00169_x_at XM_649399 hypothetical protein 6.39 2.21E-03
22.m00288_at XM_650731 hypothetical protein 6.28 6.49E-04
71.m00129_at XM 648728 hypothetical protein 6.16 5.70E-05
6.m00428_at XM_651814 hypothetical protein 6.10 1.46E-04
496.m00027_x_at XM 643167 hypothetical protein 5.98 9.24E-06
135.m00113_at XM_646942 hypothetical protein 5.91 4.26E-03

The mean trophozoite expression value for E. histolytica 200:NIH strain under standard culture conditions, the fold-change in TSA treated parasites,
FDR, GenBank ID number, and gene annotations are shown. Genes in bold have been confirmed by RT-PCR. Genes regulated during trophozoite
to cyst development are shown in italics. Additional loci represented by crosshybridizing _s_at probe sets are as follows: 36.m00204_s_at:
88.m00180; 451.m00037_s_at: 467.m0003 | and 50.m00196; 376.m00054_s_at: | |6.m00123; 82.m00164_s_at: 82.m00157; 28.m00298_s_at:
481.m00033 and 90.m00158; 205.m00100_s_at: 105.m00129; 749.m00013_s_at: 142.m00151; 89.m00125_s_at: 357.m00038.
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are cultured with the accompanying bacteria, which pro-
duce SCFA. Subsequently, E. histolytica isolates are
selected for an ability to grow in medium that does not
contain bacteria or SCFA. As only a small number of genes
changed expression levels in response to SCFA, either the
axenic parasites have lost nearly all of their transcriptional
response to SCFA, or these compounds do not normally
exert a large influence on gene expression at the transcrip-
tional level in parasites in vivo. SCFAs do inhibit encyst-
ment, however, and based on the described results here,
this may be occurring via more subtle changes in tran-
script levels (that did not meet the fold-change criteria
applied to the data) or more likely through post-transcrip-
tional mechanisms.

In contrast to SCFA, treatment of E. histolytica 200:NIH
trophozoites with TSA demonstrated changes in gene
transcript levels. This indicates that when class I/Il HDAC
enzymes are specifically targeted in Entamoeba and
increased amounts of histone hyperacetylation occur [19],
transcriptional changes follow. Like other eukaryotic cells,
then, the expression of a small fraction of the genome of
Entamoeba parasites appears to be sensitive to hyper-
acetylation of core histones. Transcriptional profiling was
previously performed on E. histolytica parasites treated
with 5-azacytidine (5-AzaC), an inhibitor of DNA methyl-
transferase, showing that ~2.1% of genes were differen-
tially regulated by 5-AzaC exposure [16]. There was no
significant overlap between the genes found here to be
regulated by TSA and those regulated by 5-AzaC. Thus,
epigenetic types of regulation, including both DNA meth-
ylation and histone acetylation, do play roles in gene
expression mechanisms in E. histolytica, but the set of
genes regulated by these processes is limited and non-
overlapping. This is similar to the situation in Arabidopsis
thaliana, in which genes regulated by 5-AzaC and TSA do
not overlap, although a synergistic effect of treatment with
both compounds has been observed [33]. In contrast, in
human carcinoma cells TSA treatment results in DNA
demethylation [34], one indication of the increasing lev-
els of complexity of the mechanisms that establish his-
tone codes in higher eukaryotes [7].

The greater significance of the gene expression changes
induced by TSA was their overlap with the transcription
profile of parasites undergoing differentiation. Initially
these data may seem at odds with previously published
data in which addition of TSA to encysting cultures of E.
invadens was found to block encystment [23]. However,
there are several possible explanations for this result. First,
here we added TSA to vegetative E. histolytica trophozoite
stage cells, whereas previous studies tested the effects of
TSA on encysting E. invadens, and TSA effects on tropho-
zoites and encysting parasites may be distinct. Second, the
conclusions that TSA inhibits encystation in E. invadens

http://www.biomedcentral.com/1471-2164/8/216

were based on its ability to prevent production of a chitin-
containing cyst, the end product of the differentiation
pathway. The transcriptome data, in contrast, is a more
revealing assessment of induction of the differentiation
pathway. In fact, no genes known to encode proteins
involved in cyst wall synthesis, such as chitin synthase or
the glycoprotein Jacob, were regulated by TSA. Histone
acetylation may therefore play an early role in cell fate
determination and not regulate genes involved in the ter-
minal stages of differentiation. Another possibility is that
E. histolytica and E. invadens have opposing responses to
TSA. However, this seems unlikely given the recent obser-
vation that conditions that support encystation in E. histo-
Iytica also permit spontaneous encystation in E. invadens
[14], and both species respond to TSA with similar hyper-
acetylation responses [19].

Another model to consider is based on results from Toxo-
plasma gondii, in which the expression of both cyst and
tachyzoite-specific genes is regulated by histone acetyla-
tion states [24]. This finding implied the existence of
HATs and HDACs whose activities are developmentally
regulated. If a similar situation were also the case in Enta-
moeba, trophozoite-specific HDAC activity would nor-
mally block activation of cyst-specific genes in
trophozoites, and this block would be lifted upon TSA
treatment, leading to the observed expression of a fraction
of the cyst-specific genes. However, TSA treatment after
induction of the encystation program would repress cyst-
specific HDACs and inhibit the repression of trophozoite-
specific genes, hence arresting the encystation program
(Figure 4). Overall, the overlap between TSA-induced and
cyst-specific genes and the overlap between TSA-repressed
and trophozoite-specific genes is strong evidence that his-
tone acetylation states are part of the mechanisms that
regulate developmental pathways in E. histolytica.

Conclusion

We have used whole-genome expression profiling to dem-
onstrate that E. histolytica 200:NIH trophozoites have
dichotomous responses to SCFA and TSA, both histone
deacetylase inhibitors. Despite affecting changes in his-
tone acetylation, and in contrast to data from other
eukaryotic systems, short chain fatty acids induce mini-
mal transcriptional changes in E. histolytica trophozoites.
In contrast, TSA has both a significant effect on histone
acetylation and induces transcriptional changes. Impor-
tantly the transcriptional pathway modulated by TSA
overlaps significantly with the gene expression changes
seen with developmental conversion from trophozoites to
cysts. This work identifies for the first time a molecular
signature of TSA effects on E. histolytica parasites and lays
the groundwork for further dissection of the roles of his-
tone acetylation on amebic development.
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Table 5: E. histolytica genes downregulated by exposure to Trichostatin A.

Probe ID GenBank ID Description Fold-change FDR

1'11.m00118_at XM 647540 leishmaniolysin-related peptidase, putative -44.44 0.00E+00
233.m00105_at XM_645153 hypothetical protein -29.24 0.00E+00
7.m00429_at XM_651789 Beige BEACH domain protein, putative -21.88 85I1E-10
223.m00071 _at XM_645286 hypothetical protein -10.88 3.04E-04
31.m00224_at XM_650243 hypothetical protein -9.43 2.76E-03
1.m00712_at XM_652408 hypothetical protein -8.62 1.64E-05
223.m00075_at XM 645290 lipid phosphatase, putative -6.71 1.34E-03
105.m00133_at XM 647680 NADP-dependent alcohol dehydrogenase -5.81 8.19E-05
223.m00077_x_at XM_645292 hypothetical protein -5.65 8.47E-03
585.m00015_s_at XM_642978 conserved hypothetical protein -5.52 1.11E-02
223.m00069_at XM_645284 hypothetical protein -5.49 9.05E-03
223.m00068_at XM_645283 scavenger mRNA decapping enzyme, putative -5.24 2.27E-03
17.m00307_s_at XM_651008 fatty acid elongase, putative -5.08 1.34E-02
234.m00042_at XM 645139 hypothetical protein -5.00 2.34E-02
66.m00150_at XM_648887 high mobility group protein, putative -4.78 3.68E-02
131.m00139_at XM_647034 M-phase inducer phosphatase, putative -4.72 2.36E-02
249.m00083_at XM_644976 hypothetical protein -4.44 3.58E-03
7.m00436_at XM_651745 actobindin homolog, putative -4.31 7.67E-03
223.m00079_at XM_645294 cysteinyl-tRNA synthetase, putative -4.20 1.54E-02
425.m00057_s_at XM_643497 conserved hypothetical protein -4.10 2.14E-02
223.m00070_at XM 645285 protein kinase, putative -4.08 2.28E-02
4.m00636_at NA pseudogene, galactose-specific adhesin light subunit -4.00 4.34E-02
217.m00081 _s_at XM_645388 hypothetical protein -3.91 1.64E-02
92.m00148_s_at XM_648072 conserved hypothetical protein -3.88 4.66E-02
223.m00078_at XM 645293 ribonuclease, putative -3.85 3.89E-02
180.m001 14_at XM_646068 hypothetical protein -3.73 1.75E-03
223.m00067_at XM_645282 integral membrane protein, putative -3.73 3.58E-03
223.m00074_at XM_645289 hypothetical protein -3.72 |.80E-02
223.m00076_at XM_645291 hypothetical protein -3.42 9.24E-03
10.m00362_at XM_651510 cysteine proteinase, putative -341 3.20E-09
54.m00183_at XM_649345 hypothetical protein -3.33 4.69E-02
242.m00078_s_at XM 645064 cysteine protease | -2.89 3.47E-03
77.m00173_at XM_648536 hypothetical protein -2.76 2.82E-04
17.m00351 _at XM_651053 galactose-inhibitable lectin 35 kda subunit precursor -2.75 2.84E-02
9.m00419_at XM 651593 Fe-hydrogenase, putative -2.72 1.73E-03
52.m00148_at XM_649403 lysozyme, putative -2.61 4.36E-02
154.m00120_at XM_646541 glucosidase Il alpha subunit, putative -2.57 3.53E-02
9.m00416_at XM_651590 hypothetical protein -2.49 4.28E-02
47.m00182_at XM 649559 fatty acid elongase, putative -2.26 3.57E-02
22.m00269_s_at XM_650745 hypothetical protein -2.19 2.76E-02
77.m00178_s_at XM_648541 surface antigen ariel | -related -2.08 3.15E-02

The mean trophozoite expression value for E. histolytica 200:NIH strain under standard culture conditions, the fold-change in TSA treated parasites,
FDR, GenBank ID number, and gene annotations are shown. Genes in bold have been confirmed by RT-PCR. Genes regulated during trophozoite
to cyst development are shown shaded in italics. Additional loci represented by crosshybridizing _s_at probe sets are as follows: 17.m00307_s_at:
17.m00304; 425.m00057_s_at: 10.m00394; 217.m0008 | _s_at: 20.m00277; 92.m00148_s_at: 250.m00 |08 and 284.m00087; 242.m00078_s_at:
79.m00156; 77.m00178_s_at: 19.m00343 and 533.m00017.
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(B) Growth curve for E. histolytica 200:NIH
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Figure |

Growth rates of E. histolytica HM-1:IMSS and
200:NIH in medium with Trichostatin A. Log-phase
trophozoites (7,500 cells) were seeded into 14 ml tubes con-
taining fresh media (LG or LG+TSA). Aliquots were counted
every 24 hours. (A) E. histolytica HMI:IMSS parasites stopped
proliferating immediately upon transfer to LG+TSA contain-
ing media. (B) E. histolytica 200:NIH can grow in LG+TSA,
although at a reduced rate compared to growth in LG
medium. Experiments were performed a minimum of two
times and standard deviation is shown.

Methods

Entamoeba strains and culture methods

The strains used in this study were E. histolytica HM-
1:IMSS and E. histolytica 200:NIH both of which were
grown axenically in TYI-S-33 medium under standard cul-
ture conditions at 36.5°C [35]. Additionally, both strains
were grown in TYI-S-33 medium in the absence of glucose
(LG medium), in TYI-S-33 medium plus SCFA (70 mM
sodium acetate, 20 mM sodium propionate and 10 mM
sodium butyrate) (SCFA medium) [23], and in TYI-S-33
medium plus TSA (150 nM or 300 nM) (TSA medium).
Genotypes of the E. histolytica strains (HM-1:IMSS and
200:NIH) were confirmed by PCR and RFLP based on pre-
viously published methods [36,37].

RNA isolation and microarray hybridization

Total RNA was isolated using Trizol reagent (Invitrogen)
using the manufacturer's protocol and purified using a
Qiagen RNeasy kit before being used for microarray anal-
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ysis [14]. Samples were processed for microarray hybridi-
zation by the Stanford University Protein and Nucleic
Acids facility [38] using standard protocols. For each sam-
ple the RNA quality was checked using an Agilent BioAn-
alyzer QC and 4 pg subjected to the standard labeling and
hybridization method [39]. E. histolytica 200:NIH para-
sites were grown in SCFA for 16 hours, harvested and RNA
extracted for microarray experiments. E. histolytica
200:NIH parasites were grown in TSA (150 nM or 300
nM) for 16 or 72 hours (150 nM), harvested and RNA
extracted for microarray experiments.

Labeled samples were hybridized to a custom generated
Affymetrix platform full genome microarray (E_his-
1a520285F), which has been previously described [27].
This array has 7,712 unique probe sets, which represent
9,435 open reading frames. Due to the highly repetitive
nature of the E. histolytica genome, some of the probe sets
are predicted to cross-hybridize with other sequences.
Probe sets that represent a single gene and do not cross
hybridize are labeled as (_at). Probe sets in which at least
one probe may cross-hybridize with another gene(s) are
labeled as (_x_at). In situations where all the probes for a
given gene cross-hybridize with another gene(s), the
probe sets is labeled as (_s_at) and additional genes that
cross-hybridize with this probe set are listed in Additional
File 3B. This array also contains probes for intergenic non-
coding regions, however, these probe sets were excluded
from all analysis. After hybridization, arrays were scanned
and probe intensities calculation using Affymetrix GCOS
software [40].

Microarray data normalization and analysis

Normalized expression values for each probe set were
obtained from raw probe intensities in R 2.2.0 down-
loaded from the BioConductor project [41], using robust
multi-array averaging with correction for oligo sequence
(gcRMA) [42]. To identify differentially expressed genes,
we used local pooled error testing [43] along with Ben-
jamini-Hochberg multiple test correction [44]. In addi-
tion, fold-change was calculated in Genespring GX [45]. A
minimum of three arrays from each condition were used
for analysis of SCFA or TSA effects. Correlation coeffi-
cients were calculated in Genespring using standard corre-
lation. Probe sets were considered differentially expressed
between two conditions if they had at least a 2-fold
change and were significant with a false discovery rate
(FDR) of < 0.05, and were identified as "present” in at
least one array. Datasets of transcriptional profiles from E.
histolytica HM-1:IMSS, E. histolytica Rahman, parasites
from an in vivo model of colitis, encystation, and 5-AzaC
treatment were obtained from previously published data
[14,16,27].
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©)
Array data
(fold change)

RT-PCR confirms microarray data for genes regulated by TSA. Genes found to be differentially expressed based on
the array data were tested by semi-quantitative RT-PCR. RNA from log phase E. histolytica 200:NIH trophozoites exposed to
50 nM TSA for 16 hours was used to generate cDNA for the analysis. (A) Genes identified by the array analysis as upregu-
lated in TSA treated parasites (135.m001 13, 14.m00410, 337.m00049, 340.m00050 and 146.m001 7) are shown. (B) Genes
identified as downregulated in TSA parasites (1.m00712, 223.m0007 1, 223.m00075, and 77.m00173) are shown. (C) Genes
identified as being unchanged in TSA treated parasites (247.m00075 and 7.m00480, 13.m00291) and small subunit ribosomal
RNA (X61116) were used as a loading control. For all genes, the trends indicated by the array data were recapitulated by the
RT-PCR analysis. For all samples, a control reaction without reverse transcriptase control was performed, and was negative.

Semi-quantitative reverse transcriptase polymerase chain
reaction (RT-PCR)

E. histolytica 200:NIH trophozoites grown in TYI-S-33 LG
medium were transferred in mid log phase (3 x 10° per
ml) into TYI-S-33 LG or TYI-S-33 LG/150nM TSA and
incubated for 16 hrs. Total RNA was isolated with RNA-

(A) (B)
Upin TSA Up in Cysts Down in Cysts Down in TSA
Figure 3

Venn diagram of genes regulated by TSA and during
stage conversion. Overlap of genes regulated by TSA with
developmentally regulated genes is shown. Of 122 genes
upregulated by TSA treatment, 73 also show increased
expression in cysts. Of the 41 genes downregulated by TSA
treatment, |5 have increased expression in trophozoites.
Both of these overlaps are statistically significant (p = 6 x 10
53and p = 3 x 107 respectively).

zol, and 2ug RNA was treated with DNAase I for 5 minutes
at 37°C. cDNA was synthesized with oligo-dT and Super-
script III reverse transcriptase (Invitrogen) at 50°C for 2
hr. Ten-fold dilutions of cDNA were used as template for
30 cycles of PCR amplification with gene-specific primers.
PCR products were fractionated on 1.5% agarose gels,
stained with ethidium bromide, and photographed with a
GE/Amersham ImageQuant ECL recorder. Primers used in
the study are:

135.m00113 Sense (5'-CCGAATCTGCATTTCCAACT-3')
and

135.m00113 Antisense
GAA-3");

(5'-CAATCCCTCCTCCAAGT-

135.m00113 Sense (5'-TCTACTTGGAGGAGGGATTC-3")
and

135.m00113 Antisense (5'-AATGAATTTGCATTGCATGG-
3");

14.m00310 Sense (5'-GCCAGTTTCATTCCATGGIT-3')
and

Page 10 of 13

(page number not for citation purposes)



BMC Genomics 2007, 8:216

Encystation
signal
_/ \A
Trophozoite HATs and [HDACs Cyst HATs and|HDAC

/—\‘
Trophozoite v Cyst

Trophozoite HATs—» trophozoite genes Cyst HATs—» cyst genes
Trophozoite HDAC4— cyst genes Cyst HDACs— trophozoite genes

Repressed
by TSA

Figure 4

A proposed model for the role of histone acetylation
in Entamoeba stage conversion. Under axenic growth
conditions, trophozoite-specific HATs and HDACs induce
the expression of trophozoite genes while suppressing the
expression of cyst genes. When TSA is added to these cul-
tures, the repression of HDAC activity allows expression of
cyst genes. In contrast, during encystation cyst-specific HATs
and HDACs become active, turning off trophozoite-specific
genes and inducing cyst genes. TSA treatment of cells
induced to encyst may repress the activity of cyst-specific
HDACG:s, allowing continued expression of trophozoite genes
and blocking completion of the encystation pathway. Steps
sensitive to TSA treatment are highlighted in red.

14.m00310 Antisense (5'-TCAGGACCACCAACATTTGA-
3");

337.m00049 Sense (5'-TCAATGAATTGGTCGTITGC-3')
and

337.m00049
GTTG-3");

Antisense  (5'-TCGTTTTGGTGTGAAAT-

146.m00117 Sense (5'-CCCCATCCAAAATTGAACAG-3')
and

146.m00117 Antisense (5'-GGATGGGGATTAGAAAC-
CAAA-3');

223.m00071 Sense (5'-CCTAAACTTCAGCAAGTTCAT-
TCA-3') and

223.m00071 Antisense
GAGCCCAAAGCA-3');

(5'-GAAAGAAGTT-

1.m00712 Sense (5'-AACAATTGGTCAATGCTTCTCA-3')
and

http://www.biomedcentral.com/1471-2164/8/216

1.m00712 Antisense (5-TCCCAAATGAACGAATAGGC-
3");

223.m00075 Sense (5-TGCAAAAATTAATAACCITCT-
TCG-3') and
223.m00075 Antisense (5-TCCACCAACAAAACCT-
GAAA-3");

77.m00173 Sense (5'-CAACATCTATTGGAAAAAGACCA-
3') and

77.m00173 Antisense
CATCA-3");

(5-TGGAGATAACTCCTTCTC-

340.m00050 Sense
CAAATG-3") and

(5'-CATCGAATATGATATTACAT-

340.m00050 Antisense (5-TTTATTGGAATTGGGTCAAT-
AGCATTC-3");

247.m00075 Sense (5'-TGCAAAGTCCATITCCAACA-3')
and

247.m00075  Antisense

GGCTTC-3');

(5'-TTTCAGGAGAAAAAGT-

7.m00480 Sense (5'-TGATTGCAAAAGATTCAGAAACA-
3')and

7.m00480 Antisense (5'-ACTTGACCCAAAGTCATCACG-
3");

13.m00291 Sense (5'-TGCTCAATGGCATCAATGTT-3')
and

13.m00291 Antisense (5-'GCTTCCATITGGGACGTAGA-
3");

ssRNA Sense: (5'-ACGAACGAGACTGAAACCTAT-3') and
ssRNA Antisense: (5'-TGTTACGACITCTCCITCCTC-3").

Abbreviations

TSA: Trichostatin A; HDAC: histone deacetylases; RT-PCR:
reverse transcriptase polymerase chain reaction; SCFA:
short chain fatty acids; 5-AzaC: 5-Azacytidine; FDR: false
discovery rate.
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Additional file 1

Genes differentially expressed in E. histolytica HM-1:IMSS, E. histo-
lytica Rahman, and E. histolytica 200:NIH strains. (A) Genes differ-
entially expressed in E. histolytica HM1:IMSS compared to E.
histolytica Rahman and 200:NIH. The TIGR gene number, annotation,
and fold-change are shown. Normalized expression data for E. histolytica
HM-1:IMSS and Rahman strains grown in TYI-S-33 media were
obtained from previously published literature [14] and subjected to local
pooled error testing along with Benjamini-Hochberg multiple test correc-
tion. Genes that have higher expression in E. histolytica HM-1:IMSS
than in 200:NIH or Rahman are listed under "up". Genes that have lower
expression in E. histolytica HM-1:IMSS than in 200:NIH or Rahman
are listed under "down". (B) Genes differentially expressed in E. histo-
lytica Rahman compared to E. histolytica 200:NIH and HM-1:IMSS.
The TIGR gene number, annotation, and fold-change are shown. Genes
that have higher expression in E. histolytica Rahman than in HM-
1:IMSS or 200:NIH are listed under "up". Genes that have lower expres-
sion in E. histolytica Rahman than in HM-1:IMSS or 200:NIH are
listed under "down". (C) Genes differentially expressed in E. histolytica
200:NIH compared to E. histolytica Rahman and HM-1:IMSS. The
TIGR gene number, annotation, and fold-change are shown. Genes that
have higher expression in E. histolytica 200:NIH than in HM-1:IMSS
or Rahman are listed under "up". Genes that have lower expression in E.
histolytica 200:NIH than in HM-1:IMSS or Rahman are listed under
"down".

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-216-S1.xls]

Additional file 2

Expression profiles of histone and chromatin modifying genes in E.
histolytica strains HM-1:IMSS, 200:NIH, and Rahman. The mean
trophozoite expression value for E. histolytica HM-1:IMSS, 200:NIH,
and Rahman strains under standard culture conditions, GenBank 1D
number, and gene annotations are shown. Additional loci represented by
crosshybridizing _s_at probe sets are as follows — 49.m00192_s_at:
334.m00048, 361.m00053 and 472.m00060; 100.m00145_s_at:
48.m00184; 4.m00618_s_at: 280.m00075; 9.m00405_s_at:
117.m00168 and 67.m00101; 39.m00254_s_at: 35.m00257;
444.m00042_s_at: 25.m00257. Genes that are statistically different in
one strain compared to the other two are in bold.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-216-S2.xls]

Additional file 3

Data for all arrays based on MIAME format. (A) Normalized array
data for all genes. The Probe ID, TIGR gene number, GenBank accession,
Annotation, fold-change, and FDR are shown. The array data for E. his-
tolytica 200:NIH grown in TYI-S-33 media and E. histolytica 200:NIH
exposed to low glucose (LG), Trichostatin A (TSA), and short chain fatty
acids (SCFA) are listed. Normalized expression data for E. histolytica
HM-1:IMSS and Rahman strains grown in TYI-S-33 media were
obtained from previously published literature [14]. (B) Representation
table for all _s_at probes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-216-S3.xls]

Additional file 4

Genes differentially regulated in E. histolytica 200:NIH by exposure
to TSA media. (A) Genes with increased expression in TSA media. (B)
Genes with decreased expression in TSA media. The Probe ID, TIGR gene
number, GenBank accession, Annotation, fold-change, and FDR are
shown. All array data are available at the GEO database website at NCBI
(Accession number GSE8047).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-216-S4 xls]
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